高中数学全套讲义 必修3 概率与统计 基础学生版
人教A版高中数学必修3《三章 概率 3.1 随机事件的概率 3.1.2 概率的意义》示范课课件_18

【点评】在一次试验中,概率大的事件比概率 小的事件出现的可能性大的多,这正是能够利用极 大似然法来进行科学决策的理论依据.因此,在分 析、解决有关实际问题时,要善于灵活地运用极大 似然法这一思想方法来进行科学地决策.
成语“千载难逢”的意思是说某事:
发生的概率很小
四、天气预报的概率解释
为这次天气预报不准确?如何根据频 率与概率的关系判断这个天气预报是 否正确?
不能,概率为 90%的事件发生的可能性很大, 但“明天下雨”是随机事件,也有可能不发生. 收集近50年同日的天气情况,考察这一天下雨 的频率是否为 90%左右.
五、试验与发现
思考10:奥地利遗传学家孟德尔从 1856年开始用豌豆作试验,他把黄色和 绿色的豌豆杂交,第一年收获的豌豆都 是黄色的.第二年,他把第一年收获的 黄色豌豆再种下,收获的豌豆既有黄色 的又有绿色的.同样他把圆形和皱皮豌豆杂交,第一年 收获的豌豆都是圆形的.第二年,他把第一年收获的圆 形豌豆再种下,收获的豌豆却既有圆形豌豆,又有皱皮 豌豆.类似地,他把长茎的豌豆与短茎的豌豆杂交,第 一年长出来的都是长茎的豌豆. 第二年,他把这种杂交 长茎豌豆再种下,得到的却既有长茎豌豆,又有短茎豌 豆.试验的具体数据如下:
游戏公平性的标准及判断方法 (1)游戏规则是否公平,要看对游戏的双方
来说获胜的可能性或概率是否相同.若相同,则 规则公平,否则就是不公平的.
(2)具体判断时,可以求出按所给规则双方 的获胜概率,再进行比较.
三、决策中的概率思想
思考7:如果连续10次掷一枚骰子,结果 都是出现1点,你认为这枚骰子的质地是 均匀的,还是不均匀的?如何解释这种
个事件的概率最大__(_1_)____.
7.1条件概率与全概率公式- 2020-2021学年人教A版(2019)高中数学选择性必修第三册讲义

1.定义:条件概率揭示了P(A),P(AB),P()三者之间“知二求一”的关系一般地,设A ,B 为两个随机事件,且P(A)>0,我们称P()=为在事件A 发生的条件下,事件B 发生的条件概率,简称条件概率.2. 条件概率的定义设A 、B 是两个事件,且P(B)>0,则称()(|)()P AB P A B P B为在事件B 发生的条件下,事件A 的条件概率.若事件B 已发生, 则为使 A 也发生 , 试验结果必须是既在 B 中又在A 中的样本点 , 即此点必属于AB. 由于我们已经知道B 已发生, 故B 变成了新的样本空间 , 于是有了以上公式3. 条件概率的计算 1) 用定义计算:2)从加入条件后可用缩减样本空间法1.定义:由条件概率的定义,对任意两个事件A 与B ,若P(A)>0,则()()()P AB P A P B A =,我们称上式为概率的乘法公式.2.性质:设P(A)>0,则,)()()|(B P AB P B A P =P (B )>0一般地条件概率与无条件概率 之间的大小无确定关系若,条件概率 无条件概率(1)()1P A Ω=(2)如果B 与C是两个互斥事件,则()()()()P B C A P B A P C A ⋃=+ (3)设B 和B 互为对立事件,则()()1P B A P B A =-1.全概率公式 一般地,设12,,n A A A 是一组两两互斥的事件,12n A A A ⋃⋃⋃=Ω,且()0i P A >,1,2,,i n =,则对任意的事件B ⊆Ω,有()()()1niii P B P A P B A ==∑我们称上面的公式为全概率公式,全概率公式是概率论中最基本的公式之一由条件概率的定义:若已知P(B), P(A|B)时, 可以反求P(AB)定理若P(B)>0,则P(AB)=P(B)P(A|B) (2)若P(A)>0,则P(AB)=P(A)P(B|A) (3)全概率公式全概率就是表示达到某个目的有多种方式(或者造成某种结果有多种原因),求达到目的的概率是多少(或者造成这种结果的概率是多少).2. 贝叶斯公式 设12,,n A A A 是一组两两互斥的事件,12n A A A ⋃⋃⋃=Ω,且()0i P A >,1,2,,i n =,则对任意的事件B ⊆Ω,()0P B >,有()i P A B =()()()i i P A P B A P B =()()()()1i i nkkk P A P B A P A P B A =∑,1,2,,i n =全概率公式、贝叶斯公式它们是加法公式和乘法公式的综合运用,同学们可通过进一步的练习去掌握它们.值得一提的是,后来的学者依据贝叶斯公式的思想发展了一整套统计推断方法,叫作“贝叶斯统计”.可见贝叶斯公式的影响.全概率公式. 全概率公式的基本思想是把一个未知的复杂事件分解为若干个已知的简单事件再求解,而这些简单事件组成一个 互不相容事件组 ,使得某个未知事件A 与这组互不相容事件中至少个同时发生 ,故在应眉此全慨率公式时,关键是要找到一个合适的S 的一个划分.例题1.《易经》是中国传统文化中的精髓,下图是易经后天八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成( 表示一根阳线, 表示一根阴线),从八卦中任取两卦,记事件 A = “两卦的六根线中恰有两根阳线”, B = “有一卦恰有一根阳线”,则 P(A|B)= ( ),A. 15B. 16C. 17D. 314【答案】 B【解析】由八卦图可知,八卦中全为阳线和全为阴线的卦各有一个, 两阴一阳和两阳一阴的卦各有三个,而事件A 所包含的情况可分为两种, 即第一种是取到的两卦中一个为两阳一阴,另一个为全阴; 第二种是两卦中均为一阳两阴;而事件 A ∩B 中只包含后者, 即: P(A ∩B)=C 32C 82=328,事件 B 的概率 P(B)=1−C 52C 82=914 ,所以 P(A|B)=328914=16故答案为:B例题2.已知某种产品的合格率是 90% ,合格品中的一级品率是 20% .则这种产品的一级品率为( ) A. 18% B. 19% C. 20% D. 21% 【答案】 A【解析】设事件A 为合格品,事件B 为一级品,则 P(A)=90%,P(B|A)=20% 所以 P(B)=P(A)P(B|A)=90%×20%=18% 故答案为:A例题3.某种电子元件用满3000小时不坏的概率为 34 ,用满8 000小时不坏的概率为 12 ,现有一只此种电子元件,已经用满3000小时不坏,还能用满8000小时的概率是()A.34B.23C.12D.13【答案】 B【解析】记事件A“用满3000小时不坏”,P(A)=34记事件B“用满8000小时不坏,P(B)=12∵B⊂A,∴P(AB)=P(B)=1 2则P(B|A)=P(AB)P(A)=1234=12×43=23故答案为:B例题4.某校将进行篮球定点投篮测试,规则为:每人至多投3次,先在M处投一次三分球,投进得3分,未投进不得分,以后均在N处投两分球,每投进一次得2分,未投进不得分.测试者累计得分高于3分即通过测试,并终止投篮.甲、乙两位同学为了通过测试,进行了五轮投篮训练,每人每轮在M处和N处各投10次,根据他们每轮两分球和三分球的命中次数情况分别得到如图表:若以每人五轮投篮训练命中频率的平均值作为其测试时每次投篮命中的概率.(1)求甲同学通过测试的概率;(2)在甲、乙两位同学均通过测试的条件下,求甲得分比乙得分高的概率.【答案】(1)解:甲同学两分球投篮命中的概率为510+410+310+610+7105=0.5,甲同学三分球投篮命中的概率为110+0+110+210+1105=0.1,设甲同学累计得分为X,则P(X≥4)=P(X=4)+P(X=5)=0.9×0.5×0.5+0.1×0.5+0.1×0.5×0.5=0.3,所以,甲同学通过测试的概率为0.3(2)解:乙同学两分球投篮命中率为210+410+310+510+6105=0.4,乙同学三分球投篮命中率为110+210+310+110+3105=0.2 .设乙同学累计得分为Y,则P(Y=4)=0.8×0.4×0.4=0.128,P(Y=5)=0.2×0.4+0.2×0.6×0.4=0.128,设“甲得分比乙得分高”为事件A,“甲、乙两位同学均通过了测试”为事件B,则P(AB)=P(X=5)⋅P(Y=4)=0.075×0.128=0.0096,P(B)=[P(X=4)+P(X=5)]⋅[P(Y=4)+P(Y=5)]=0.0768,由条件概率公式可得P(A|B)=P(AB)P(B)=0.00960.0768=18【解析】(1)分别求出甲同学两分球投篮命中的概率和甲同学三分球投篮命中的概率,设甲同学累计得分为X,则P(X≥4)=P(X=4)+P(X=5),由此能求出甲同学通过测试的概率;(2)乙同学两分球投篮命中的概率为0.4,三分球投篮命中的概率为0.2,设乙同学累计得分为Y,求出P(Y=4)=0.128,P(Y=5)=0.128,设“甲得分比乙得到高”为事件A,“甲、乙两位同学均通过了测试”为事件B,则P(AB)=P(X=5)•P(X=4),P(B)=[P(X=4)+P(X=5)]•[P(Y=4)+P(Y=5)],由条件概率得:P(A|B)=P(AB)P(B)=0.00960.0768=18。
数学必修3第3章概率章末复习课件人教新课标

)
(2,5 (2,6
)
)
(3,5 (3,6
)
)
(4,5 (4,6
)
)
(5,5 (5,6
)
)
(6,5 (6,6
)P(A)=)1/18
2,从10件产品(其中3件次品)中,一件一件 地不放回地任意取出4件,求4件中恰有一件次 品的概率。
错解: 因为第一次有10种取法,第二次有9种取法 …,由乘法原理可知从10件取4件共有 10×9×8×7种取法,故样本空间S中基本事 件总数有10×9×8×7个。
(4)随机事件:在条件S下可能产生也可能不产 生的事件,叫相对于条件S的随机事件;
(5)频数与频率:在相同的条件S下重复n次实验
,视察某一事件A是否出现,称n次实验中事件A出
现的次数nA为事件A出现的频数;称事件A出现的
比例fn(A)=
n A为事件A出现的概率:对于给定 n
的随机事件A,如果随着实验次数的增加,事件A 产生的频率fn(A)稳定在某个常数上,把这个常数记 作P(A),称为事件A的概率。
设A=“取出4件中恰有一件次品”,则A中含有C31 C73 种取法。
错解: 因为第一次有10种取法,第二次有9种取法…,由乘法 原理可知从10件取4件共有10×9×8×7种取法,故样本 空间S中基本事件总数有10×9×8×7个。
设A=“取出4件中恰有一件次品”,则A中含有C31 C73 种取法。
(1) 实验总所有可能出现的基本事件只有有限个; (2) 每个基本事件出现的可能性相等
我们将具有这两个特点的概率模型称为古典概率 模型,简称古典概率。
对于古典概型,任何事件的概率为: P(A)= A包含的基本事件的个数
基本事件的总数
人教版高中数学必修三课件:第3章 概率 (9份)8

课标领航
本章概述
本章从知识内容上看,有随机事件的概率、古典概型和 几何概型. 1.概率是反映随机事件可能性大小的一个数量,概率在 [0,1]中取值.
2.概率的统计定义适合更广泛的概率模型,通过多次重 复试验,可以用频率得到概率的近似值;几何概型适合 试验结果有无限多个,并可以用长度、面积、角度等几 何量度量基本空间和事件的随机试验.
不论你在什么时候开始,重要的是开始之后就不要停止。 好习惯的养成,在于不受坏习惯的诱惑。 当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富。 为了照亮夜空,星星才站在天空的高处。 最可怕的敌人,就是没有坚强的信念。——罗曼·罗兰 如果惧怕前面跌宕的山岩,生命就永远只能是死水一潭。 这世间最可依赖的不是别人,而是你自己。不要指望他人,一定要坚强自立。 梯子的梯阶从来不是用来搁脚的,它只是让人们的脚放上一段时间,以便让别一只脚能够再往上登。 在所阅读的书本中找出可以把自己引到深处的东西,把其他一切统统抛掉,就是抛掉使头脑负担过重和会把自己诱离要点的一切。 肯承认错误则错已改了一半。 别人能做到的事,自己也可以做到。 遇到困难时不要抱怨,既然改变不了过去,那么就努力改变未来。 嘲讽是一种力量,消极的力量。赞扬也是一种力量,但却是积极的力量。 如果你很聪明,为什么不富有呢? 顽强的毅力可以征服世界上任何一座高峰。 并非神仙才能烧陶器,有志的人总可以学得精手艺。
为你制造一些困难和障碍的人未必是你的敌人,把你从困境里拉出来的人未必是你的朋友。不要用眼前的利益得失看人,要看长远,所谓路 遥知马力,日久见人心!
注意你的思想,它会变成你的言语;注意你的言语,它会变成你的行动;注意你的行动,它会变成你的习惯;注意你的习惯,它会变成你的 性格;注意你的性格,它会变成你的命运。 生活就像海洋,只有意志将强的人才能到达彼岸。 对于攀登者来说,失掉往昔的足迹并不可惜,迷失了继续前时的方向却很危险。
高A数学必修三课件概率的基本性质

设连续型随机变量X的概率密度函数为f(x),若积分∫|x|f(x)dx收敛,则称积分∫xf(x)dx的 值为随机变量X的数学期望,记为E(X)。
方差定义及计算
方差定义
方差是衡量源数据和期望值相差的度量值,即随机变量与其数学 期望之差的平方和的平均值。
离散型随机变量的方差
D(X)=∑[xi-E(X)]^2*pi。
推广公式
对于任意n个事件A1, A2, ..., An,有类似的加法公式。
概率乘法公式
乘法公式
对于任意两个独立事件A和B,有P(A∩B) = P(A) × P(B),即 两个独立事件同时发生的概率等于各自发生的概率的乘积。
推广公式
对于任意n个独立事件A1, A2, ..., An,有类似的乘法公式。
02
条件概率与独立性
条件概率定义及计算
条件概率定义
在事件B发生的条件下,事件A发生的概率,记作P(A|B)。
条件概率计算公式
P(A|B) = P(AB) / P(B),其中P(AB)表示事件A和事件B同时发生的概率,P(B)表 示事件B发生的概率。
事件独立性判断方法
事件独立性定义
如果事件A的发生与否对事件B的发生 概率没有影响,则称事件A与事件B相 互独立。
连续型随机变量的方差
D(X)=∫[x-E(X)]^2*f(x)dx。
协方差和相关系数概念
要点一
协方差定义
协方差在概率论和统计学中用于衡量两个变量的总体误差 。而方差是协方差的一种特殊情况,即当两个变量是相同 的情况。
要点二
相关系数定义
相关系数是最早由统计学家卡尔·皮尔逊设计的统计指标, 是研究变量之间线性相关程度的量,一般用字母r表示。
高中数学(人教版A版必修三)配套课件:3.1.3概率的基本性质.pptx

1 2345
3.从装有5个红球和3个白球的口袋内任取3个球,那么,互斥而不对立的 事件是( ) A.至少有一个红球与都是红球 B.至少有一个红球与都是白球 C.至少有一个红球与至少有一个白球 D.恰有一个红球与恰有两个红球
解析答案
1 2345
4.一商店有奖促销活动中有一等奖与二等奖两个奖项,中一等奖的概率
解析答案
类型二 概率的几个基本性质
例2 如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红 心(事件A)的概率是14,取到方块(事件B)的概率是14,问: (1)取到红色牌(事件C)的概率是多少? 解 因为C=A∪B,且A与B不会同时发生, 所以事件A与事件B互斥,根据概率的加法公式得 P(C)=P(A)+P(B)=12.
解析答案
(4)“至少有1名男生”和“全是女生”. 解 是互斥事件. 理由是:“至少有1名男生”包括“1名男生、1名女生”和“2名都是男生” 两种结果,它和“全是女生”不可能同时发生.
反思与感悟 解析答案
跟踪训练1 一个射手进行一次射击,试判断下列事件哪些是互斥事件? 哪些是对立事件? 事件A :命中环数大于7环; 事件B :命中环数为10环; 事件C :命中环数小于6环; 事件D :命中环数为6、7、8、9、10环. 解 A 与C 互斥(不可能同时发生),B 与C 互斥,C 与D 互斥,C 与D 是 对立事件(至少一个发生).
答案
知识点二 事件的运算 思考 一粒骰子掷一次,记事件C={出现的点数为偶数},事件D={出 现的点数小于3},当事件C,D都发生时,掷出的点数是多少?事件C, D至少有一个发生时呢? 答案 事件C,D都发生,即掷出的点数为偶数且小于3,故此时掷出的点 数为2,事件C,D至少一个发生,掷出的点数可以是1,2,4,6.
高一数学人必修三课件第三章概率的基本性质

揭示了频率与概率之间的内在联系, 即当试验次数足够多时,频率将趋近 于概率。
频率与概率的关系
当试验次数n足够大时,频率会稳定 在某个常数附近,这个常数就是该事 件的概率。
02
条件概率与乘法公式
条件概率定义及计算方法
条件概率定义
在事件B发生的条件下,事件A发 生的概率,记作P(A|B)。
计算方法
P(A|B) = P(AB) / P(B),其中 P(AB)表示事件A和事件B同时发 生的概率,P(B)表示事件B发生的 概率。
乘法公式推导与应用举例
乘法公式推导
由条件概率的定义可得P(AB) = P(A|B)P(B),进一步推导可得 P(ABC) = P(A|BC)P(BC) = P(A|BC)P(B|C)P(C)。
应用举例
在抽奖活动中,先抽取一个奖品,再 抽取第二个奖品,求两个奖品都是一 等奖的概率。
全概率公式和贝叶斯公式介绍
射击比赛
射手每次射击命中的概率为p,进行n次射击,命 中次数X服从二项分布B(n,p)。
3
抛硬币试验
抛一枚硬币n次,出现正面朝上的次数X服从二项 分布B(n,0.5)。
05
泊松分布与指数分布
泊松分布概念、性质及期望方差计算
泊松分布概念:泊松分布是一种离散型概率分布,用于 描述在给定时间间隔或空间内发生随机事件的次数,且 这些事件是独立且等可能发生的。
在古典概型中,必须确保每个基本事件是 等可能出现的。
混淆条件概率与联合概率
忽视事件的独立性
条件概率是在一个事件发生的前提下,另 一个事件发生的概率,而联合概率是两个 事件同时发生的概率。
在判断两个事件是否独立时,需要验证它 们的发生是否相互影响。
(完整word版)高中数学必修3统计与概率

统计1:简单随机抽样(1)总体和样本①在统计学中, 把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.④为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.(2)简单随机抽样,也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
(3)简单随机抽样常用的方法:①抽签法②随机数表法③计算机模拟法③使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
(4)抽签法:①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查(5)随机数表法:2:系统抽样(1)系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。
第一个样本采用简单随机抽样的办法抽取。
K(抽样距离)=N(总体规模)/n(样本规模)前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。
可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。
如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。
(2)系统抽样,即等距抽样是实际中最为常用的抽样方法之一。
因为它对抽样框的要求较低,实施也比较简单。
更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。
3:分层抽样(1)分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
概率与统计 (2)
模块一:统计 (2)
考点1:抽样方法 (2)
考点2:样本数字特征 (3)
模块二:线性回归分析 (7)
考点3:线性回归 (8)
模块三:概率 (10)
考点4:古典概型 (10)
考点5:几何概型 (11)
课后作业: (12)
概率与统计
模块一:统计
考点1:抽样方法
例1.(1)(2019春•龙潭区校级月考)完成下列两项调查:①从某社区70户高收入家庭、335户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况.这两项调查宜采用的抽样方法依次是()
A.①简单随机抽样,②系统抽样B.①分层抽样,②简单随机抽样
C.①系统抽样,②分层抽样D.①②都用分层抽样
(2)(2019春•浉河区校级月考)为了了解学生学习的情况,某校采用分层抽样的方法从高一1200人、高二1000人、高三n人中,抽取90人进行问卷调查.已知高一被抽取的人数为36,那么高三被抽取的人数为()
A.20B.24C.30D.32
(3)(2019春•信州区校级月考)某班有40位同学,座位号记为01,02,⋯,40,用下面的随机数表选取5组数作为参加青年志愿者活动的5位同学的座位号
4954 4454 8217 3793 2378 8735 2096
4384 2634 9164 5724 5506 8877 0474
4767 2176 3350 2583 9212 0767 5086
选取方法是从随机数表第一行的第11列和第12列数字开始,由左到右依次选取两个数字,则选出来的第5个志愿者的座位号是()
A.09B.20C.37D.38
(4)(2019春•香洲区校级月考)一个总体中有600个个体,随机编号为001,002,⋯,600,利用系统抽样方法抽取容量为25的一个样本,总体分组后在第一组随机抽得的编号为006,则在编号为049与120之间抽得的编号为()
A.056,080,104B.054,078,102C.054,079,104D.056,081,106
考点2:样本数字特征
例2.(1)(2019春•博望区校级月考)踢建子是中国民间传统的运动项目之一,起源于汉朝,至今已有两千多年的历史,是一项简便易行的健身活动.某单位组织踢毽子比賽,把20人平均分成甲、乙两组,并把毎人在1分钟内踢毽子的数目用茎叶图记录如下(其中中间的数字表示十位数,两侧的数字表示个位数).则下列判断正确的是()
A.甲组中位数大,乙组方差大B.甲组方差大,乙组极差大
C.甲组平均数大,乙组方差大D.甲组极差大,乙组中位数大
(2)(2019春•南陵县校级月考)从某地区年龄在25~55岁的人员中,随机抽出100人,了解他们对今年两会的热点问题的看法,绘制出频率分布直方图如图所示,则下列说法正确的是()
A.抽出的100人中,年龄在40~45岁的人数大约为20
B.抽出的100人中,年龄在35~45岁的人数大约为30
C.抽出的100人中,年龄在40~50岁的人数大约为40
D.抽出的100人中,年龄在35~50岁的人数大约为50
(3)(2019春•天元区校级月考)在一次200千米的汽车拉力赛中,50名参赛选手的成绩全部介于13分钟到18分钟之间,将比赛成绩分为五组:第一组[13,14),第二组[14,15), ,第五组[17,18],其频率分布直方图如图所示,若成绩在[13,15)之间的选手可获奖,则这50名选手中获奖的人数为()
A.39B.35C.15D.11
(3)(2019春•洮北区校级月考)从某地区随机抽取100名高中男生,将他们的体重(单位:)
kg数据绘制成频率分布直方图(如图).若要从体重在[60,70),[70,80),[80,90]三组内的男生中,用分层抽样的方法选取12人参加一项活动,再从这12人中选两人当正、副队长,则这两人体重不在同一组内的概率为()
A.1
3
B.
1
4
C.
2
5
D.
2
3
(4)(2019春•和平区校级月考)在某次数学测验后,将参加考试的500名学生的数学成绩制成频率分布直方图(如图),则在该次测验中成绩不低于100分的学生数是()
A .210
B .205
C .200
D .195
(5)(2019春•叶集区校级月考)已知数据1x ,22019x x ⋯的平均数是100,则121x +,221x +,201921x ⋯+的平均数是( )
A .100
B .2019
C .200
D .201
(6)(2019春•袁州区校级月考)甲乙两名同学6次考试的成绩统计如图,甲乙两组数据的
平均数分别为x 甲,x 乙,方差分别为2σ甲,2σ乙则( )
A .x x >乙甲,22
σσ<乙甲
B .x x >乙甲,22
σσ>乙甲
C .x x <乙甲,22
σσ<乙甲 D .x x <乙甲,22
σσ>乙甲
(7)(2019春•江城区校级月考)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为
[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是 .
模块二:线性回归分析
1.两个变量之间的关系:函数关系与相关关系.
相关关系:变量间存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有一定随机性的.当一个变量取值一定时,另一个变量的取值带有一定随机性的两个变量之间的关系叫做相关关系.
2.如果当一个变量的值变大时,另一个变量的值也在变大,则这种相关称为正相关; 反之,一个变量的值变大时,另一个变量的值由大变小,这种相关称为负相关.
3.散点图:将样本中的n 个数据点()(12)i i x y i n ,,
,,描在平面直角坐标系中. 散点图形象地反映了各个数据的密切程度,根据散点图的分布趋势可以直观地判断分析两个变量的关系.
散点图可以判断两个变量之间有没有相关关系.
4.回归分析:对于具有相关关系的两个变量进行统计分析的方法叫做回归分析,即回归分析就是寻找相关关系中这种非确定关系的某种确定性.
回归直线:如果散点图中的各点都大致分布在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线. 5.最小二乘法:
记回归直线方程为:ˆy a bx =+,称为变量Y 对变量x 的回归直线方程,其中,a b 叫做回归系数.
ˆy
是为了区分Y 的实际值y ,当x 取值i x 时,变量Y 的相应观察值为i y ,而直线上对应于i x 的纵坐标是ˆi i y
a bx =+. 设x Y ,
的一组观察值为()i i x y ,,12i n =,,,,且回归直线方程为ˆy a bx =+, 当x 取值i x 时,Y 的相应观察值为i y ,差ˆi i y y -刻画了实际观察值i y 与回归直线上相应点的纵坐标之间的偏离程度,称这些值为离差.
我们希望这n 个离差构成的总离差越小越好,这样才能使所找的直线很贴近已知点.
记2
1()n
i i i Q y a bx ==--∑,回归直线就是所有直线中Q 取最小值的那条.这种使“离差平方和
为最小”的方法,叫做最小二乘法.
可以得到ˆˆa
b ,的计算公式为1
1
2
22
1
1
()()
()()n
n
i
i i
i
i i n
n
i
i
i i x
x y y x y
nxy
b x
x x
n x ====---==
--∑∑∑∑,ˆˆa
y bx =-,其中11n i i x x n ==∑,1
1n
i i y y n ==∑.由此得到的直线ˆˆy a bx =+就称为回归直线,其中ˆa
,b 分别为a ,b 的估计值.
由ˆˆa
y bx =-知,回归直线一定过平均值点,即一定过()x y ,. 考点3:线性回归
例3.(1)(2009海南3)对变量x ,y 有观测数据()(1210)i i x y i =,,,,,得散点图1;对变量u ,v 有观测数据()i i u v ,(1210)i =,,,,得散点图2.由这两个散点图可以判断( )。