陶瓷基体材料和高性能陶瓷基复合材料(1)

合集下载

陶瓷基复合材料

陶瓷基复合材料

陶瓷基复合材料论文2015年5月5日摘要:陶瓷基复合材料主要以高性能陶瓷为基体.通过加入颗粒、晶须、连续纤维和层状材料等增强体而形成的复合材料。

如碳化硅、氮化硅、氧化铝等,具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。

陶瓷基复合材料的研究还处于较初级阶段,我国对陶瓷基复合材料的研究则刚刚起步不久。

关键词:陶瓷基复合材料基体增强体强韧化机理制备技术前言:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。

陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。

这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。

而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。

纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。

陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。

其最高使用温度主要取决于基体特征。

正文一、陶瓷基复合材料基本概述陶瓷基复合材料的基体为陶瓷。

如碳化硅、氮化硅、氧化铝等,具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。

化学键往往是介于离子键与共价键之间的混合键。

陶瓷基复合材料中的增强体通常也称为增韧体。

从几何尺寸上可分为纤维(长、短纤维)、晶须和颗粒三类。

碳纤维主要用在把强度、刚度、重量和抗化学性作为设计参数的构件;其它常用纤维是玻璃纤维和硼纤维。

纤维增强陶瓷基复合材料是改善陶瓷材料韧性的重要手段。

目前常用的晶须是SiC和A12O3,常用的基体则为A12O3,ZrO2,SiO2,Si3N4以及莫来石等。

晶须具有长径比,含量较高时,桥架效应使致密化困难,引起了密度的下降导致性能下降。

颗粒代替晶须在原料的混合均匀化及烧结致密化方面均比晶须增强陶瓷基复合材料要容易。

常用的颗粒也是SiC、Si3N4和A12O3等。

陶瓷基复合材料发展迟滞,发展过程中也遇到了比其它复合材料更大的困难。

陶瓷基复合材料

陶瓷基复合材料

Ceramic-matrix
注意事项 : (1)料浆应能与纤维表面保持良好润湿。料浆中包括:陶瓷基体粉末、 载液(通常是蒸馏水)和有机粘接剂,有时还加入某些促进剂和基体润湿 剂。为使纤维表面均匀粘附料浆,要求陶瓷粉体粒径小于纤维直径,并 能悬浮于载液和粘接剂混合的溶液中。 (2)纤维应选用容易分散的、捻数低的丝束,保持其表面清洁无污染。 在操作过程中尽量避免纤维损伤,并注意排除气泡。 (3)热压烧结应按预定规律(即热压制度)升温和加压。在热压过程中, 将发生基体颗粒重新分布、烧结和在外压作用下的粘性流动等过程,最 终获得致密化的陶瓷基复合材料。很多陶瓷基复合材料体系在热压过程 中往往没有直接发生化学反应,主要通过系统表面能减少的驱动,使疏 松粉体熔结而致密化。 存在的问题: (1)纤维和陶瓷粉末不容易复合成型。 (2)烧结时由于基体收缩或热压烧结时无粘性流动,会使颗粒和纤维 之间的机械作用而损伤纤维。 (3)目前,直径小于0.1微米-1微米的粉末很难买到。并且,其中的夹 杂物不易排除。同时,细的粉末在制造复合材料过程中又不易分散。 (4)在热压时会损伤纤维结构。
Ceramic-matrix
注意事项:
(1)与高聚物先驱体转化法不同的是,溶胶—凝胶工艺的先驱体是在溶液浸 进纤维编织坯件后在原位合成的。 (2)采用溶胶—凝胶法制备复合材料可以先制备复合凝胶体,即将复合的各 相以原子或分子级进行均匀混合形成复合溶胶和凝胶化,得到高纯、超细、均 相、分子级或包裹式的复合陶瓷粉末,再经成型、烧结而形成复合材料的基体 或者通过控制溶剂的蒸发速度将复合的溶胶凝胶化后,直接烧结成陶瓷基复合 材料。 (3)如果第二相是粉末或纤维,则可浸在适当的溶液中,通过形核和成长, 使溶液形成溶胶,均匀包围粉末和纤维,经凝胶化处理和热解后即形成陶瓷基 复合材料的基体。 (4)溶胶—凝胶法制备陶瓷基复合材料的质量保证关键主要有:选择合适的 先驱体反应物,控制溶液的浓度和pH值、气氛、分散剂、选用胶溶剂、去除 团聚以及使各相处于良好的分散状态等。

陶瓷基复合材料的制备方法

陶瓷基复合材料的制备方法
轨前进,沿着窑内设定的温度分布经预热、烧
结、冷却过程后,从窑的另一端取出成品。
4.精加工
由于高精度制品的需求不断增多,因此在烧结
后的许多制品还需进行精加工。 精加工的目的是为了提高烧成品的尺寸精度和 表面平滑性,前者主要用金刚石砂轮进行磨削加工, 后者则用磨料进行研磨加工。
以上是陶瓷基复合材料制备工艺的几个主要步
韧陶瓷基复合材料。
由于晶须的尺寸很小,从宏观上看与粉末一样,
因此在制备复合材料时,只需将晶须分散后与基体粉
末混合均匀,然后对混好的粉末进行热压烧结,即可
制得致密的晶须增韧陶瓷基复合材料。
目前常用的是SiC,Si3N4 ,Al2O3 晶须,常用的基 体则为Al2O3,ZrO2,SiO2,Si3N4及莫来石等。 晶须增韧陶瓷基复合材料的性能与基体和晶须的 选择、晶须的含量及分布等因素有关。
易造成烧成后的生坯变形或开裂、只能适用于形
状比较简单的制件。
采用橡皮模成型法是用静水压从各个方向均 匀加压于橡皮模来成型,故不会发生生坯密度不 均匀和具有方向性之类的问题。
由于在成型过程中毛坯与橡皮模接触而压成
生坯,故难以制成精密形状,通常还要用刚玉对 细节部分进行修整。
另一种成型法为注射成型法。从成型过程上看,
据需要的厚度将单层或若干层进行热压烧结成型,如
下图所示。
纤维 层 基体
纤维布层压复合材料示意图 这种材料在纤维排布平面的二维方向上性能优越,而在垂 直于纤维排布面方向上的性能较差。 一般应用在对二维方向上有较高性能要求的构件上。
另一种是纤维分层单向排布,层间纤维成一定角度,
如下图所示。 纤维层
基体
Z
三向C/C编织结构示意图 Y
这种三维多向编织结构还可以通过调节

陶瓷基复合材料

陶瓷基复合材料

陶瓷基复合材料综述引言:陶瓷基复合材料是近二十年来发展起来的新型材料,由于该类材料具有良好的高温性能。

因此它作为耐高温结构材料在航空航天工业和能源工业等领域的应用具有巨大的潜力。

如航空发动机的推重比为10时,涡轮前进口温度达1650C, 在这样高的温度下,传统的高温合金材料已经无法满足要求【11,因此国内外的材料研究者纷纷把研究的重点转向陶瓷基复合材料。

研究者通过大量的实验发现,陶瓷基复合材料不仅具有良好的高温稳定性和高温抗氧化能力,而且材料在断裂过程中通过裂纹偏转、纤维断裂和纤维拔出等机理吸收能量,既有效的增强了材料的强度和韧性,又保持了基体材料低膨胀、低密度的特点。

摘要:概述了陶瓷基复合材料的基本概念,介绍了陶瓷基复合材料的性能、分类及其应用,以及各类陶瓷基复合材料的优点、缺点。

重点介绍了陶瓷基复合材料的增韧机理、制备工艺(包括粉末冶金法、浆体法、反应烧结法、液态浸渍法、直接氧化法等)。

最后对陶瓷复合基材料的发展前景及发展方向做了展望。

1、陶瓷基复合材料概述陶瓷分为普通陶瓷和特种陶瓷。

普通陶瓷就是我们日常用的陶瓷、建筑陶瓷、化学陶瓷、电瓷及其他工业用瓷。

虽然陶瓷外表美观,耐腐蚀,但是它塑性差,易碎,是其致命缺点。

而另一种陶瓷:特种陶瓷则刚好解决了这个缺点,让陶瓷的发展有了无限的空间。

特种陶瓷包括功能陶瓷和结构陶瓷。

是一种复合材料。

陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。

陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。

这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。

而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。

纤维能阻止裂纹的扩展从而得到有优良韧性的纤维增强陶瓷基复合材料。

2、陶瓷基基复合材料的基体与增强体(2) 增强体:陶瓷基复合材料中的增强体,通常也称为增韧体。

陶瓷基复合材料

陶瓷基复合材料

陶瓷基复合材料引言。

陶瓷基复合材料是一种由陶瓷基体和其他增强材料组成的复合材料。

它具有优异的耐磨、耐腐蚀、高强度和高温稳定性等特点,因此被广泛应用于航空航天、汽车制造、化工等领域。

本文将介绍陶瓷基复合材料的组成、性能和应用,并对其未来发展进行展望。

一、陶瓷基复合材料的组成。

陶瓷基复合材料通常由陶瓷基体和增强材料组成。

陶瓷基体可以是氧化铝、碳化硅、氮化硅等陶瓷材料,而增强材料则可以是碳纤维、玻璃纤维、陶瓷颗粒等。

这些材料通过复合加工技术,如热压、注射成型等,将陶瓷基体与增强材料紧密结合,形成具有优异性能的复合材料。

二、陶瓷基复合材料的性能。

1. 耐磨性,陶瓷基复合材料具有优异的耐磨性,可以在高速、高负荷条件下保持较长的使用寿命,因此被广泛应用于机械设备的零部件制造。

2. 耐腐蚀性,由于陶瓷基复合材料具有优异的化学稳定性,可以在酸、碱等腐蚀性介质中长期稳定运行,因此在化工领域得到广泛应用。

3. 高强度,陶瓷基复合材料在高温、高压条件下依然保持优异的强度和刚性,因此被广泛应用于航空航天领域。

4. 高温稳定性,陶瓷基复合材料在高温条件下依然保持稳定的性能,因此被广泛应用于发动机、燃气轮机等高温设备的制造。

三、陶瓷基复合材料的应用。

1. 航空航天领域,陶瓷基复合材料被广泛应用于航空发动机、航天器外壳等高温、高压零部件的制造。

2. 汽车制造领域,陶瓷基复合材料被应用于汽车刹车片、离合器片等零部件的制造,以提高其耐磨性和耐高温性能。

3. 化工领域,陶瓷基复合材料被应用于化工设备的制造,以提高其耐腐蚀性和耐高温性能。

四、陶瓷基复合材料的发展展望。

随着科学技术的不断进步,陶瓷基复合材料将会在性能和应用范围上得到进一步提升。

未来,我们可以期待陶瓷基复合材料在新能源领域、生物医药领域等新兴领域的广泛应用,为人类社会的发展做出更大的贡献。

结论。

陶瓷基复合材料具有优异的耐磨、耐腐蚀、高强度和高温稳定性等特点,因此在航空航天、汽车制造、化工等领域得到广泛应用。

陶瓷基复合材料

陶瓷基复合材料
注。连续纤维增强陶瓷基复合材料已经开始在航天航空、国防等领域得到广泛应用[1~3]。20世纪70
年代初,J Aveston[2]在连续纤维增强聚合物基复合材料和纤维增强金属基复合材料研究基础上,首次
提出纤维增强陶瓷基复合材料的概念,为高性能陶瓷材料的研究与开发开辟了一个方向。随着纤维制备
技术和其它相关技术的进步,人们逐步开发出制备这类材料的有效方法,使得纤维增强陶瓷基复合材料
科技名词定义
中文名称:陶瓷基复合材料 英文名称:ceramic matrix composite 定义:以陶瓷材料为基体,
纤维、晶须、颗粒等为增强体(增韧材料)组成的复合物。 应用学科:航空科技(一级学科);航
空材料(二级学科) 以上内容由全国科学技术名词审定委员会审定公布 名称: 陶瓷基复合材料
个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。 陶
瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。其最高使用温度主要取决于基体特
征。陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。法
国已将长纤维增强碳化硅复合材料应用于制造高速列车的Hale Waihona Puke 动件,显示出优异的摩擦磨损特性,取得
纤维增强陶瓷基复合材料有着优异的高温性能、高韧性、高比强、高比模以及热稳定性好等优点,能
有效地克服对裂纹和热震的敏感性[6~7],因此,在代写论文重复使用的热防护领域有着重要的应用和
广泛的市场
的制备技术日渐成熟。20多年来,世界各国特别是欧美以及日本等对纤维增强陶瓷基复合材料的制备
工艺和增强理论进行了大量的研究,取得了许多重要的成果,有的已经达到实用化水平。如法国生产的

陶瓷基复合材料综述

陶瓷基复合材料综述

陶瓷基复合材料综述陶瓷基复合材料是指以陶瓷材料为基体,通过添加其他材料或者通过热处理等方式形成的一种具有复合结构的新型材料。

陶瓷基复合材料具有许多优异的性能,包括高温稳定性、高硬度、高抗磨损性和良好的化学稳定性等。

本文将对陶瓷基复合材料的制备方法、性能以及应用方面进行综述。

一、陶瓷基复合材料的制备方法陶瓷基复合材料的制备方法可以分为两大类:一种是在陶瓷基体中添加其他材料,如纳米颗粒、纤维、碳纳米管等;另一种是通过热处理等方式改变陶瓷基体的结构和性能。

其中,添加其他材料的方法主要包括浸渍法、溶胶凝胶法、等离子熔融法等;热处理方法主要包括烧结、热压、热等静压等。

二、陶瓷基复合材料的性能陶瓷基复合材料具有许多独特的性能,其主要包括高温稳定性、高硬度、高抗磨损性和良好的化学稳定性。

其中,高温稳定性是指材料在高温下仍然能够保持物理和化学性能的稳定性。

高硬度则是指材料的硬度较高,能够抵抗外界的划痕和磨损。

高抗磨损性则是指材料能够在摩擦和磨损等条件下保持其表面的完整性和光洁度。

化学稳定性则是指材料对酸、碱、盐等化学介质的稳定性较好,不易发生腐蚀和溶解。

三、陶瓷基复合材料的应用方面由于陶瓷基复合材料具有优异的性能,因此在许多领域都得到了广泛的应用。

其中,陶瓷基复合材料在航空航天领域中被广泛应用于火箭发动机喷管、刹车盘等高温部件中。

此外,在能源领域,陶瓷基复合材料可以用于制备高效的催化剂、光催化剂和固态电解质等。

在汽车制造领域,陶瓷基复合材料可以应用于汽车刹车系统、传动系统和发动机部件等。

此外,陶瓷基复合材料还可以用于制备耐磨、耐蚀和高温结构件,如轴承、密封件和切割工具等。

综上所述,陶瓷基复合材料具有许多优异的性能,包括高温稳定性、高硬度、高抗磨损性和良好的化学稳定性等。

通过添加其他材料或者通过热处理等方式改变陶瓷基体的结构和性能,可以制备出具有不同功能和应用的陶瓷基复合材料。

由于其广泛的应用前景,陶瓷基复合材料在材料科学领域中受到了广泛的研究和开发。

陶瓷基复合材料的性质及其应用前景

陶瓷基复合材料的性质及其应用前景

陶瓷基复合材料的性质及其应用前景陶瓷基复合材料是一种新型的复合材料,它由陶瓷基体和增强材料组成。

其特点是硬度高、强度大、耐高温、耐腐蚀、绝缘性能好等。

由于其独特的性质,陶瓷基复合材料在航空航天、汽车制造、电子和电力工业等领域都有广泛的应用。

一、陶瓷基复合材料的组成陶瓷基复合材料由陶瓷基体和增强材料组成。

其中,陶瓷基体通常采用氧化物陶瓷或碳化物陶瓷,而增强材料则可以选择纤维材料、颗粒材料、层板材料等。

陶瓷基复合材料的制备方法很多,主要包括热压、热等静压、拉伸成型等。

二、陶瓷基复合材料的性质1. 高硬度由于陶瓷基复合材料的基体是陶瓷,因此具有非常高的硬度。

事实上,某些陶瓷基复合材料的硬度可以接近金刚石,达到20GPa以上。

这一优异的性能意味着它们可以耐受高度的磨损和冲击,适用于大多数需要高耐久性的应用领域。

2. 高强度在增强材料的加入下,陶瓷基复合材料具有很高的强度和刚性。

因此,它们可以承受非常大的载荷,并在极端条件下工作。

这种性质使它们成为航空航天、汽车制造和电力工业等相关领域中理想的结构材料。

3. 耐高温陶瓷基复合材料具有非常好的耐高温性能。

在高温环境下,它们保持不失效、不变形等特性。

因此,它们被广泛应用于航空航天、汽车制造等需要高温稳定性能的领域。

4. 耐腐蚀陶瓷基复合材料还具有良好的耐腐蚀性能。

在强酸、强碱、高浓度的腐蚀性环境下,它们仍然可以保持稳定。

这一性质使它们成为化工、电力工业领域中的理想材料。

5. 绝缘性能好陶瓷基复合材料具有很好的绝缘性能,因此广泛运用于电子和电力工业中。

它们可以承受高电压、高电流的特性,同时在工作过程中不会导电或产生电磁干扰。

三、陶瓷基复合材料的应用前景由于其优异的性能和多功能性,陶瓷基复合材料在多个领域都有很广泛的应用前景。

以下是一些典型应用案例:1. 航空航天陶瓷基复合材料可以用于制作飞机、火箭、导弹的部件,如机身、引擎、导向器等。

因为它们的低重量、高强度和耐高温性质可以降低飞行设备的质量和提高操作效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高性能复合材料学
7 陶瓷基体和高性能陶瓷基 复合材料
2021/3/2
国防科学技术大学航天与材料工程学院
1
高性能复合材料学
7 陶瓷基体和高性能陶瓷基复合材料
7.1 高性能复合材料的陶瓷基体材料 7.2 高性能陶瓷基复合材料
2021/3/2
国防科学技术大学航天与材料工程学院
2
高性能复合材料学
7.1 高性能复合材料的陶瓷基体材料 (ceramic matrix materials of HPCM)
• 高熔点、高弹性模量(high melting point, high elastic modulus);
• 位错和原子不易运动(low dislocation and atomic mobility),即塑性变形性差;
• 高硬度、低密度(high hardness, low density)。
2021/3/2
14
高性能复合材料学
(2)可靠性指标:强度 (Indexes of Reliability: Strength)
F = YKc/c1/2
式中, Y: 无量纲常数,取决于缺陷的几何形状(不是尺
寸)、应力场和试样的几何形状(a dimensionless constant dependent on the geometry (not size) of the flaw and the geometry of the stress field and the sample); c: 裂纹尺寸(the flaw size); Kc: 断裂韧性(the fracture toughness)。
2021/3/2
国防科学技术大学航天与材料工程学院
5
高性能复合材料学
陶瓷的键合与结构
• 1971年,美国兴起“陶瓷热”,在“脆 性材料计划”中研制出包含104个陶瓷零 件的示范型涡轮发动机,使其进口温度提 高200℃,功率提高30%,燃耗降低7%。
• 1979年,发动机进口温度达到 1371℃(ACTT101)。
压、反应、气氛加压、重力、微波、自蔓延、 等离子)。一般要求在真空或惰性气氛中进行。
2021/3/2
国防科学技术大学航天与材料工程学院
8
高性能复合材料学
陶瓷的键合与结构
• 现代陶瓷的性能:具有多功能(压电、铁电、导 电、半导体、磁性、湿敏、气敏、压敏等)、高 硬度、高弹性模量、低密度、耐高温、抗腐蚀、 绝缘、热膨胀系数低、环境耐久性。但强度不高、 脆、断裂应变小、断裂韧性低、抗热和力学冲击 性差、对内部缺陷和表面缺陷敏感。
2021/3/2
国防科学技术大学航天与材料工程学院
15
高性能复合材料学
可靠性指标:强度
F = Y[E/c(1 - 2)]1/2
式中,
: 断裂表面能(the fracture surface
energy); E:杨氏模量( the Young's modulus); :泊松比( the Poisson ratio)。
2021/3/2
国防科学技术大学航天与材料工程学院
6
高性能复合材料学
陶瓷的键合与结构
陶瓷分为两类: • 传统(通用)陶瓷(tradition or convention
ceramic) • 现代(或特种)陶瓷(modern or special
ceramic) • 作为高性能陶瓷基复合材料基体材料的一
• 现代陶瓷应用于高温结构、宝石、刀具、磁、电、 光、声、生物、机械、电子、宇航、绝缘等领域。 如Al2O3、ZrO2、SiC、Si3N4。
2021/3/2
国防科学技术大学航天与材料工程学院
9
高性能复合材料学
7.1.1.1 陶瓷的键合及特点
(1)陶瓷的键合(bonding of ceramic) • 除玻璃外的陶瓷材料都具有晶体结构。与
金属不同的是,陶瓷以离子键结合(ionic bond )为主,也有一些共价键结合 (covalent bond)。 • 陶瓷是由共价键和离子键以混合周期排列 方式形成的连续成分单元。如SiC。
2021/3/2
国防科学技术大学航天与材料工程学院
10
高性能复合材料学
陶瓷的键合及特点
(2)陶瓷的特点
• 化学稳定性高(chemical very stable ),发掘 出的陶瓷可用于考古(archeology);
7.1.1 陶瓷的键合与结构 7.1.2 陶瓷的强度 7.1.3 现代陶瓷的晶体结构 7.1.4 常用陶瓷基体材料
2021/3/2
国防科学技术大学航天与材料工程学院
3
高性能复合材料学
7.1.1 陶瓷的键合与结构
7.1.1.1 陶瓷的键合及特点 7.1.1.2 陶瓷的缺点
2021/3/2
国防科学技术大学航天与材料工程学院
7.1.1.2 陶瓷的缺点
(1)缺点(drawbacks) • 脆性大(high brittleness),断裂模式是
灾难性破坏 (failure mode: catastrophic fracture)
• 强度度可靠性差(poor reliability of strength)
2021/3/2
国防科学技术大学航天与材料工程学院
ቤተ መጻሕፍቲ ባይዱ
4
高性能复合材料学
7.1.1 陶瓷的键合与结构
(bonding and structure of ceramics)
什么是陶瓷? • 以无机非金属天然矿物构成的化工产品为
原料,经原料处理、成形、干燥、烧成等 工序制成的产品,分陶器和瓷器(pottery and porcelain)两大类,合称为陶瓷。
国防科学技术大学航天与材料工程学院
11
高性能复合材料学
Table 7-1 Selected properties of some ceramics
2021/3/2
国防科学技术大学航天与材料工程学院
12
高性能复合材料学
表7-2 陶瓷的典型性能
2021/3/2
国防科学技术大学航天与材料工程学院
13
高性能复合材料学
般是现代陶瓷。
2021/3/2
国防科学技术大学航天与材料工程学院
7
高性能复合材料学
陶瓷的键合与结构
何谓现代陶瓷?
• 原料:微米、亚微米级的高纯人工合成氧、碳、
氮、硼、硅、硫等无机非金属物质化合物。
• 成型方法:热压铸、压力浇注、干压、冷等
静压、注射、流延法、气相沉积、浸渍等。
• 烧成:烧结(热压、无压、热等静压、冷等静
相关文档
最新文档