高中物理第一章静电场第2节库仑定律教学案教科版选修

高中物理第一章静电场第2节库仑定律教学案教科版选修
高中物理第一章静电场第2节库仑定律教学案教科版选修

第2节库_仑_定_律

1.点电荷是理想模型,当带电体的大小和形状对所研究问题的影响可以忽略时,带电体可被看

成点电荷。

2.库仑定律表达式为F

=k

Q1Q2

r2

,此式仅适用于真

空中的点电荷。

3.静电力常量k=9.0×109N·m2/ C2。

一、探究影响点电荷之间相互作用的因素

1.点电荷

(1)定义:在研究带电体与其他带电体的相互作用时,该带电体的形状、大小及电荷在其上的分布状况均无关紧要,该带电体可以看做一个带电的点,即为点电荷。

(2)点电荷是一种理想化的物理模型。

(3)带电体看成点电荷的条件

如果带电体间的距离比它们自身的大小大得多,以至于带电体的形状和大小对相互作用力的影响很小,就可以忽略形状、大小等次要因素,带电体就能看成点电荷。

2.实验探究

实验

原理

如图所示,F=mg tan_θ,θ变大,F变大;θ变小,F变小

实验方法(控制变量法) 保持电荷量不变,探究电荷间

作用力与距离的关系

保持两带电小球间的距离不

变,探究电荷间作用力与电荷

量的关系

实验操作改变悬点位置,从而改变小球

间距r,观察夹角θ变化情

改变小球带电荷量q,观察夹

角θ变化情况

实验现象r变大,θ变小r变小,

θ变大

q变大,θ变大

q变小,θ变小实验结论

电荷之间的相互作用力随电荷量的增大而增大,随它们之间

距离的增大而减小

1.内容

真空中两个静止点电荷之间的作用力(斥力或引力)与这两个电荷所带电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着这两个点电荷的连线。

2.公式:F=k

Q1Q2

r2

3.静电力常量:k=9.0×109_N·m2/C2。

4.适用条件:真空中的点电荷,对空气中的点电荷近似适用。

1.自主思考——判一判

(1)点电荷是一个带有电荷的几何点,它是实际带电体的抽象,是一种理想化模型。(√)

(2)任何体积很小的带电体都可以看成点电荷。(×)

(3)电荷间的相互作用力大小与电荷的正负无关。(√)

(4)点电荷就是元电荷。(×)

(5)两个带电小球间的库仑力一定能用库仑定律求解。(×)

2.合作探究——议一议

(1)点电荷与元电荷有什么区别?

提示:①元电荷是一个电子或一个质子所带电荷量的绝对值,是电荷的最小单元。

②点电荷只是不考虑带电体的大小和形状,其带电荷量可能很大也可能很小,但一定是元电荷的整数倍。

(2)库仑定律的适用条件是什么?在空气中库仑定律成立吗?

提示:库仑定律的适用条件是:①真空;②点电荷。

在空气中库仑定律也近似成立。

(3)有人根据F=k

Q1Q2

r2

推出,当r→0时F→∞,这种分析是否正确?r→0时库仑定律还适用吗?为什么?

提示:①不正确。

②当r→0时库仑定律F=k

Q1Q2

r2

就不适用了。

③因为当r→0时,两带电体已不能看做点电荷。

库仑定律的理解及应用

1.库仑定律的理解

(1)库仑定律中的三个关键词

真空真空中,库仑定律的表达式是F=

kQ1Q2

r2

,在其他介质中不是没有库仑力,而是库仑力不是

kQ1Q2

r2

静止两个电荷都静止或者一个运动一个静止,库仑定律均可用,但两个电荷都运动时,可能会因为电荷运动形成电流,产生磁场,电荷受到其他力

点电荷非点电荷间也存在库仑力,只是公式中的距离无法确定

(2)只有采用国际制单位,k的数值才是9.0×109N·m2/C2。

2.库仑力的理解

(1)库仑力也叫静电力,是“性质力”,不是“效果力”,它与重力、弹力、摩擦力一样具有自己的特性。

(2)两点电荷之间的作用力是相互的,其大小相等,方向相反,不要认为电荷量大的对电荷量小的电荷作用力大。

(3)在实际应用时,与其他力一样,受力分析时不能漏掉,在计算时可以先计算大小,再根据电荷电性判断方向。

3.库仑力的叠加原理

对于两个以上的点电荷,其中每一个点电荷所受的总的库仑力等于其他点电荷分别单独存在时对该电荷的作用力的矢量和。

[典例] (多选)两个用相同材料制成的半径相等的带电金属小球,其中一个球的带电量的绝对值是另一个的5倍,它们间的库仑力大小是F,现将两球接触后再放回原处,它们间库仑力的大小可能是( )

A.5F/9 B.4F/5

C.5F/4 D.9F/5

[思路点拨]

1先写出两小球接触前库仑力F的表达式。

?

2再确定相互接触后再分开的两小球带电量。

?

3最后写出两小球分开后库仑力F′的表达式。

[解析] 带电小球要分同种还是异种电荷。若带同种电荷相接后总电量求和后平分,即q=

Q+5Q

2

=3Q,原来的库仑力为F=k

5Q×Q

r2

5kQ2

r2

,将两球接触后再放回原处,它们间的库仑力大小为F=k

3Q×3Q

r2

9kQ2

r2

9

5

F;若带异种电荷相接电荷量中和后再平分电荷量,即q=Q-5Q

2

=-2Q,将两球接触后再放回原处,它们间的库仑力大小为F=k

2Q×2Q

r2

4kQ2

r2

4

5

F;故选项B、D正确。

[答案] BD

两个用相同材料制成的半径相等的带电金属小球,将两球接触后,若带同种电荷相接后总电量求和后平分,即q=

Q1+Q2

2

;若带异种电荷相接后电荷量中和后再平分电荷量,即q =

Q1-Q2

2

,然后再根据库仑定律求解库仑力的大小关系。

1.有两个点电荷,所带电荷量分别为q1和q2,相距为r,相互作用力为F,为了使它们之间的作用力增大为原来的2倍,下列做法可行的是( )

A.仅使q1增大为原来的2倍

B.仅使q2减小为原来的一半

C.使q1和q2都增大为原来的2倍

D.仅使r减小为原来的一半

解析:选A 根据库仑定律可得F=k

q1q2

r2

,若仅使q1增大为原来的2倍,则F′=k

2q1q2

r2=2F,A正确;若仅使q2减小为原来的一半,则F′=k

1

2

q1q2

r2

1

2

F,B错误;使q1和q2都增大为原来的2倍,则F′=k

2q1·2q2

r2

=4F,C错误;若仅使r减小为原来的一半,则F′=k

q1·q2

?

?

??

?

1

2

r2

=4F,D错误。

2.如图1-2-1所示,两个完全相同的金属小球A、B带有电荷量相等的电荷,相隔一定的距离,两球间相互吸引力的大小是F,今让与A、B大小相等、相同材料制成的不带电的第三个小球C先后与A、B两球接触后移开,这时A、B两球之间的相互作用力的大小为(

)

图1-2-1

A.

1

8

F B.

1

4

F

C.

3

8

F D.

3

4

F

解析:选A 两球间相互吸引,故带异种电荷。设A、B两球心之间的距离为r,A球带电荷量为q,B球带电荷量为-q,依库仑定律知A、B两球间的吸引力F=k

q2

r2

。当C球先后与A、B两球接触后移开,A球带电

q

2

,B球带电-

q

4

,A、B两球之间相互吸引力大小为F′=k

q

2

·

q

4

r2

1

8

F,故A正确。

库仑力作用下带电体的平衡问题

1.库仑力作用下的平衡问题

分析带电体在有库仑力作用下的平衡问题时,方法仍然与力学中物体的平衡方法一样,具体步骤是:

(1)确定研究对象,进行受力分析;

(2)根据平衡条件建立平衡方程,常用方法:①合成法或分解法,②正交分解法:Fx合=0,Fy合=0。

2.同一直线上三个自由电荷的平衡问题

三个点电荷在同一条直线上,在静电力作用下处于平衡状态时,每个点电荷都受其他两个点电荷对它的静电力作用。受力方向如图1-2-2所示。

图1-2-2

大小满足下面关系式

对q1:k

q1q2

r21

=k

q1q3

r1+r22

对q 2:k q 1q 2r 21=k q 2q 3

r 22

对q 3:k

q 1q 3

r 1+r 2

2

=k

q 2q 3

r

22

[典例] 在真空中有两个相距r 的点电荷A 和B ,带电荷量分别为q 1=-q ,q 2=4q 。 (1)若A 、B 固定,在什么位置放入第三个点电荷q 3,可使之处于平衡状态?平衡条件中对q 3的电荷量及正负有无要求?

(2)若以上三个点电荷皆可自由移动,要使它们都处于平衡状态,对q 3的电荷量及电性有何要求?

[审题指导] 第一步 抓关键点

关键点

获取信息

q 1=-q ,q 2=4q

A 、

B 带异种电荷

第(1)问中,A 、B 固定 只要满足q 3二力平衡即可 第(2)问三个电荷都不固定

三个点电荷均要二力平衡

第二步 找突破口

第(1)问中,看q 3放在A 、B 的连线中还是延长线上,能满足q 3受的两个力方向相反,然后用库仑定律表示出两个力即可。

第(2)问中,让q 3平衡可确定q 3的位置,再让q 1或q 2中的一个平衡,便可建立三点电荷二力平衡等式确定q 3的电荷量及电性。

[解析] (1)q 3受力平衡,必须和q 1、q 2在同一条直线上,因为q 1、q 2带异号电荷,所以q 3不可能在它们中间。再根据库仑定律,库仑力和距离的平方成

反比,可推知q 3应该在q 1、q 2的连线上,在q 1的外侧(离带电荷量少的电荷近一点的地方),如图所示。设q 3离q 1的距离是x ,根据库仑定律和平衡条件列式:k

q 3q 1x 2-k q 3q 2

x +r

2

=0

将q 1、q 2的已知量代入得:x =r ,对q 3的电性和电荷量均没有要求。

(2)要使三个电荷都处于平衡状态,就对q 3的电性和电荷量都有要求,首先q 3不能是一个负电荷,若是负电荷,q 1、q 2都不能平衡,也不能处在它们中间或q 2的外侧,设q 3离q 的距离是x 。根据库仑定律和平衡条件列式如下:

对q 3:k q 3q 1x 2-k q 3q 2

x +r 2

=0

对q 1:k

q 1q 3x 2-k q 1q 2

r

2=0

解上述两方程得:q3=4q,x=r。

[答案] (1)在q1的外侧距离为r处,对q3的电性和电荷量均没有要求(2)电荷量为4q带正电

三个点电荷在同一直线上只受库仑力处于平衡状态的规律

(1)三个点电荷的位置关系是“同性在两边,异性在中间”或记为“两同夹异”。

(2)三个点电荷中,中间电荷的电荷量最小,离中间电荷远的电荷量最大,可记为“两大夹小,越远越大”。

(3)如图1-2-2所示的三个点电荷的电荷量满足q1q3=q1q2+q2q3。

1. (多选)如图1-2-3所示,质量分别为m1、m2,电荷量分别为q1、q2的两小球,分别用绝缘轻丝线悬挂起来,两丝线与竖直方向的夹角分别为α和β(α>β),两小球恰在同一水平线上,那么( )

图1-2-3

A.两球一定带异种电荷

B.q1一定大于q2

C.m1一定小于m2

D.m1所受的库仑力一定大于m2所受的库仑力

解析:选AC 由于两球相互吸引,所以一定带异种电荷,选项A正确。设轻丝线与竖直方向的夹角为θ,根据平衡条件可得两球之间的库仑力F=mg tan θ,因此m1g

2.如图1-2-4所示,在光滑绝缘水平面上放置3个电荷量均为q(q>0)的相同小球,小球之间用劲度系数均为k0的轻质弹簧绝缘连接。当3个小球处在静止状态时,每根弹簧长度为l。已知静电力常量为k,若不考虑弹簧的静电感应,则每根弹簧的原长为( )

图1-2-4

A.l+5kq2

2k0l2B.l-

kq2

k0l2

C .l -5kq 2

4k 0l

2

D .l -5kq

2

2k 0l

2

解析:选C 取左侧电荷为研究对象,由平衡状态得k 0x =kq 2l 2+kq 22l 2,解得x =5kq

2

4k 0l

2,

故弹簧原长为l 0=l -x =l -5kq

2

4k 0l

2,C 正确。

3.A 、B 两小球分别带9Q 和-3Q 的电荷,固定在相距为L 的位置上。现有一电荷量为

Q 的小球C ,问将它放在什么位置受到的静电力为零?

解析:C 应放在AB 延长线上,设距B 为r ,则距A 为L +r 则k ·9Q ·Q L +r 2=k ·3Q ·Q

r 2

,解

得r =

L

3-1

答案:C 放在AB 延长线上距B 小球

L

3-1

库仑力作用下带电体的加速问题

[典例] 如图1-2-5所示,在光滑绝缘的水平面上沿一直线等距离排列三个小球A 、B 、

C ,三球质量均为m ,A 与B 、B 与C 相距均为L (L 比球半径r 大得多)。若小球均带电,且q A =+10q ,q B =+q ,为保证三球间距不发生变化,将一水平向右的恒定推力F 作用于A 球,

使三者一起向右匀加速运动。求:

图1-2-5

(1)F 的大小。

(2)C 球的电性和电荷量。 [思路点拨]

(1)A 、B 、C 的加速度相同,视A 、B 、C 为一个整体,则F =3ma 。 (2)由于C 加速度向右,需要A 、B 对C 产生向右的斥力,C 带正电。

(3)B 受到A 向右的斥力和C 向左的斥力,C 受到A 、B 向右的斥力。B 和C 所受合外力相等,均为ma 。

[解析] C 必带正电,设为q C 对整体:F =3ma , 对B :k ·10q ·q L 2-kq ·q C

L 2=ma , 对C :

k ·10q ·q C 4L 2

+kq ·q C

L

2=ma ,

得q C =209q ,F =70kq 2

3L

2。

[答案] (1)70kq 2

3L 2 (2)正电,电荷量为20

9q

分析库仑力作用下的带电体的加速问题,方法与力学中相同,首先分析带电体的受力,再依据牛顿第二定律F 合=ma 进行求解;对相互作用的系统,要注意灵活使用整体法与隔离法,并首先选用守恒的观点从能量的角度进行分析。

1.在光滑绝缘的水平面上,相隔一定距离有两个带同种电荷的小球。现由静止同时释放这两个小球,则这两个小球的加速度和速度大小随时间的变化情况是( )

A .速度变大,加速度变大

B .速度变小,加速度变小

C .速度变大,加速度变小

D .速度变小,加速度变大

解析:选C 因电荷间的库仑力与电荷的运动方向相同,故电荷将一直做加速运动,速度变大,但由于两电荷间距离增大,它们之间的库仑力越来越小,故加速度越来越小。C 正确。

2.如图1-2-6所示,绝缘水平面上静止着两个质量均为m ,电荷量均为+Q 的物体A 和

B (A 、B 均可视为质点),它们之间的距离为r ,与平面间的动摩擦因数为μ。

图1-2-6

(1)A 受的摩擦力为多大?

(2)如果将A 的电荷量增至+4Q ,两物体开始运动,当它们的加速度第一次为零时,A 、

B 各运动了多远距离?

解析:(1)由平衡条件可知A 受到的静摩擦力f =k Q 2

r

2;

(2)当a =0时,设A 、B 间的距离为r ′。 根据牛顿第二定律得4kQ

2

r ′2-μmg =0,

解得r ′= 4kQ

2

μmg

,A 、B 两物体在运动过程中受力大小始终相同,故两者运动的距

离也相同。

运动的距离x =

r ′-r

2

kQ 2μmg -r

2

。 答案:(1)kQ 2

r 2 (2)

kQ 2μmg -r

2

1.(多选)关于点电荷和元电荷的说法中,正确的是( ) A .只有很小的球形带电体才叫做点电荷

B .带电体间的距离比它们本身的大小大得多,以至带电体的形状和大小对它们之间的作用力影响可以忽略不计时,带电体就可以视为点电荷

C .元电荷就是电子

D .任何带电体的电量都是元电荷的整数倍

解析:选BD 点电荷是将带电物体简化为一个带电的点,是一种理想化的物理模型,带电物体能不能看成点电荷,不是看物体的体积大小和电量大小,而是看物体的大小对于两个电荷的间距能不能忽略不计,A 错误,B 正确;元电荷是带电量的最小值,任何带电体的电量都是元电荷的整数倍,它不是电荷,C 错误,D 正确。

2.(多选)关于库仑定律的理解,下面说法正确的是( ) A .对任何带电体之间的静电力计算,都可以使用库仑定律公式 B .只要是点电荷之间的静电力计算,就可以使用库仑定律公式

C .两个点电荷之间的静电力,无论是在真空中还是在介质中,一定是大小相等、方向相反的

D .用皮毛摩擦过的橡胶棒吸引碎纸屑,说明碎纸屑带正电或不带电

解析:选CD 库仑定律适用于真空中的点电荷,故A 、B 错。库仑力也符合牛顿第三定律,C 对。带负电的橡胶棒吸引纸屑,纸屑带正电或不带电都可以,D 对。

3.(多选)真空中有两个相同的金属小球A 和B ,相距为r ,带电荷量分别是q 和2q ,但带何种电荷未知,它们之间的相互作用力大小为F ,有一个跟A 、B 相同的不带电的金属球C ,当C 跟A 、B 依次各接触一次后移开,再将A 、B 间距离变为2r ,那么A 、B 间的作用力大小可能是( )

A.5F

64 B.5F 32

C.

3F 64

D.3F 16

高中物理选修3-1第一章第二节静电力库仑定律同步练习随堂练习课后练习

静电力及库仑定律同步练习 1.(多选)在库仑扭秤实验中,对于库仑力的研究,用到了下述哪些思想方法() A.均分思想B.放大法 C.控制变量法D.补偿法 2. (2012·青岛二中高二检测)如图1-2-5所示,两个带电球,大球的电荷量大于小球的电荷量,可以肯定() A.两球都带正电 B.两球都带负电图1-2-5 C.大球受到的静电力大于小球受到的静电力 D.两球受到的静电力大小相等 3.(2013·厦门一中高二检测)关于库仑定律,下列说法中正确的是() A.库仑定律适用于点电荷,点电荷其实就是体积很小的球体 B.根据F=k q1q2 r2,当两电荷的距离趋近于零时,静电力将趋向无穷大 C.若点电荷q1的电荷量大于q2的电荷量,则q1对q2的静电力大于q2对q1的静电力 D.库仑定律和万有引力定律的表达式相似,都是平方反比定律 4. (2012·山师大附中高二检测)如图1-2-6所示,在绝缘的光滑水平面上,相隔一定距离有两个带同种电荷的小球,从静止同时释放,则两个小球的加速度和速度大小随时间变化的情况是() A.速度变大,加速度变大 B.速度变小,加速度变小图1-2-6 C.速度变大,加速度变小 D.速度变小,加速度变大 5.(2012·海南第二中学高二期末)在真空中,两个点电荷原来带的电荷量分别为q1和q2,且相隔一定的距离.若先将q2增加为原来的3倍,再将两点电荷间的距离缩小为原来的一半,则前后两种情况下两点电荷之间的库仑力之比为

() A.1∶6B.1∶12 C.12∶1D.6∶1 6. (多选)如图1-2-7所示,两根丝线挂着两个质量相同的小球A、B,此时上、下丝线的受力分别为F T A和F T B;如果使A、B均带正电,上、下丝线的受和F T B′,则() 力分别为F A.F T A′=F T A B.F T A′<F T A C.F T B′=F T B D.F T B′>F T B 图1-2-7 7.(2012·西安一中高二检测)设某星球带负电荷,一电子粉尘悬浮在距星球表面1 000 km的地方,若将同样的电子粉尘带到距星球表面2 000 km的地方,相对于该星球无初速度释放,则此电子粉尘() A.向星球下落B.仍在原处悬浮 C.推向太空D.无法判断 8.(2011·海南高考)三个相同的金属小球1、2、3分别置于绝缘支架上,各球之间的距离远大于小球的直径.球1的带电量为q,球2的带电量为nq,球3不带电且离球1和球2很远,此时球1、2之间作用力的大小为F.现使球3先与球2接触,再与球1接触,然后将球3移至远处,此时1、2之间作用力的大小仍为F,方向不变.由此可知() A.n=3B.n=4 C.n=5 D.n=6 9.(2012·新疆实验中学高二检测)如图1-2-8所示,三个完全相同的金属小球a、b、c位于等边三角形的三个顶点上.a和c带正电,b带负电,a所带电荷量的大小比b的小.已知c受到a和b的静电力的合力可用图中四条有向线段中的一条来表示,它应是() A.F1B.F2 C.F3D.F4 图1-2-8 10. (多选)(2012·泉州五中高二检测)把一带正电小球a放在光滑绝缘斜面上,欲使小球a能静止在如图1-2-9所示的位置,需在MN间放一带电小球b,则 () A.b球带正电,放在A点

第一章 第2节 库仑定律

第2节 库仑定律 1.点电荷是理想模型,当带电体的大小和形状在研究的问 题中的影响可以忽略时,带电体可被看成点电荷。 2.库仑定律表达式为F =k q 1q 2r 2,此式仅适用于真空中的 点电荷。静电力常量k =9.0×109 N·m 2 /C 2 。 一、探究影响电荷间相互作用力的因素 1.实验原理:如图1-2-1所示,小球受Q 的斥力,丝线偏转。 图1-2-1 F =mg tan_θ,θ变大,F 变大。 2.实验现象 (1)小球带电荷量不变时,距离带电物体越远,丝线偏离竖直方向的角度越小。 (2)小球处于同一位置时,小球所带的电荷量越大,丝线偏离竖直方向的角度越大。 3.实验结论:电荷之间的作用力随着电荷量的增大而增大,随着距离的增大而减小。 二、库仑定律 1.库仑力:电荷间的相互作用力,也叫做静电力。 2.点电荷:带电体间的距离比自身的大小大得多,以致带电体的形状、大小及电荷分布状况对它们之间的作用力的影响可忽略时,可将带电体看做带电的点,即为点电荷。 3.库仑定律 (1)内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上。 (2)表达式:F =k q 1q 2 r 2,k =9.0×109_N·m 2/C 2,叫做静电力常量。 (3)适用条件:真空中的点电荷。 三、库仑的实验

1.实验装置:库仑做实验用的装置叫做库仑扭秤。如图1-2-2所示,细银丝的下端悬挂一根绝缘棒,棒的一端是一个带电的金属小球A ,另一端有一个不带电的球B ,B 与A 所受的重力平衡。当把另一个带电的金属球C 插入容器并使它靠近A 时,A 和C 之间的作用力使悬丝扭转,通过悬丝扭转的角度可以比较力的大小。 图1-2-2 2.实验步骤 (1)改变A 和C 之间的距离,记录每次悬丝扭转的角度,便可找出力F 与距离r _的关系。 (2)改变A 和C 的带电荷量,记录每次悬丝扭转的角度,便可找出力F 与带电荷量q _之间的关系。 3.实验结论 (1)力F 与距离r 的二次方成反比,即F ∝1r 2。 (2)力F 与q 1和q 2的乘积成正比,即F ∝q 1q 2。 所以F ∝ q 1q 2r 2或F =k q 1q 2r 2。 1.自主思考——判一判 (1)实验表明电荷之间的作用力一定和电荷间的距离成反比。(×) (2)实验表明两个带电体的距离越大,作用力就越小。(√) (3)点电荷是一个带有电荷的点,它是实际带电体的抽象,是一种理想化模型。(√) (4)球形带电体一定可以看成点电荷。(×) (5)很大的带电体也有可能看做点电荷。(√) 2.合作探究——议一议 (1)比较库仑定律F =k q 1q 2r 2 与万有引力定律F =G m 1m 2 r 2,你会发现什么? 提示:仔细观察,我们会发现它们有惊人的相似:两个公式中都有r 2,即两种力都与距离的二次方成反比;两个公式中都有与作用力有关的物理量(电荷量或质量)的乘积,且两种力都与乘积成正比;这两种力的方向都在两个物体的连线上。对静电力与万有引力进行

库仑定律的发现和验证

库仑定律的发现和验证 库仑定律是电磁学的基本定律之一。它的建立既是实验经验的总结,也是理论研究的成果。特别是力学中引力理论的发展,为静电学和静磁学提供了理论武器,使电磁学少走了许多弯路,直接形成了严密的定量规律。从库仑定律的发现和验证可以获得许多启示,对阐明物理学发展中理论和实验的关系,了解物理学的研究方法均会有所裨益。 一. 库仑定律的发现 1.1 从万有引力得到的启示 18世纪中叶,牛顿力学已经取得辉煌胜利,人们借助于万有引力的规律,对电力和磁力作了种猜测。 德国柏林科学院院士爱皮努斯(F.U.T. Aepinus, 1724-1802)1759年对电力作了研究。他在书中假设电荷之间的斥力和吸力随带电物体的距离的减少而增大,于是对静电感应现象作出了更完善的解释。不过,他并没有实际测量电荷间的作用力,因而只是一种猜测。 1760年,D.伯努利首先猜测电力会不会也跟万有引力一样,服从平方反比定律。他的想法显然有一定的代表性,因为平方反比定律在牛顿的形而上学自然观中是很自然的观念,如果不是平方反比,牛顿力学的空间概念就要重新修改。 富兰克林的空罐实验(也叫冰桶实验)对电力规律有重要启示。1755年,他在给兰宁(John Lining)的信中,提到过这样的实验: “我把一只品脱银罐放在电支架(按:即绝缘支架)上,使它带电,用丝线吊着一个直径约为1英寸的木椭球,放进银罐中,直到触及罐的底部,但是,当取出时,却没有发现接触使它带电,象从外部接触的那样。” 富兰克林的这封信不久跟其他有关天电和尖端放电等问题的信件,被人们整理公开发表流传甚广,很多人都知道这个空罐实验,不过也和富兰克林一样,不知如何解释这一实验现象。 图1 富兰克林像图2 普利斯特列像 富兰克林有一位英国友人,名叫普利斯特利(Joseph Priestley, 1733—1804),是化学家,对电学也很有研究。富兰克林写信告诉他这个实验并向他求教。普利斯特利专门重复了这个实验,在1767年的《电学历史和现状及其原始实验》一书中他写道1: “难道我们就不可以从这个实验得出结论:电的吸引与万有引力服从同一定律,即距离的平方,因为很容易证明,假如地球是一个球壳,在壳内的物体受到一边的吸引作用,决不会大于另一边的吸引。” 普利斯特利的这一结论不是凭空想出来的,因为牛顿早在1687年就证明过,如果万有引力服从平

第一章第二节静电力库仑定律第一课时

静电力库仑定律 【教学目标】 (1)知道点电荷,体会科学研究中的理想模型方法。 (2)了解两种电荷间的作用规律,掌握库仑定律的内容及其应用。 【教学重点】 掌握真空中点电荷间作用力大小的计算及方向的判定——库仑定律 【教学难点】 真空中点电荷间作用力为一对相互作用力,遵从牛顿第三定律 【教学媒体】 1、演示实验:有机玻璃棒、丝绸、碎纸片、毛皮、橡胶棒、铝箔包好的草球、 表面光滑洁净的绝缘导体、绝缘性好的丝线、绝缘性好的支架、铁架台。 2、课件:库仑扭秤实验模拟动画。 【教学安排】 【新课导入】 从上节课我们学习到同种电荷相吸引,异种电荷相排斥,这种静电荷之间的 相互作用叫做静电力。力有大小、方向和作用点三要素,我们今天就来具体学习 一下静电力的特点。 【新课内容】 1.静电力与点电荷模型 (1)静电力的作用点——作用在电荷上,如果电荷相对于物体不Array能自由移动,则所有电荷受力的合力就是带电体的受力(可视为作用 在物体的电荷中心上,怎么找电荷的中心呢?——如果形状规则的物体所带 电荷又是均匀分布的话,电荷中心可看作在物体的几何中心上。如:右图1 为一均匀带电的环性物体,其电荷可看集中在圆心处) (2)静电力的方向——沿着两电荷的连线。 (3)静电力的大小(电荷A对B与B对A的力等大反向,与所带电荷多少无关) i.猜想:可能与哪些因素有关,说出猜测的理由?(与电荷所带电量有关,电 量越大,力越大,理由——放电导致电量减小后,验电器的金箔张角减小说 明斥力减小;也与电荷间的距离有关,带电物体靠近时才能吸引轻小物体,

离的远时吸不起来) ii.定性实验: 如图2,先把表面光滑洁净的绝缘导体放在A处,然后把铝箔包好 的草球系在丝线下,分别用丝绸摩擦过的玻璃棒给导体和草球带 上正电,把草球先后挂在P1、P2、P3的位置,带电小球受到A 的 作用力的大小可以通过丝线对竖直方向的偏角大小显示出来。观察实验发现带电小球在P1、P2、P3各点受到的A的作用力依次减小;再增大丝线下端带电小球的电量,观察实验发现,在同一位置小球受到的A的作用力增大了。 教师总结:该实验说明了电荷之间的相互作用力大小与电量的大小、电荷间距离的大小有关,电量越大,距离越近,作用力就越大;反之电量越小,距离越远,作用力就越小。作用力的方向,可用同种电荷相斥,异种电荷相吸的规律确定。教师补充说明,考虑到带电体的受力是所带电荷受力的合力的问题,这个静电力大小其实还会与物体的体积、形状、电荷分布有关。因此,我们今天只研究一个简化的模型——点电荷。(回顾:质点的概念,当物体的形状与两物体间的距离相比可以忽略的时候,可以忽略物体的形状和大小,将物体看做质点。) 板书:1、当带电体的尺寸与它们之间的距离相比可以忽略的时候,可以将带电体看作点电荷。 什么是点电荷?简而言之,带电的质点就是点电荷。点电荷的电量、位置可以准确地确定下来。正像质点是理想的模型一样,点电荷也是理 想化模型。真正的点电荷是不存在的,但是,如果带电体间的距离比它 们的大小大得多,以致带电体的形状和大小对相互作用力的影响可以忽 略不计时,这样的带电体就可以看成点电荷。均匀带电球体或均匀带电 球壳也可看成一个处于该球球心,带电量与该球相同的点电荷。 iii.如何设计实验来寻找关系式?(方法——控制变量) 先要保持带电物体的电荷大小不变,改变其距离,探究静电力与距离的关系,然后再保持两物体间距不变,改变电量,探究静电力与电量大 小的关系。 问题1——如何测量静电力的大小?(可参考前面定性实验的方法,

2020_2021学年高中物理课时作业2库仑定律含解析教科版选修3_1

教科版高中物理选修3_1 课时作业2 库仑定律 时间:45分钟 一、单项选择题 1.关于库仑定律的公式F =k q 1q 2 r 2 ,下列说法中正确的是( D ) A .真空中两个电荷中,大电荷对小电荷的作用力大于小电荷对大电荷的作用力 B .当真空中两个电荷间的距离r →0时,它们之间的静电力F →∞ C .当两个电荷间的距离r →∞时,库仑定律的公式就不适用了 D .当两个电荷间的距离r →0时,电荷不能看成是点电荷,库仑定律的公式就不适用了 解析:由牛顿第三定律可判A 错.当r →0时,库仑定律不再适用B 错D 对.当r →∞时,库仑定律适用,C 错.只有D 选项正确. 2.真空中有两个点电荷Q 和q ,它们之间的库仑力为F ,下面哪些做法可以使它们之间的库仑力变为1.5F ( A ) A .使Q 的电荷量变为2Q ,使q 的电荷量变为3q ,同时使它们的距离变为原来的2倍 B .使每个电荷的电荷量都变为原来的1.5倍,距离也变为原来的1.5倍 C .使其中一个电荷的电荷量变为原来的1.5倍,距离变为原来的1.5倍 D .保持电荷量不变,使距离变为原来的2 3倍 解析:根据库仑定律F =kq 1q 2 r 2 ,设原来两点电荷间距离为r ,则原来两电荷间的库仑力大小为F = kQq r 2.当电荷量或距离变化时,根据库仑定律,对选项A 有F A =k ·2Q ·3q 2r 2=3F 2 ,可见符合要求.对B 有F B =k · 1.5Q 1.5q 1.5r 2 =F ,不合要求.对C 有F C = k · 1.5Q ·q 1.5r 2 =2F 3,不合要求.对D 有F D =k ·Qq 2r /32=9F 4 ,不合要求.综上所述,选项A 是正确的. 3.如图所示,在绝缘的光滑水平面上,相隔一定距离有两个带同种电荷的小球,从静止同时释放,则两个小球的加速度和速度大小随时间变化的情况是( C ) A .速度变大,加速度变大

高中物理必修配套资料第一章第2节 库仑定律

第一章 静电场 第2节 库仑定律 [课时作业] 一、单项选择题 1.在真空中有两个带电小球,带电荷量分别是q 1和q 2,则( ) A.电荷量大的小球受到的库仑力大 B.电荷量小的小球受到的库仑力大 C.两个小球受到的库仑力大小相等 D.只有两个带电小球所带电荷量相等,它们受到的库仑力的大小才相等 解析:由F =k Q 1Q 2r 2 可知,库仑力的大小与两电荷的带电荷量的乘积成正比,与单个带电体的电荷量无关,故A 、B 错误;库仑力是电荷间的相互作用力,遵守牛顿第三定律,故C 正确,D 错误. 答案:C 2.用控制变量法可以研究影响电荷间相互作用力的因素. 如图所示,O 是一个带电的物体,若把系在丝线上的带电小 球先后挂在横杆上的P 1、P 2、P 3等位置,可以比较小球在 不同位置所受带电物体的作用力的大小.这个力的大小可 以通过丝线偏离竖直方向的角度θ显示出来.若物体O 的电荷量用Q 表示,小球的电荷量用q 表示,物体与小球间距离用d 表示,物体和小球之间的作用力大小用F 表示.则以下对该实验现象的判断正确的是( ) A.保持Q 、q 不变,增大d ,则θ变大,说明F 与d 有关 B.保持Q 、q 不变,减小d ,则θ变大,说明F 与d 成反比 C.保持Q 、d 不变,减小q ,则θ变小,说明F 与q 有关 D.保持q 、d 不变,减小Q ,则θ变小,说明F 与Q 成正比 解析:保持Q 、q 不变,根据库仑定律公式F =k Qq d 2,增大d ,库仑力变小,则θ变小, 减小d ,库仑力变大,则θ变大,实验表明,随着d 的减小,F 增大,不能说明F 与d 成反比,故A 、B 错误;保持Q 、d 不变,减小q ,则库仑力变小,θ变小,知F 与q 有关,故C 正确;保持q 、d 不变,减小Q ,则库仑力变小,θ变小,只能说明随着Q 减小,F

最新高中物理动量定理专题训练答案

最新高中物理动量定理专题训练答案 一、高考物理精讲专题动量定理 1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求: (1)两小球碰前A 的速度; (2)球碰撞后B ,C 的速度大小; (3)小球B 运动到最高点C 时对轨道的压力; 【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上 【解析】 【分析】 【详解】 (1)选向右为正,碰前对小球A 的运动由动量定理可得: –μ Mg t =M v – M v 0 解得:v =2m /s (2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒: A B Mv Mv mv =+ 222111222 A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s (3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒: 2211 222 B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R '+= 解得:F N =4N 由牛顿第三定律知,F N '=F N =4N 小球对轨道的压力的大小为3N ,方向竖直向上. 2.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停

第2节 静电力 库仑定律(基础题)

库仑定律 一、选择题(每小题5分,共50分) 1.点电荷是静电学中的第一个理想模型,它是指( )。 A .球形带电体 B .体积很小的带电体 C .带电量很小的带电体 D .形状和大小对相互作用力的影响可以忽略的带电体 1、关于点电荷概念,下列说法正确的是( D ) A 、点电荷就是电荷量很小的电荷 B 、点电荷就是体积很小的电荷 C 、体积较大的带电体,不能看作点电荷 D 、带电体能否看作点电荷,要视实际情况而定 1.关于对元电荷的理解,下列说法正确的是( C ) A .元电荷就是电子 B .元电荷就是质子 C .元电荷是表示跟电子所带电荷量数值相等的电荷量 D .元电荷是带电荷量最小的带电粒子 2.关于库仑定律.以下说法中正确的是( ) A .库仑定律适用于点电荷,点电荷其实就是体积很小的带电体 B .库仑定律是实验定律 C .库仑定律仅对静止的点电荷间相互作用才正确 D .根据库仑定律,当两个点电荷间的距离趋近于零时,则库仑力趋近于无穷大 2.关于库仑定律的公式2 21r Q Q k F ,下列说法中正确的是( B ) ①.当真空中两个电荷间距离r →∞时,它们间的静电力F →0 ②.当真空中两个电荷间距离r →0时,它们间的静电力F →∞ ③.当两个电荷间的距离r →∞时,库仑定律的公式就不适用了 ④.当两个电荷间的距离r →0时,电荷不能看成是点电荷,库仑定律的公式就不适用了 A 、①② B 、①④ C 、②③ D 、③④ 2.对于库仑定律,下列说法正确的是 ( C ) A .凡计算两个点电荷间的作用力,就可以使用公式 B .两个带电小球即使距离非常近,也能用库仑定律 C .相互作用的两个点电荷,不论它们的电荷量是否相同,它们之间的库仑力大小一定 相等 D .两个点电荷的电两个减为原来的一半,它们之间的距离保持不变,则它们之间的库 仑力减为原来的一半 3、两个半径均为r 的金属球放在绝缘支架上,两球面最近距离为r,带等量异种电荷,电荷量为Q.两球之间的静电力为下列选项中的哪一个( B ) A.等于2 29r Q k B.大于2 29r Q k C.小于2 29r Q k D.等于2 29r Q k 3.A 、B 两点电荷间的距离恒定,当其他电荷移到A 、B 附近时,A 、B 间相互

高中物理 第一章 第2节 库仑定律课时作业 新人教版选修31

第2节 库仑定律 1.电荷之间存在着相互作用力称为静电力或库仑力,在真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上. 2.库仑定律的表达式是:F =k q 1q 2r 2,其中k =9.0×109_N·m 2/C 2 . 3.下列关于点电荷的说法,正确的是( ) A .只有体积很大的带电体才能看成点电荷 B .体积很大的带电体一定不能看成点电荷 C .一切带电体都能看成点电荷 D .当两个带电体的大小及形状对它们之间的相互作用力的影响可以忽略时,这两个带电体才可以看成点电荷 答案 D 解析 带电体能否被看成点电荷,与它们的体积大小无关.当带电体的大小及形状对它们之间的相互作用力的影响可以忽略时,这样的带电体就可以看成点电荷. 4.库仑定律的适用范围是( ) A .真空中两个带电球体间的相互作用 B .真空中任意带电体间的相互作用 C .真空中两个点电荷间的相互作用 D .真空中两个带电体的大小远小于它们之间的距离,则可应用库仑定律 答案 CD 5.两个点电荷相距r 时相互作用为F ,则( ) A .电荷量不变距离加倍时,作用力变为F /2 B .其中一个电荷的电荷量和两电荷间距离都减半时,作用力为4F C .每个电荷的电荷量和两电荷间距离都减半时,作用力为4F D .每个电荷的电荷量和两电荷间距离都增加相同倍数时,作用力不变 答案 D 解析 由F =k q 1q 2r 2知,若q 1、q 2不变,而r 变为原来的两倍时,则F 要变为原来的1 4 , 故选项A 不正确;若其中一个电荷的电荷量和两电荷间距离减半时,则作用力变为原来的两倍,故选项B 错误;若每个电荷的电荷量和两电荷间距离都减半或增加相同的倍数时,则作用力保持不变,故C 错,D 对. 【概念规律练】 知识点一 库仑定律的适用条件 1.关于库仑定律,下列说法正确的是( ) A .库仑定律适用于点电荷,点电荷其实就是体积很小的球体 B .根据F =k q 1q 2 r 2 ,当两点电荷间的距离趋近于零时,电场力将趋向无穷大 C .若点电荷q 1的电荷量大于q 2的电荷量,则q 1对q 2的电场力大于q 2对q 1的电场力 D .库仑定律和万有引力定律的表达式相似,都是平方反比定律 答案 D 2.两个半径为R 的带电球所带电荷量分别为q 1和q 2,当两球心相距3R 时,相互作用的静电力大小为( )

高中物理动量定理试题经典及解析

高中物理动量定理试题经典及解析 一、高考物理精讲专题动量定理 1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。 【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】 (1)设运动过程中摩擦阻力做的总功为W ,则 W =-kmgL -2kmgL =-3kmgL 即整个过程中摩擦阻力所做的总功为-3kmgL 。 (2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得 mv 1=2mv 2 22101122 kmgL mv mv -= - 2 21(2)0(2)2 k m gL m v -=- 由以上各式得 010v kgL = 所以人给第一辆车水平冲量的大小 010I mv m kgL == 2.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。(忽略发射底座高度,不计空气阻力,g 取10m/s 2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力) (2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略

高中物理动量定理解题技巧讲解及练习题(含答案)

高中物理动量定理解题技巧讲解及练习题(含答案) 一、高考物理精讲专题动量定理 1.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。(忽略发射底座高度,不计空气阻力,g 取10m/s 2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力) (2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略不计),测得前后两块质量之比为1:4,且炸裂时有大小为E =9000J 的化学能全部转化为了动能,则两块落地点间的距离是多少? 【答案】(1)1550N ;(2)900m 【解析】 【分析】 【详解】 (1)设发射时燃烧的火药对礼花弹的平均作用力为F ,设礼花弹上升时间为t ,则: 212 h gt = 解得 6s t = 对礼花弹从发射到抛到最高点,由动量定理 00()0Ft mg t t -+= 其中 00.2s t = 解得 1550N F = (2)设在最高点爆炸后两块质量分别为m 1、m 2,对应的水平速度大小分别为v 1、v 2,则: 在最高点爆炸,由动量守恒定律得 1122m v m v = 由能量守恒定律得 2211221122E m v m v = + 其中 121 4m m = 12m m m =+ 联立解得 1120m/s v =

230m/s v = 之后两物块做平抛运动,则 竖直方向有 212 h gt = 水平方向有 12s v t v t =+ 由以上各式联立解得 s=900m 2.在距地面20m 高处,某人以20m/s 的速度水平抛出一质量为1kg 的物体,不计空气阻力(g 取10m /s 2)。求 (1)物体从抛出到落到地面过程重力的冲量; (2)落地时物体的动量。 【答案】(1)20N ?s ,方向竖直向下(2 )m/s ?, 与水平方向的夹角为45° 【解析】 【详解】 (1)物体做平抛运动,则有: 212 h gt = 解得: t =2s 则物体从抛出到落到地面过程重力的冲量 I=mgt =1×10×2=20N?s 方向竖直向下。 (2)在竖直方向,根据动量定理得 I=p y -0。 可得,物体落地时竖直方向的分动量 p y =20kg?m/s 物体落地时水平方向的分动量 p x =mv 0=1×20=20kg?m/s 故落地时物体的动量 m/s p = =? 设落地时动量与水平方向的夹角为θ,则 1y x p tan p θ= = θ=45°

库仑定律的发现

库仑定律的发现 现在物理学思想,与传统物理学思想的最大不同是:前者是解释和预测宇宙的现象,后者是揭示宇宙的“本质”.解释和预测宇宙的现象就是:按人类业已形成的数理逻辑体系,解释和预测宇宙.在现代物理学基础理论中,一般所使用的物理学基本原理,不可能在实验中得到验证,只能验证由这些物理学基本原理,产生的物理学理论所带来的实际效应(在经典物理学中叫物理“现象”). 因此,我们可以用这样或那样的基本原理,建立这样或那样的理论.在“众多”的“正确”理论中,我们可能淘汰一部分,只留下少数几种,甚至只保留一种.淘汰的标准就是理论的扩展性,或叫理论的普适性、广泛性,因为我们力求用尽量少的基本原理,解释尽量多的宇宙现象,这是一个涉及物理学中美学范畴的问题. 这种思想看起来带有浓重的人性化色彩(即主观性),带有强烈的“强人择原理”味道.这不仅有人会问:宇宙为什么要符合我们建立的数理逻辑?这又变成一个哲学问题了,回答只能是:因为他是我们是我们的宇宙,既然她孕育了我们,就应该让我们以自己的方式来了解她.恩格斯说:“只要自然科学在思维着,它的发展形式就是假设.” 【1】 假设电荷是虚数的iQ ±.因为电荷无法直接测量,粒子携带电荷的大小,只能从作用力来推算,所以,不必拒绝虚数单位. 设两个粒子各带电荷21,iQ iQ ,两个粒子之间电力满足库仑公式: 22 1R Q Q k F =,此时应该把库仑定律微调,就是电荷带上虚数符号i. 当1Q 与2Q 都为正电荷,则:2121Q Q iQ iQ -=?,此时电力为负,相斥. 当1Q 与2Q 都为负电荷,则:()()2121Q Q Q i Q i -=-?-,此时电力为负,相斥. 当1Q 与2Q 一正一负,则:()2121Q Q iQ Q i =?-,或者:()2121Q Q Q i iQ =-? 此时电力F 为总为正,相吸. 电力总体规律表现为:同性相斥,异性相吸.这个明显的规律性现代物理并没有给出合理的解释,而一旦把电荷看作是虚数物理量,电作用规律再显然不过. 最早提出电力平方反比定律的是Priestley . Priestley 的好友富兰克林曾观察到放在金属杯中的软木小球完全不受金属杯上电荷的影响, 他把这现象告诉了Priestley, 希望他重做此实验. 1766年, Priestley 做了富兰克林提出的实验, 他使空腔金属容器带电, 发现其内表面没有电荷, 而且金属容器对放于其内部的电荷明显地没有作用力.他立刻想到

第2节 静电力 库仑定律

第2节 静电力 库仑定律 (对应人教A 的) 情景导入 知识互动: 知识点一、点电荷 1、点电荷:点电荷是只有电荷量,而没有大小、形状的理想化模型,与力学中学过的“质点”的概念类似,实际中并不存在. 疑难解析:什么样的带电体可以看做点电荷呢?并不是带电体的体积足够小,就可以看成点电荷.一个带电体能否看成点电荷决定于自身的大小、形状与所研究问题之间的关系,如果带电体的形状与大小对研究的问题没有影响或影响小到可以忽略不计,那就可以看做是点电荷。这是一种抓主要因素忽略次要因素的研究方法。 知识点二、库仑定律: 1、内容:真空中两个静止点电荷之间的相互作用力的大小,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比;作用力的方向在它们的连线上,这一规律称为库仑定律. 2、表达式: 221r Q Q k F =,其中k 是静电力常量,92-29.010N m /C k =??,其意义为:两个电荷量为1C 的点电荷在真空中相距1m 时,相互作用力为×109N . 3、库仑定律的适用条件: ①真空中(空气中也近似成立). ②点电荷:即带电体的形状和大小对相互作用力的影响可以忽略不计. 【疑难点拨】 ①库仑力是一种“性质力”:库仑力也叫静电力,它是电荷之间的一种相互作用力,是一种“性质力”,与重力、弹力、摩擦力一样具有自己的特性.电荷间相互作用的库仑力也同样遵循牛顿第三定律.在实际应用时,与其他力一样,受力分析时不能漏掉. ②当多个点电荷同时存在时,任意两个点电荷间的作用仍遵守库仑定律,任一点电荷所受的库仑力可利用矢量合成的平行四边形定则求出合力. ③在应用库仑定律时,q 1、q 2可只代入绝对值算出库仑力的大小, 再由同种电荷相互排斥,异种电荷相互吸引来判断方向. 知识点三、引力常量的测量 1、测量引力常量的困难: ①这种作用力非常小,没有足够精密的测量器具;②那时连电 量的单位都没有,当然就无法比较电荷的多少了;③带电体上电荷 的分布不清楚,难以确定相互作用的电荷之间的距离. 2、库伦的解决方法: (1)用扭称装置显示微小的力: 图 同学们已经知道同种电荷相互排斥,异种电荷相互吸引,但两电荷间作用力的大小与哪些因素有关?同学们可以提出自己的总总猜想,比如:与两球的带电量的多少、两球之间的距离……,本节就来探讨影响静电力大小的因素,给出计算静电力大小的公式.

高中物理动量定理专题(问题详解)-word

动量和动量定理的应用 知识点一——冲量(I) 要点诠释: 1.定义:力F和作用时间的乘积,叫做力的冲量。 2.公式: 3.单位: 4.方向:冲量是矢量,方向是由力F的方向决定。 5.注意: ①冲量是过程量,求冲量时一定要明确是哪一个力在哪一段时间内的冲量。 ②用公式求冲量,该力只能是恒力,无论是力的方向还是大小发生变化时,都不能用直接求出 1.推导: 设一个质量为的物体,初速度为,在合力F的作用下,经过一段时间,速度变为 则物体的加速度 由牛顿第二定律 可得, 即 (为末动量,P为初动量) 2.动量定理:物体所受合外力的冲量等于物体的动量变化。 3.公式: 或 4.注意事项: ①动量定理的表达式是矢量式,在应用时要注意规定正方向; ②式中F是指包含重力在内的合外力,可以是恒力也可以是变力。当合外力是变力时,F应该是合外力在这段时间内的平均值; ③研究对象是单个物体或者系统; ④不仅适用于宏观物体的低速运动,也适用与微观物体的高速运动。 5.应用: 在动量变化一定的条件下,力的作用时间越短,得到的作用力就越大,因此在需要增 大作用力时,可尽量缩短作用时间,如打击、碰撞等由于作用时间短,作用力都较大,如冲压工件; 在动量变化一定的条件下,力的作用时间越长,得到的作用力就越小,因此在需要减 小作用力时,可尽量延长作用时间,如利用海绵或弹簧的缓冲作用来延长作用时间,从而减小作用力,再如安全气囊等。 规律方法指导 1.动量定理和牛顿第二定律的比较 (1)动量定理反映的是力在时间上的积累效应的规律,而牛顿第二定律反映的是力的瞬时效应的规律 (2)由动量定理得到的,可以理解为牛顿第二定律的另一种表达形式, 即:物体所受的合外力等于物体动量的变化率。 (3)在解决碰撞、打击类问题时,由于力的变化规律较复杂,用动量定理处理这类问题更有其优越性。 4.应用动量定理解题的步骤 ①选取研究对象; ②确定所研究的物理过程及其始末状态; ③分析研究对象在所研究的物理过程中的受力情况; ④规定正方向,根据动量定理列式; ⑤解方程,统一单位,求得结果。 经典例题透析 类型一——对基本概念的理解 1.关于冲量,下列说法中正确的是() A.冲量是物体动量变化的原因 B.作用在静止的物体上力的冲量一定为零 C.动量越大的物体受到的冲量越大 D.冲量的方向就是物体合力的方向 思路点拨:此题考察的主要是对概念的理解 解析:力作用一段时间便有了冲量,而力作用一段时间后物体的运动状态发生了变化,物体的动量也发生了变化,因此说冲量使物体的动量发生了变化,A对;只要有力作用在物体上,

第2节库仑定律

第1章静电场 第2节库仑定律 【学习目标】编写:王振营审核: 1.掌握库仑定律,知道点电荷的概念,并理解真空中的库仑定律. 2.会用库仑定律进行有关的计算. 3.渗透理想化方法,培养学生由实际问题进行简化抽象建立物理模型的能力. 【课堂探究】 1.电荷间的相互作用:同种电荷相互排斥,异种电荷相互吸引。 问题:那么电荷之间的相互作用力和什么有关系呢? 结论:电荷之间存在着相互作用力,力的大小与有关,电量越大,距离越近,作用力就越;反之电量越小,距离越远,作用力就越。作用力的方向,可用同种电荷相斥,异种电荷相吸的规律确定。 2.库仑定律内容: 3.库仑定律表达式: 4.库仑定律的适用条件: 5.点电荷:

【典型例题】 例1.试比较电子和质子间的静电引力和万有引力.已知电子的质量m =9.10×10-31kg,质子的质 1 =1.67×10-27kg.电子和质子的电荷量都是1.60×10-19C. 量m 2 例2.真空中有三个点电荷,它们固定在边长50cm的等边三角形的三个顶点上,每个点电荷都是+2×10-6C,求它们所受的库仑力. 【课堂练习】 1.关于点电荷的下列说法中正确的是: A.只有体积很小的带电体,才能作为点电荷 B.点电荷是客观存在的. C.点电荷一定是电量很小的电荷 D.一个带电体能否看成点电荷,不是看它的尺寸大小,而是看它的形状和大小对所研究的问题 的影响是否可以忽略不计 2.库仑定律的适用范围是. A.真空中两个带电球体间的相互作用 B.真空中任意带电体间的相互作用

C.真空中两个点电荷间的相互作用 D.真空中两个带电体的大小远小于它们之间的距离,则可应用库仑定律 3.A、B两个点电荷间距离恒定,当其它电荷移到A、B附近时,A、B之间的库仑力将. A.可能变大 B.可能变小 C.一定不变 D.不能确定 4.对于库仑定律,下列说法正确的是 A.凡计算两个点电荷间的相互作用力,就可以使用公式 22 1 r Q Q K F B.两个带电小球相距非常近时,也能用库仑定律 C.相互作用的两个点电荷,不论它们的电量是否相同,所受的库仑力大小一定相等 D.两个点电荷的电量各减为原来的一半,它们之间的距离保持不变,则它们之间的库仑力减为 原来的一半 5.如图所示,三个完全相同斩金属小球a、b、c位于等边三角形的三个顶点上.a和c带正电,b 带负电,a所带电荷量的大小比b的小.已知c受到a和b的静电力的合力可用图中四条有向线段中的一条来表示,它应是 A.F 1 B.F 2 C.F 3 D.F 4 6.大小相同的两个金属小球A、B带有等量电荷,相隔一定距离时,两球间的库仑引力大小为F, 现在用另一个跟它们大小相同的不带电金属小球,先后与A、B两个小球接触后再移开,这时 A、B两球间的库仑力大小 A.一定是F/8 B.一定是F/4 C.可能是3F/8 D.可能是3F/4 7.两个点电荷甲和乙同处于真空中. ⑴甲的电量是乙的4倍,则甲对乙的作用力是乙对甲的作用力的______倍. ⑵若把每个电荷的电量都增加为原来的2倍,那么它们之间的相互作用力变为原来的______倍;

高中物理动量定理专题训练答案(1)

高中物理动量定理专题训练答案(1) 一、高考物理精讲专题动量定理 1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量的I 大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小. 【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】 (1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即 2202v v aL -= 可解得:2201002v v L m a -== (2)根据动量定理可知合外力的冲量等于动量的该变量所以 01800B I mv N s =-=? (3)小球在最低点的受力如图所示 由牛顿第二定律可得:2C v N mg m R -= 从B 运动到C 由动能定理可知: 221122 C B mgh mv mv =-

解得;3900N N = 故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N = 点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小. 2.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰 撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求: (1)两小球碰前A 的速度; (2)球碰撞后B ,C 的速度大小; (3)小球B 运动到最高点C 时对轨道的压力; 【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上 【解析】 【分析】 【详解】 (1)选向右为正,碰前对小球A 的运动由动量定理可得: –μ Mg t =M v – M v 0 解得:v =2m /s (2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒: A B Mv Mv mv =+ 222111222 A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s (3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒: 2211222 B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R '+= 解得:F N =4N 由牛顿第三定律知,F N '=F N =4N 小球对轨道的压力的大小为3N ,方向竖直向上.

库仑定律的发现和验证

§3.3 库仑定律的发现和验证 库仑定律是电磁学的基本定律之一。它的建立既是实验经验的总结,也是理论研究的成果。特别是力学中引力理论的发展,为静电学和静磁学提供了理论武器,使电磁学少走了许多弯路,直接形成了严密的定量规律。从库仑定律的发现可以获得许多启示,对阐明物理学发展中理论和实验的关系,了解物理学的研究方法均会有所裨益。 3.3.1 从万有引力得到的启示 18世纪中叶,牛顿力学已经取得辉煌胜利,人们借助于万有引力的规律,对电力和磁力作了种种猜测。 德国柏林科学院院士爱皮努斯(F.U.T.Aepinus,1724—1802)1759年对电力作了研究。他在书中假设电荷之间的斥力和吸力随带电物体的距离的减少而增大,于是对静电感应现象作出了更完善的解释。不过,他并没有实际测量电荷间的作用力,因而只是一种猜测。 1760年,D.伯努利首先猜测电力会不会也跟万有引力一样,服从平方反比定律。他的想法显然有一定的代表性,因为平方反比定律在牛顿的形而上学自然观中是很自然的观念,如果不是平方反比,牛顿力学的空间概念就要重新修改1。 富兰克林的空罐实验(也叫冰桶实验)对电力规律有重要启示。1755年,他在给兰宁(John Lining)的信中,提到过这样的实验: “我把一只品脱银罐放在电支架(按:即绝缘支架)上,使它带电,用丝线吊着一个直径约为1英寸的木椭球,放进银罐中,直到触及罐的底部,但是,当取出时,却没有发现接触使它带电,像从外部接触的那样。”2 富兰克林的这封信不久跟其他有关天电和尖端放电等问题的信件,被人们整理公开发表流传甚广,很多人都知道这个空罐实验,不过也和富兰克林一样,不知如何解释这一实验现象。富兰克林有一位英国友人,名叫普利斯特利(Joseph Priest-ley,1733—1804),是化学家,对电学也很有研究。富兰克林写信告诉他这个实验并向他求教。普利斯特利专门重复了这个实验,在1767年的《电学历史和现状及其原始实验》一书中他写道:“难道我们就不可以从这个实验得出结论:电的吸引与万有引力服从同一定律,即距离的平方,因为很容易证明,假如地球是一个球壳,在壳内的物体受到一边的吸引作用,决不会大于另一边的吸引。”3 普利斯特利的这一结论不是凭空想出来的,因为牛顿早在1687年就证明过,如果万有引力服从平方反比定律,则均匀的物质球壳对壳内物体应无作用。他在《自然哲学的数学原理》第一篇第十二章《球体的吸力》一开头提出的命题,内容是:“设对球面上每个点都有 1自然现象中许多过程都服从平方反比关系,例如:光的照度、水向四面八方喷洒、均匀固体中热的传导等无不以平方反比变化,这从几何关系就可以得到证明。因为同一光通量、水量、热量等等,通过同样的球面,球面的面积与半径的平方成正比(即S=πr2),所以,强度与半径的平方成正比。如果在传播过程中有干扰的媒质,例如有一透镜置于光路中,就会使光的分布发生畴变,这就出现各向异性。所以,平方反比 定律假定的基础是空间的均匀性和各向同性。 2Goodman,TheIngeniusDr.Franklin,Oxford,1931,p.144. 3转引自:D.M.Turner,Makers of Science:Electricity and Magnetism,Oxford,1927, p.28.

相关文档
最新文档