逆向工程技术及其发展现状

合集下载

逆向工程技术的发展趋势

逆向工程技术的发展趋势

逆向工程技术的发展趋势逆向工程技术的发展趋势逆向工程技术是一种通过解析和研究产品或系统的工作原理、设计构造和制造工艺等,来获取相关技术信息的方法。

随着科技的不断进步和市场竞争的加剧,逆向工程技术正在迅速发展,并呈现出以下几个趋势。

首先,逆向工程技术将更加智能化和自动化。

借助人工智能、机器学习和大数据等先进技术,逆向工程过程中的数据采集、分析和重构将实现自动化和智能化。

例如,通过深度学习算法,逆向工程软件可以自动识别产品的不同组件和结构,从而加快数据采集和分析的速度。

此外,逆向工程软件还可以根据用户的需求,自动优化产品的设计和制造工艺,提高产品的性能和质量。

其次,逆向工程技术将更加多样化和综合化。

逆向工程不仅仅限于产品的解构和数据采集,还包括对产品的功能和性能进行分析和优化。

在逆向工程的过程中,还可以结合仿真分析、优化设计和制造工艺等多种技术手段,对产品进行全面的研究和改进。

例如,逆向工程技术可以通过仿真模拟和优化算法,对产品的结构和材料进行优化设计,提高产品的性能和可靠性。

此外,逆向工程技术还可以结合3D打印等先进制造技术,实现个性化和定制化生产。

第三,逆向工程技术将更加广泛应用于各个行业。

随着数字化和信息化的推进,逆向工程技术在汽车、航空航天、电子、医疗、消费品等各个行业的应用越来越广泛。

逆向工程技术可以帮助企业提高产品的竞争力和市场占有率,加强对竞争对手的监控和分析。

例如,在汽车行业,逆向工程技术可以帮助企业了解竞争对手的产品结构和制造工艺,从而优化自己的产品设计和制造流程。

最后,逆向工程技术将更加注重知识产权保护和法律法规遵守。

逆向工程技术的发展和应用,也带来了一些知识产权和技术泄露的问题。

为了保护企业的知识产权和合法权益,逆向工程技术必须遵守国家和地区的相关法律法规,确保合法的数据采集和使用,并采取有效的措施保护技术信息的安全性和机密性。

总之,逆向工程技术在智能化、多样化、广泛化和法律法规遵守方面的发展趋势,将为企业带来更多的机遇和挑战。

逆向工程技术的发展趋势及应用研究

逆向工程技术的发展趋势及应用研究

逆向工程技术的发展趋势及应用研究逆向工程技术是指通过对已有产品或零件进行逆向分析和研究,以获取其设计、原理或制作工艺等相关信息的技术。

逆向工程技术的发展历程可以追溯到60年代末期的美国航空航天工业,当时普及的CAD/CAM软件促进了该领域的发展。

之后,逆向工程技术在汽车、医疗、航空等行业中得以广泛应用。

逆向工程技术的发展趋势和应用研究,也逐渐成为了许多领域的热点和关注焦点。

一、逆向工程技术的发展趋势1.数字制造的加速推动逆向工程技术的发展随着数字制造技术的发展,逆向工程技术已经成为数字制造的一个重要组成部分。

数字化的设计、制造和产品生命周期管理,必须在一定程度上依赖于逆向工程技术。

传统加工和质量控制方式的局限性,以及全局竞争环境的使命和挑战,也促使制造公司采用数字化技术和逆向工程技术来减少制造成本、更快地实现生产和降低产品的开发风险。

现代逆向工程技术具有快速和准确的特点,它们可以在短时间内获取需要的设计数据和物理特性,并将它们应用于增量制造、售后服务、维修和改进之中。

同时,逆向工程技术还可以促进产品开发和设计,提高公司在竞争市场中的优势和独特性。

2.机器学习和人工智能技术的不断发展,重新定义了逆向工程的应用随着机器学习和人工智能技术的日益成熟,并在许多领域发挥重要作用,逆向工程技术也可以应用这些新技术。

在传统的逆向工程过程中,需要通过计算几何和三维模型来获取产品的物理特性。

但是,机器学习和人工智能技术可以通过对物理和材料属性的自动识别和分类来提高逆向工程技术的效率和准确性。

例如,机器学习可以在原始数据中自动分类和识别不同的材料和部件,从而切实提高逆向分析和应用研究的效率。

由于逆向工程技术的特殊性质,相应的人工智能和机器学习模型需要依据实际应用场景进行设计和构建,并在实践中不断迭代和调整。

这一趋势以自适应人工智能和机器学习技术的应用研究为代表,将会在未来逐渐占据逆向工程技术的主导趋势。

二、逆向工程技术的应用研究1.逆向工程技术在汽车制造中的应用汽车制造是逆向工程技术的重要应用领域之一。

逆向工程的现状及发展前景

逆向工程的现状及发展前景

逆向工程也称反求工程或者反向工程,是根据已存在的产品或者零件原型构造产品或者零件的工程设计模型,并在此基础上对已有的产品进行剖析、理解和改进,是对已有设计的再设计。

(1)设计前的准备工作。

设计之前应确定设计的整体思路,对实物模型进行系统的分析,划分出模型的特征区,确定模型的基本构成形状的曲面类型,这些关系到相关软件的选择和软件模块的确定。

(2)零件原形的数字化。

根据测量对象的特点确定扫描方法以及扫描设备,利用 3D 扫描测量设备来获取零件实物表面点的三维坐标值。

(3)提取零件的几何特征。

按测量数据的几何属性对其进行分割,分割方法普通可分为两类,一类是基于边界分割法,一类是基于区域分割法。

区域分割法将相似几何特征的点划为同一区域,具有明确的几何意义,是较为常用的分割方法。

(4)零件 CAD 模型的重建。

将分割后的三维数据在 CAD 系统 中分别做表面模型的拟合,并通过表面片的拼接获取零件实物表面的 CAD 模型。

(5)重建 CAD 模型的检验与修正。

由于测量得到的数据点往往 存在一些数字误差,所以需要对曲面或者曲线进行光顺处理,提高曲面 质量。

此外还要检验重建的 CAD 模型是否满足精度或者其他试验性能 指标的要求,对不满足要求的应进行适当的调整修改,直至达到零件 的标准接触式三坐标测量机(Coordinate Measure Machine ,CMM)可 谓接触式测量的代表。

接触式三坐标测量机通常是基于受力变形的原 理,通过探头测取三维几何坐标数据。

操作者事先设计规划好测量途 径与方式,三坐标测量机便会按照所指定的路径测取三维几何坐标数 据。

普通来说,接触式三坐标测量机测量较稳定,易于定位,测量精 坐标测量机非接触式机械手 坐标测量机 光学测量机 声学测量机 磁学测量机结构光法 激光三角形法 激光测距法 干涉测量法 图象分析法接触式度高,对被测物体的材质和色泽没有特殊要求。

其主要缺点是测量效率低,测量探头的半径必须进行补偿,并且有可能会浮现探头测不到的盲区。

逆向工程技术的前景和发展趋势

逆向工程技术的前景和发展趋势

逆向工程技术的前景和发展趋势
逆向工程也称反求工程或反向工程,是根据已存在的产品或零件原型构造产品或零件的工程设计模型,并在此基础上对已有的产品进行剖析、理解和改进,是对已有设计的二次设计。

目前逆向工程应用的前景分为三个阶段
使用阶段
消化阶段
创新阶段
技术引进是吸收国外先进技术,促进民族经济高速快速增长的战略措施。

据有关统计资料表明,全国百分之七十以上的技术都是来自外国,要掌握这些技术,正常的途径都是通过逆向工程。

实际上任何产品的问世,不管是创新、改进还是仿制,都蕴含着对已有的科技的继承、应用和借鉴。

逆向工程流程图
逆向工程发展趋势展望
逆向工程的研究已经日益引人注目,在数据
处理、曲面片拟合、几何特征识别、商用专
业软件和坐标测量机的研究开发上已经取
得了很大的成绩。

但是在实际应用当中,整
个过程仍需要大量的人机交互工作,操作者
的经验和素质直接影响着产品的质量,自动
重建曲面的光顺性难以保证,下面一些关键
技术将是逆向工程主要发展方面:
(1)数据测量方面:发展面向逆向工程的
专用测量设备,能够高速、高精度的实现产
品几何形状的三维数字化,并能进行自动测
量和规划路径;
(2)数据的预处理方面:针对不同种类的
测量数据,开发研究一种通用的数据处理软
件,完善改进目前的数据处理算法;
(3)曲面拟合:能够控制曲面的光顺性和
能够进行光滑拼接;
(4)集成技术:发展包括测量技术、模型重建技术、基于网络的协同设计和数字化制造技术等的逆向工程技术。

逆向工程与组织器官再生技术的发展趋势

逆向工程与组织器官再生技术的发展趋势

逆向工程与组织器官再生技术的发展趋势近年来,逆向工程与组织器官再生技术正逐渐成为医学领域的研究热点。

逆向工程是指利用现代科技手段,对物体进行逆过程分析,然后利用数字化技术将其重新制造出来,这项技术的出现使得医学领域有了新的突破。

组织器官再生技术是一种新型生物医学技术,通过细胞、干细胞和材料等各种手段,合成或重建生物组织和器官。

在逆向工程和组织器官再生技术上的发展,可以望得到许多有益的进展。

一、逆向工程技术的发展趋势逆向工程技术在医学领域的应用前景广阔。

逆向工程技术主要包括三个方面:扫描成像、3D建模和快速成型技术。

扫描成像技术主要是对生物组织进行成像,利用CT、MRI、PET等技术对人体内部结构进行扫描,为3D建模提供了基础数据。

3D建模技术主要利用计算机将扫描数据进行数字化处理,生成三维模型。

与此同时,快速成型技术也得到了广泛的应用,包括光固化、激光束熔化和喷墨成型等技术。

这些技术的不断完善和可靠性的提高,为逆向工程技术在医学领域的应用开启了新的局面。

同时,逆向工程技术还可以实现个性化医疗的目标。

随着民众生活水平的不断提高,人们对个性化医疗的需求也日益增长。

逆向工程技术能够根据患者的具体情况,制造出符合其需要的定制产品。

例如,现在一些医院已经开始使用逆向工程技术制造出假肢、人工骨骼等产品。

逆向工程技术的发展可以为个性化医疗提供坚实的技术支持。

二、组织器官再生技术的发展趋势组织器官再生技术是医学领域的研究热点之一。

其主要目的是通过利用细胞或无细胞的生物材料,重建或替代遭受损坏或缺失的组织或器官。

目前,该领域的研究主要涉及心脏、肝、脾、肺等细胞较复杂的器官。

组织器官再生技术有望在未来取代传统的器官移植手术,成为一种更为安全、有效的治疗方法。

组织器官再生技术的发展趋势主要集中在以下方面。

首先,关注点将更多地放在生物材料的可控性上。

未来的研究将会更关注生物材料的生物学性质和合成方法,为组织器官再生提供更加理想的材料。

逆向工程技术研究进展

逆向工程技术研究进展

逆向工程技术研究进展逆向工程技术研究进展引言逆向工程技术作为一种分析和还原产品或系统的方法,在各个领域都得到了广泛的应用。

本文将探讨逆向工程技术的定义、发展历程,以及未来的研究趋势和应用前景。

一、逆向工程技术的定义和发展历程逆向工程是指通过分析和研究已有的产品或系统的设计和运作原理,推导出其中的技术细节和知识,以实现同类产品或系统的再制造或改进。

逆向工程技术的提出,源于对产业技术发展的迫切需求。

早在20世纪60年代,逆向工程技术已被广泛应用于军事领域,并随后在航空航天、汽车制造、电子产品等众多领域中得到了应用。

逆向工程技术的发展可以分为三个阶段。

第一阶段是从事逆向工程的初期,主要通过手工测量和分析,包括实物剖析、测绘等方式进行产品还原和技术解析。

然而,这种传统的逆向工程方法存在效率低、成本高等问题。

第二阶段是在计算机技术快速发展的背景下,逆向工程开始借助计算机辅助工具进行,基于图像处理、三维建模和虚拟现实等技术手段进行产品还原和技术解析。

这一阶段大大提高了工作效率和精度。

第三阶段是在大数据和人工智能等技术的驱动下,逆向工程技术开始向更高层次的发展。

它结合了计算机视觉、机器学习、深度学习等技术,实现了更加自动化和智能化的产品还原和技术分析。

二、逆向工程技术的研究进展目前,逆向工程技术已经取得了显著的研究进展。

在逆向工程的三个阶段中,技术手段、方法和工具都取得了重大突破。

以第三阶段的发展为例,以下是逆向工程技术研究的几个重要方向:1. 图像处理与模式识别逆向工程的第一步是通过图像处理技术对产品进行数字化还原。

当前,图像处理和模式识别技术已经非常成熟,包括图像分割、特征提取、目标检测等方法,可以高效、准确地从产品图像中提取所需的信息。

2. 三维建模与重建逆向工程的目标是从已有的产品中还原出其设计和结构,而三维建模是实现产品重建的重要手段。

基于点云数据、表面重建、体素模型等方法,可以实现对产品的三维建模和重建,进而进行产品的再设计和改善。

《2024年逆向工程技术的研究与工程应用》范文

《2024年逆向工程技术的研究与工程应用》范文

《逆向工程技术的研究与工程应用》篇一一、引言逆向工程技术是一种通过分析已有产品或系统的性能、结构、功能等,以获取其设计原理、制造工艺、技术参数等关键信息的技术手段。

随着科技的不断进步和市场竞争的日益激烈,逆向工程技术越来越受到关注和重视。

本文将对逆向工程技术的研究现状和工程应用进行深入探讨。

二、逆向工程技术的概述逆向工程技术是相对于正向工程技术而言的。

正向工程主要是根据产品的需求、功能等进行设计和制造,而逆向工程则是从已有产品出发,通过对产品的反求分析,了解其内部结构、设计原理、制造工艺等关键信息。

逆向工程技术的应用领域非常广泛,包括机械制造、电子设备、航空航天、生物医学等领域。

三、逆向工程技术的关键环节逆向工程技术的实施主要包括以下几个关键环节:1. 样品获取:通过购买、租赁、借阅等方式获取目标产品或系统。

2. 样品分析:运用各种手段对样品进行拆解、检测、分析等操作,以获取其内部结构、设计原理、制造工艺等关键信息。

3. 数据处理:将样品分析得到的数据进行整理、加工和提取,以形成可供分析和研究的数据集。

4. 建模与仿真:根据处理后的数据,建立样品的模型或仿真系统,以更好地了解其性能和特点。

5. 技术重现:在建模与仿真的基础上,重新设计和制造类似的产品或系统。

四、逆向工程技术的优点和挑战逆向工程技术的优点在于能够快速获取已有产品的关键信息,为新产品的设计和制造提供有力支持。

此外,逆向工程技术还可以帮助企业实现技术引进和消化吸收,提高企业的技术水平和创新能力。

然而,逆向工程技术也面临着一些挑战。

首先,样品分析需要专业的技术和设备支持,对操作人员的技能要求较高。

其次,由于不同产品的设计和制造工艺存在差异,逆向工程技术的应用需要针对具体情况进行具体分析。

最后,逆向工程技术的实施需要遵守相关法律法规和知识产权保护规定。

五、逆向工程技术在工程应用中的实例分析以汽车行业为例,逆向工程技术被广泛应用于汽车设计和制造过程中。

逆向工程技术及其发展现状

逆向工程技术及其发展现状

摘要与CAD/CAM系统在我国几十年的应用时间相比,逆向工程技术为企业所接受只有十几年甚至几年的时间。

时间虽短,但是逆向工程技术广阔的应用前景和对企业竞争力的巨大推动作用,已经引起了很多企业的关注。

逆向工程实现了从实际物体到几何建模的直接转换。

逆向工程技术涉及计算机图形学、计算机图像处理、微分几何、概率统计等学科。

本文介绍了逆向工程的基本概念,重点分析的逆向工程技术过程,阐述了现代制造业中逆向工程的的发展前景以及逆向工程技术的重要应用领域.本文对于我们正确认识逆向工程技术有一定的意义。

【关键词】逆向工程 CAD/CAM solidworks surfacer 反向工程、建模目录1 逆向工程简介 (1)1.1逆向工程介绍....................................................................错误!未定义书签。

1。

2 逆向工程的应用 (3)2 逆向工程应用实例 (6)3 逆向工程的其他应用领域 (7)参考文献 (8)1 逆向工程介绍1. 逆向工程的概念逆向工程(Reverse Engineering,RE)是对产品设计过程的一种描述。

在工程技术人员的一般概念中,产品设计过程是一个从无到有的过程:设计人员首先构思产品的外形、性能和大致的技术参数等,然后利用CAD技术建立产品的三维数字化模型,最终将这个模型转入制造流程,完成产品的整个设计制造周期。

这样的产品设计过程我们可以称之为“正向设计"。

逆向工程则是一个“从有到无"的过程。

简单地说,逆向工程就是根据已经存在的产品模型,反向推出产品的设计数据(包括设计图纸或数字模型)的过程。

随着计算机技术在制造领域的广泛应用,特别是数字化测量技术的迅猛发展,基于测量数据的产品造型技术成为逆向工程技术关注的主要对象。

通过数字化测量设备(如坐标测量机、激光测量设备等)获取的物体表面的空间数据,需要经过逆向工程技术的处理才能获得产品的数字模型,进而输送到CAM系统完成产品的制造。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要与CAD/CAM系统在我国几十年的应用时间相比,逆向工程技术为企业所接受只有十几年甚至几年的时间。

时间虽短,但是逆向工程技术广阔的应用前景和对企业竞争力的巨大推动作用,已经引起了很多企业的关注。

逆向工程实现了从实际物体到几何建模的直接转换。

逆向工程技术涉及计算机图形学、计算机图像处理、微分几何、概率统计等学科。

本文介绍了逆向工程的基本概念,重点分析的逆向工程技术过程,阐述了现代制造业中逆向工程的的发展前景以及逆向工程技术的重要应用领域。

本文对于我们正确认识逆向工程技术有一定的意义。

【关键词】逆向工程 CAD/CAM solidworks surfacer 反向工程、建模目录1 逆向工程简介 (1)1.1逆向工程介绍................................................................. 错误!未定义书签。

1.2 逆向工程的应用 (3)2 逆向工程应用实例 (6)3 逆向工程的其他应用领域 (7)参考文献 (8)1 逆向工程介绍1. 逆向工程的概念逆向工程(Reverse Engineering,RE)是对产品设计过程的一种描述。

在工程技术人员的一般概念中,产品设计过程是一个从无到有的过程:设计人员首先构思产品的外形、性能和大致的技术参数等,然后利用CAD技术建立产品的三维数字化模型,最终将这个模型转入制造流程,完成产品的整个设计制造周期。

这样的产品设计过程我们可以称之为“正向设计”。

逆向工程则是一个“从有到无”的过程。

简单地说,逆向工程就是根据已经存在的产品模型,反向推出产品的设计数据(包括设计图纸或数字模型)的过程。

随着计算机技术在制造领域的广泛应用,特别是数字化测量技术的迅猛发展,基于测量数据的产品造型技术成为逆向工程技术关注的主要对象。

通过数字化测量设备(如坐标测量机、激光测量设备等)获取的物体表面的空间数据,需要经过逆向工程技术的处理才能获得产品的数字模型,进而输送到CAM系统完成产品的制造。

因此,逆向工程技术可以认为是“将产品样件转化为CAD模型的相关数字化技术和几何模型重建技术”的总称。

逆向工程软件部分品牌包括Surfacer(Imageware)、ICEM、CopyCAD、Rapid Form等。

逆向软件的演进约略可区分为三个阶段。

十一年前在逆向工程上,只能运用CATIA等CAD/CAM高阶曲面系统。

市场后来发展出两套主流产品约在七、八年前技术成熟,广为业界引用。

到最近四年来,发展出不同以往的逆向工程数学逻辑运算,速度快。

逆向工程在台湾的发展轨迹持续在进行,工研院曾写过一套逆向工程软件,学术界不少研究团队也将逆向工程领域作为研究主题,开发出具不同功能的系统软件,但是最后这些软件都没有真正落实到产业界应用。

工研院的团队后来也结束逆向工程研究,转而开发其它主题。

原有的研发成果后继无人,殊为可惜。

1998年,N EWPOWER启动了逆向工程的一些项目,要求是把客户的现有设计转变成源代码,如果需要的话,进一步转化成产品需求规约。

这恰恰与类似于V模型的标准开发过程模型相逆。

这样一来,客户就可以容易地维护他们的产品(需求,设计,源代码等等),而不需要想以前那样,每次改动产品都需要直接修改源代码。

是指从实物上采集大量的三维坐标点,并由此建立该物体的几何模型,进而开发出同类产品的先进技术。

逆向工程与一般的设计制造过程相反,是先有实物后有模型。

仿形加工就是一种典型的逆向工程应用。

目前,逆向工程,逆向工程的应用已从单纯的技巧性手工操作,发展到采用先进的计算机及测量设备,进行设计、分析、制造等活动,如获取修模后的模具形状、分析实物模型、基于现有产品的创新设计、快速仿形制造等。

通俗说,从某种意义上说,逆向工程就是仿造。

这里的前提是默认我们传统的设计制造为“正向工程(当然,没有这种说法)”。

软件的逆向工程是分析程序,力图在比源代码更高抽象层次上建立程序的表示过程,逆向工程是设计的恢复过程。

逆向工程工具可以从已存在的程序中抽取数据结构、体系结构和程序设计信息。

逆向工程的实施过程是多领域、多学科的协同过程。

从图中我们可以看出,逆向工程的整个实施过程包括了测量数据的采集/处理、CAD/CAM系统处理和融入产品数据管理系统的过程。

因此,逆向工程是一个多领域、多学科的系统工程,其实施需要人员和技术的高度协同、融合。

2. 逆向工程的应用与CAD/CAM系统在我国几十年的应用时间相比,逆向工程技术为企业所接受只有十几年甚至几年的时间。

时间虽短,但是逆向工程技术广阔的应用前景和对企业竞争力的巨大推动作用,已经引起了很多企业的关注逆向工程技术并不是孤立的,它和测量技术、CAD/CAM技术有着千丝万缕的联系。

从理论角度分析,逆向工程技术能按照产品的测量数据建立与现有CAD/CAM系统完全兼容的数字模型,这是逆向工程技术的最终目标。

但凭借目前人们所掌握的技术,包括工程上的和理论上的(如曲面建模理论),尚无法满足这种要求。

特别是针对目前比较流行的大规模“点云”数据建模,更是远没有达到直接在CAD系统中应用的程度。

“点云”数据的采集有两种方法:一种是使用三坐标测量机对零件表面进行探测,另一种是使用激光扫描仪对零件表面进行扫描。

采集到的数据经过CAD/CAM软件处理后,可以获得零件的数字化模型和用于加工的CNC程序。

如图所示为使用激光扫描仪测量的摩托车发动机砂型排气道点云图在实际工作中,先采用LACUS150B激光扫描仪采集上百万个点数据,形成摩托车发动机砂型排气道外形轮廓,再用Surfacer逆向软件进行由点到面的处理,如图为用Surfacer软件生成的摩托车发动机砂型排气道曲面几何形状。

数据采集完成后,用户可利用CAD软件加快逆向工程的处理过程。

在理情况下,CAD软件可用于:■以任何格式输入虚拟的几何尺寸数据;■处理采集到的点数据,有时甚至需要处理数亿个点数据序列;■通过修改和分析,处理产生的轮廓曲面;■将几何形状输出到下一级处理过程中;■分析几何形状,估算整体形状与样品的差异。

最重要的是,软件能够允许用户以三维透视图的方式显示工件,它完整地定义了工件的形状,不再需要多个视角的投影图,设计者可直接对曲面轮廓进行再加工,而加工工人可以利用电子模型加工工件。

后处理软件通过以下方式缩短逆向工程的时间:■通过平滑连续的曲线网络提高曲面的质量;■省去了准备加工文件的时间■不需要原型;■运用各种分析工具提高产品质量。

可见,利用激光扫描仪扫描样品采集点数据,再应用Surfacer软件生成高质量曲面,相比直接在CAD系统中进行曲面造型,能节省数周的开发时间。

另外,利用激光扫描仪采集的几何数据能生成符合工业标准格式的文件,如IGES、VDA-FS、ISOG代码、DXF和规定的ASCII、CAD/CAM格式,分析软件包至少能支持其中的一种格式。

制造加工刀具并对其进行检验是既耗时又费钱的过程。

Surfacer软件能对各种复杂形状的样品进行快速完整的检验,从而使这一关键处理过程流水线化。

用户能够参考三维模型精确地调整扫描数据,以便评估样品和所需加工工件之间的差别,并计算相关变量,用彩色图表的形式加以显示,从而为几何尺寸校验作出清晰完整的说明。

Surfacer软件的快速原型模块(RPM)能够快速利用数字化数据或利用其他系统的曲面几何形状生成原形,从而缩短了实际原型的数字化周期,新的RPM快速工具大幅度地提高了快速原型技术的水平。

因此笔者认为,逆向工程技术与CAD/CAM系统是相辅相成的。

现有CAD/CAM系统经过几十年的发展,无论从理论还是实际应用上都已经十分成熟,在这种情况下,现有CAD/CAM系统不会也不能为了满足逆向工程建模的特殊要求从系统底层结构上进行变更。

另一方面,逆向工程技术中用到的大量建模方法完全可以借鉴现有CAD/CAM系统,不需要另外搭建新的平台。

如图所示为用Solidworks三维软件生成的摩托车发动机砂型进排气道实体。

基于这种分析,我们认为逆向工程技术在整个制造体系链中处于一个从属、辅助建模的地位,它可以利用现有CAD/CAM系统,帮助其实现自身无法完成的工作。

有了这种认识,我们就可以明白为什么逆向工程技术(包括相应的软件)始终不是市场上的主流,而大多数CAD/CAM系统又均包含了逆向工程模块或第三方软件包这样一种情况。

2,逆向工程应用实例如所示为日本某品牌汽车的泵体。

国内某企业为增强企业竞争力,节省开发时间,计划要在原有泵体的设计基础上进行再设计。

逆向工程技术在其中起到了举足轻重的作用。

在实际工作中,以该泵体为直接复制对象,整个复制过程的主要步骤如下:(1)样本零件几何型面原始数据的获取。

运用LACUSE150B激光扫描仪直接从模型中以CCD(光电偶合)方式获取点数据。

(2)对采集到的数据进行必要的过滤与修正,剔除测量过程中由于各种因素及样本零件表面缺陷而造成的误差,从而获得构建样本零件原始几何模型的数据。

(3)对所测得的数据进行必要的数学拟合,为进一步造型提供基础数据。

(4)由于样本泵体的使用时间长,已发生了某些变化,因此在对零件应用功能充分理解的基础上,通过再设计对样本零件的原始数据作必要的修正,并产生一个新的泵体零件几何数字模型。

(5)利用生成的数字模型进行零件的手板制作。

(6)对手板零件进行几何形状与应用功能的检验,如果效果不好,根据实际情况,用工业油泥在手板零件的基础上进行手工完善,再利用激光扫描重新获取模型数据。

重复步骤(3)、(4)的工作。

(7)进行复制零件模具的加工制造,利用数控机床进行复杂曲面的加工。

(8)在对模具进行试模后,对泵体零件进行几何形状与应用功能的检验。

在整个复制过程中,为了保证复制的精度与准确性,对复制过程中作了以下几个方面的考虑:(1)从零件应用的角度,综合考虑样本零件的数据获取与整个再设计过程,以提高复制精度和数据获取与处理的效率。

(2)综合考虑测量工艺、制造工艺,这样能有效地控制由制造过程引起的各种误差,进而提高整个复制过程的精确度。

(3)由于样本零件的复杂性,所以复制零件的检验是整个逆向工程中应引起足够重视的一环,是成功与否的关键。

(4)充分了解样本零件的工作环境及其功能,才能在复制过程中学习先进的东西,提高与充实自己。

3,逆向工程的其他应用领域以上介绍的只是逆向工程的一部分应用,据有关资料报道,逆向工程还可用于许多领域。

损坏或磨损零件的还原:当零件损坏或磨损时,可以直接采用逆向工程的方法重构出CAD模型,对损坏的零件表面进行还原和修补。

由于被测零件表面的磨损,损坏等因素,会造成测量误差,这就要求逆向工程系统具有推理和判断能力。

例如,对称性、标准尺寸、平面间的平行和垂直等特性。

相关文档
最新文档