机械密封基础知识-三机械密封的计算
机械密封之密封面间隙的几何公式及计算单位表示

机械密封之密封面间隙的几何公式及计算单位表示
机械密封之密封面间隙h的几何公式及计算单位表示,您知道多少呢?
在进行对机械密封的力学分析之前,我们先来普及一下其相关的各种几何公式所代表着什么?相关的计算单位代表着什么?东晟密封告诉机械密封的密封面间隙h相关的几何公式及计算单位都代表什么吧!
密封面间隙h的公式方式及计算单位表面
机械密封端面间隙是一个很重要的宏观几何参数,其大小决定了泄漏量的多少。
我们先看看密封端面间隙的几何公式是什么吧?
h = hat + hdyn
其中hat ——是表示密封的表面粗糙度形成的密封缝隙的高度,如下几何公式就是表示密封缝隙高度的公式了。
Rmax1 Rmax2
K1 K2
K1及K2 ——表面粗糙度比,迈尔认为K1=K2 =0.67,则hat=0.75(Rmax1 + Rmax2)hdyn ——由液体动压效应该产生的密封缝隙高度,与介质的粘度μ、表面形状和滑动速度u、比压pb 等有关。
hdyn=F(u,μ,pb…)kdRzGn = kdRz( )
以上公式中kd ——无因次系数,对于机油,kd =0.07~0.15。
对于接触式机械密封,可认为密封面的间隙h=hat ,图1中表示出了密封端面间隙的几何形状及流体静压力的分布;对于非接触式流体动压密封,密封面的间隙按式计算方式。
密封端面间隙的几何形状及流体静压力的分布。
机械密封

机械密封
Mechanical Seals
Main Content
机械密封的工作原理 机械密封的类型 机械密封的主要参数 机械密封设计 机械密封材料 机械密封的辅助措施 机械密封失效分析
机械密封
定义:
机械密封是一种旋转机械,如离心 泵、离心机、反应釜和压缩机等的轴封 装置。机械密封,又叫端面密封 (Mechanical End Face Seal).按国 家有关标准定义:由至少一对垂直于旋 转轴线的端面在流体压力和补偿机构弹 力(或磁力)的作用以及辅助密封的配 合下保持贴合并相对滑动而构成的防止 流体泄漏的装置。
机械密封材料
(一) 摩擦副材料 根据统计,机械密封的泄漏大约有80%一95%是 由于密封端而摩擦副造成的。除了要保持密封面平 行之外,主要是摩擦副的材料问题。
摩擦副材料应具备下列条件: 机械强度高.能耐压和耐压力变形; 具有耐严磨性,耐高载荷性,自润滑件好; 配对材料的磨合性好,无过大的磨损和腐蚀; 耐磨性好,寿命长; 导热件和散热性好; 耐高温性能好。 Continue
情况之一者,则认为密封失效: ① 从密封系统中泄漏出大量介质; ② 密纣系统的压力大幅度降低; ③ 封液大量进入密封系统(如双端面机械
密封)。
密封失效的外部特征和具体表现形式(P146)
机械密封失效泄漏的原因分析
机械密封失效的主要形式是静、动环之间的磨损失 效。动、静环端面摩擦副通常靠弹簧椎力来压紧, 阻止泄漏。动、静环压得越紧越不易泄漏,但其间 的摩擦力也随之增大,接触端面在较大摩擦力的作 用下会很快磨损,最后失效泄露。
4)过滤
冲洗液、冷却液或封液中混有杂质,必 须过滤后才能使用。分离杂质可采用普 通过滤器。为不影响机器运转,应并联 安装两个,交替使用。也可以采用磁性 过滤器,使铁屑等杂质吸附在过滤器的 磁套上。旋液分离器结构简单,不易堵 塞,广泛用于分离杂质。
机械密封基础知识

机械密封基础知识
机械密封端面组合: 机械密封端面组合: 考虑到介质复杂情况,环保要求,自动监控, 考虑到介质复杂情况,环保要求,自动监控,安全性等要 机械密封组合成不同形式用以满足上述要求: 求,机械密封组合成不同形式用以满足上述要求: 机械密封端面组合形式: 机械密封端面组合形式: 单端面机械密封组合形式 双端面机械密封组合形式 背对背式 面对面式 串联式 多端面机械密封组合形式 辅助密封: 辅助密封: 喉部节流密封; 喉部节流密封; 二次节流密封; 二次节流密封;
Pressure Gauge Pressure Switch External Pressure Source One-way Block Valve (Normally Open) Level Gauge
Points to Note for API Plan 53: Typically used with an arrangement 3 pressurised dual seal. During normal operation, circulation is maintained by an internal pumping ring. The reservoir pressure is greater than the process pressure being sealed.
Points to Note for API Plan 52: Typically used with an arrangement 2 unpressurised dual seal. During normal operation, circulation is maintained by an internal pumping ring. The reservoir is usually continuously vented to a vapour recovery system and is maintained at a pressure less than the pressure in the seal chamber.
机械密封

2.1 工况条件介质:乙烯;温度-40℃~-10℃;介质压力:3 MPa;轴径:45 mm;线速度:9.4 m/s;转速:4000 r/min;根据综合参数与轴径为中型机械密封。
2.2结构选择2.2.1密封结构的分类机械密封的使用工况和参数主要有密封腔温度和密封压力、密封端面平均速度、轴径、介质特性等。
根据这些参数可以将机械密封进行分类,如表1,表2 所示表 1 机械密封按试用工况和参数分类使用工况类别工况参数按密封端面平均线速度v/(m/s)超高速高速一般速度密封端面平均线速度>100密封端面平均线速度≥25~100密封端面平均线速度<100按密封腔温度t/℃高温中温普温低温密封腔温度>150密封腔温度>80~150密封腔温度>-20~80密封腔温度<-20按轴径大小d/mm大轴径一般轴径小轴径轴径>120轴径≥25~120轴径<25按使用介质耐磨粒介质耐强腐蚀介质耐弱腐蚀介质含磨粒介质耐强酸强碱及其他强腐蚀介质耐油丶水丶有机溶剂及其他弱腐蚀介质按密封压力P/MPa 超高压高压中压低压密封腔压力>15密封腔压力>3~5密封腔压力>1~3密封腔压力>常压~1表 2 机械密封按综合参数和轴径分类机械密封综合参数机械密封类别压力P/MPa 温度t/℃线速度v/(m/s)轴径d/mm重型机械密封>3 <20或>150 ≥25 >120中型机械密封≤3 <-20~150 <25 25~120轻型机械密封<0.5 >0~80 <10 ≤402.2.2 密封结构的确定2.2.2.1单端面由一对密封端面组成的机械密封,结构简单,制造与拆装都相对简便,使用广泛,故采用。
采用场合:作为最常用的机械密封型式,适用于一般场合。
2.2.2.2 内流式流体在密封端面间的泄露方向与离心力方向相反的机械密封,离心力起着阻碍流体泄露的作用,故泄漏量少,密封可靠。
适用场合:可用于高压,有固体颗粒的流体,泄漏量少,故采用。
2.2.2.3 内装式静止环安装于密封端盖(或相当于密封端盖的零件)的内侧(即面向主机工作腔的一侧),适用场合:由于摩擦副受力状态好,冷却润滑效果好,用于安装精度较高的场合,故采用。
机械密封结构

机械密封结构
从结构比较来看,单端面比双端面简单,在制造和装拆上较 容易,因而使用很普遍。双端面因要通入带液体(封液)至 密封腔内起“封堵”和润滑作用,就需另设一套装置。单端 面只适用于一般场合。双端面适用于强腐蚀、主温、带悬浮 颗粒及纤维的介质、气体介质、易燃易爆介质、易挥发粘度 低的介质、高真空、贵重物料及要求介质与空气隔绝且允许 内漏的情况。
机械密封结构
机械密封结构
机械密封结构
机械密封结构
第二节 密封特性与端面液膜承载能力
一、密封特性
1.轴承润滑理论
(1)两平行平板
贴近移动板的油层速度 贴近静止板的油层速度 各油层以不同速度 移动
FX
v
u
y
移动件
O
静止件
Y
油层间剪应力 与速度梯度油层
成正比
此式也称为牛顿粘性液摩擦定律 式中,A——移动板的面积 η——比例常数,即液体的粘度。
内装式受力情况比较好,刚开车时介质压力较低,由不太大 的弹簧力即可对摩擦面构成初始的密封,此时因端面比压较 小,容易形成液膜。内装式端面比压随介质压力增在而增大, 因而增加了密封的可靠性。
一般情况下内装式的介质泄漏方向与离心力方向相反,泄漏情况较外装 式好。所以在介质无腐蚀以及不影响弹簧机能时,应尽可能采用内装式 结构。
机械密封结构
4、单端面、双端面和多端面
按摩擦面对数分为单端面、 双端面和多端面。
单端面:指在密封机构中仅 有一对摩擦副。
双端面:指在密封机构中有 两对摩擦副,且两对摩擦副 处于相同封液压力下(图35)。
密封机构中有两对以上的摩 擦副且密封腔的压力逐渐降 低,根据摩擦副的对数分别 称为双端面、三端面和多端 面。
机械密封结构
机械密封的基本零件与材料

(1)足够的强度和刚度 保证在工作条件(如压力,温度,滑动速度等)下不损
坏,变形小,工作条件波动时影响小。 (2)端面有足够的硬度、耐腐蚀性能确保使用寿命。
29
(3)耐热冲击力 高的导热系数,低的线膨胀系数。
(4)较小的摩擦系数,良好的自润滑性,材料与介质有 2024/6/27 很好的浸润性短时间干摩擦,不损伤端面。
3
(十一)补偿机构形式 (十二)双端面机械密封 (十三)串联式机械密封 (十四)波纹管机械密封 2024/6/2(7 十五)集装式机械密封
4
二、机械密封的基本零件
(一)对摩擦副密封环的要求 (二)摩擦副匹配要考虑的因素 (三)密封端面宽度 (四)密封环的主要技术要求
2024/6/27
(五)摩擦副端面平面度检测 (六)密封端面的粗糙度要求 (七)动环(旋转环) (八)静环(不旋转) (九)密封环的种类 (十)整体式密封环
(静密封点,密封圈与相配合件之间相对静止) 泄漏点4 ─压盖与腔体间的密封圈,依靠密封圈的过盈量实现
密封;(静密封点,密封圈与相配合件之间相对静 止)
13
2、 传动关系 轴或轴套───紧固螺钉5──弹簧座4──弹簧3─补偿环1 压盖──防转销8─非补偿环6 3、 原理
通过一系列零件将径向密封转化为轴向密封,在弹
种结构)
2024/6/27
(2)外流式:泄漏方向朝向离心力方向。(泄漏量大, 只有在压力、温度都不高的腐蚀性介质中用)
21
(九)多弹簧和单弹簧机械密封 (1)多弹簧:(又叫小弹簧,轴向尺寸小,轴向弹力均
匀)宜用于高速,不宜用于腐蚀性介质。 2024(/6/227)单弹簧:(又叫大弹簧,轴向尺寸大,轴向弹力不
机械密封基础知识

(三)密封机理 1、4个密封点(亦称4个泄漏点,如图1-1)
泄漏点1—摩擦端面泄漏点,依靠弹力和介质压力保持贴和(动密封点, 两个摩擦副之间有相对转动)
泄漏点2—补偿环密封圈,静密封点,密封圈与轴或轴套之间有微动;
泄漏点3—非补偿环封圈,静密封点,密封圈与相配合件之间相对静止 ;
2020/7/17
七、石化行业典型泵的密封
(一)石化行业高温泵(热油泵)密封分析 (二)轻烃泵密封分析 (三)低温泵密封分析 (四)高速机械密封
2020/7/17
八、机械密封的安装和使用
(一)安装机封的泵的技术要求 (二)安装密封前要了解泵及介质情况 (三)机械密封的安装 (四)泵的抽空和汽蚀
2020/7/17
2020/7/17
十、补充内容
(一)机械密封标准介绍 (二)机械密封辅助系统 (三)机械密封的安装 (四)磁力密封介绍 (五)高压机械密封研制
2020/7/17
一、机械密封原理
(一)定义与组成(图1-1)
组成:
1.密封端面: 动环、静环─摩擦副
2.缓冲补偿机构:
由弹性元件(圆柱弹簧 、圆锥弹簧、波片弹簧 、波纹管等)构成。— 使贴合; 3.辅助密封圈: 包括动环密封圈、静环 密封圈等,有各种形式 :如O型圈、V型圈、楔 形圈等
❖两套密封沿同一方向布置,密封腔压力逐级降低, ❖用于高压场合。
2020/7/17
(十四)波纹管机械密封
❖去掉了补偿环密封圈及其摩擦阻力,补偿环密封圈改至弹簧座处, 补偿环追随性提高.
❖避免了补偿环密封圈因轴串、振动所产生的磨损。 ❖金属波纹管用于高温介质 ❖聚四氟乙烯波纹管用于腐蚀性介质。
2020/7/17
机械密封基础知识-三机械密封的计算精选全文

2024/9/28
4
(三)液膜反力的计算
Fm =λP介 S
(液膜比压Pm=λP介)
λ:膜压系数≈0.5(中粘度),=0.65~0.75(低粘度),
=0.3~0.4(高粘度)。
它是一个平均值,表示液膜压力占介质压力的比例,
并不表示压力的分布情况。该公式为端面比压的计算
提供了方便。
S:端面面积S=π(d22-d12)/4
2024/9/28
17
各种组对在非平衡型机械密封中的许用[PV]值
SiC/ SiC/ 石墨 SiC
WC/ WC/ WC/
WC/ Al2O3/ Cr2O3喷涂/ Stellite/
石墨 WC 填充PTFE 青铜 石墨
石墨
石墨
180
14.5
7~1 5
4.4
5
2 3~7.5 15
3~9
2024/9/28
三、机械密封的计算
(一)补偿环的受力状况
要进行端面比压计算,首先要分析补偿环的受力情况。 如图,补偿环受到的力有:
2024/9/28
1
向左的:弹簧力Ft、介质压力所产生的作用力Fp 向右的:液膜反力Fm、静环作用的端面支承力F; 摩擦力R,很小可以忽略; 以上四力平衡,有F=Ft+Fp-Fm 端面比压P=F/S (S为端面面积) 上面各项力的计算方法在后面章节再加以叙述。
(4)端面缝隙情况:渐开形,λ减小;渐收形,λ增大
(5)其他因素:转速高,对于内流式λ减小,对于外流式λ
增大。此外端面比压、密封面温度、粗糙度等都有一定影响。
2024/9/28
8
(六)弹簧比压的计算
Pt =F弹/S F弹可计算得出,但一般有误差±10%,这是由于制造厂、 制造工艺、原材料的化学成分、热处理工艺等存在差异的 缘故。 一般Pt =0.15~0.2Mpa(内装),0.3~0.6Mpa(外装),反应釜中, 转速低,轴摆动大,取大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018/12/3
2
(二)密封端面中液膜反力的分布情况
2018/12/3
3
在d2处,端面间液膜压力等于P介。在d1处,端面间液 膜压力近似为零。对于中间分布情况,人们通过大量试验 发现,各点的压力分布与介质性质有关,还与端面中的相 态和摩擦状态有关。 对于丁烷等(粘度小、易汽化介质),压力分布成凸抛物线状1。 对于水等(中等粘度介质),压力分布成直线性2。 对于润滑油等(高粘度介质),压力分布成凹抛物线状3。
2018/12/3
12
端面比压的选取原则:
(1)必须高于弹簧比压;
(2)必须大于介质在端面温度升高时的饱和蒸汽压; 在保证以上条件下,尽量取小值,以防端面发热,破坏液膜,加剧磨损,功 率消耗增大,密封使用寿命减短。同时考虑以下原则: (1)对自润滑性好的组对(M106K/SiC、YG6/ SiC、M106K/YG6) 可以取稍大值(因液膜不易被破坏,摩擦系数不易增加。)。 (2)对于外装式机械密封,可以取稍小值(因介质比压很小,
两相。rb为汽化半径,此处液膜压力=P饱和(tp),
tp处温度最高。 r2~rb区域,液膜压力成线性分布,液相 rb~r1区域,液膜压力成抛物线分布,气相 对于易汽化介质膜压系数λ,中国石油大学顾永泉教授提出一个计算公式: λ=2/3×/P1+(1/2-1/6×Pf/P1)(r2~rb)/( r2 -r1) 式中:Pf :rb处气化压力 P1 :介质压力 rb:气化半径 r2 /r1 :端面外半径/内半径 计算值一般在0.70~0.85之间。
转速低,轴摆动大,取大值。
2018/12/3
9
(七)载荷系数K
介质压力对补偿环的有效作用A面积与端面面积S之比。 K=A/S
2018/12/3
10衡型;
d0为介质分界圆直径
当K<1时,机械密封为平衡型;
平衡系数β=100(1-K)% 载荷比压:P载=KP介
外装式 机械密封 0.3~0.5 ——— 0.3~0.5 0.15~0.25 0.15~0.25 0.4~0.6 0.3~0.5
饱和蒸汽压
粘度
摩擦副材料
匹配的硬/硬 匹配的硬/软
2018/12/3
14
(九)波纹管的有效作用直径de
端面比压中有一项K,K=A/S A:介质有效作用面积, A=π(d22-de2)/4,de为有效直径。 S:密封端面面积 S=π(d22-d12)/4
三、机械密封的计算
(一)补偿环的受力状况
要进行端面比压计算,首先要分析补偿环的受力情况。 如图,补偿环受到的力有:
2018/12/3
1
向左的:弹簧力Ft、介质压力所产生的作用力Fp 向右的:液膜反力Fm、静环作用的端面支承力F; 摩擦力R,很小可以忽略;
以上四力平衡,有F=Ft+Fp-Fm
端面比压P=F/S (S为端面面积) 上面各项力的计算方法在后面章节再加以叙述。
2018/12/3
7
(五)膜压系数的影响因素
(1)端面几何尺寸,由上面公式可以看出。 (2)密封结构:前面讲的都是对内流式而言的,对外流式,λ还要增大0.2左右, 对于中等粘度介质λ=0.7
(3)摩擦状态:边界摩擦(端面多个高点直接接触承压。液膜厚度只有几个分子 厚,且不连续,几乎不承压,只起润滑作用,λ=0)、液体摩擦(全液膜,泄漏量 大,机械密封一般不采用)、混和摩擦(介于以上两种之间,这是机械密封端面摩 擦的主要形式)
2018/12/3
15
(1)金属波纹管 内装内流式:deo=(di+do)/2-Z 外装外流式:dei=(di+do)/2+Z 修正系数Z=0.671P介0.797
(2)聚四氟乙烯波纹管
矩形波:de=[(di2+d o2)/2]1/2 锯齿波:de=[(d i2+d o2+d i d o)/3]1/2
2018/12/3
5
(四)易汽化介质中密封端面间的液膜压力分布
易汽化介质(如液态烃等)的机械密封一直是石化行 业中较难解决的问题,其原因是膜压系数不稳定,因其在 端面中的相态和摩擦状态不稳定。因此弄清端面间的压力 分布,对于正确计算液膜反力很有必要。
2018/12/3
6
大家都知道,对于轻烃类介质,端面缝隙中存在气液
2018/12/3
11
(八)端面比压
P=Pt+P载-P液膜 = Pt +(K-λ)P介 (内装式) 对于双端面机械密封介质侧:
P液膜= P外+λ(P内-P外)
P载=K P内+(1-K)P外
所以:P= Pt+K P内+(1-K)P外-[P外+λ(P内-P外)] = Pt+K P内+P外-K P外-P外-λ(P内-P外) = Pt+K(P内-P外)-λ(P内-P外) = Pt+(K-λ)(P内-P外) = Pt+(K-λ)ΔP
2018/12/3
4
(三)液膜反力的计算
Fm =λP介 S (液膜比压Pm=λP介)
λ:膜压系数≈0.5(中粘度),=0.65~0.75(低粘度), =0.3~0.4(高粘度)。 它是一个平均值,表示液膜压力占介质压力的比例, 并不表示压力的分布情况。该公式为端面比压的计算 提供了方便。 S:端面面积S=π(d22-d12)/4
而Pt不可能很大。)。
(3)对于高粘度介质,取稍大值(以保持端面贴合)。 (4)易挥发介质(饱和蒸汽压高)稍小值(以减少温升)。
2018/12/3
13
推荐的端面比压值
因素
程度 接近水比水低 比水高 比水高 比水低 其中一个为塑料
内装式 机械密封 0.5~1.0 0.3~0.5 0.5~1.0 0.3~0.5 0.2~0.3 0.7~1.2 0.5~1.0
橡胶波纹管de无法准确计算,一般由试验获得。
(4)端面缝隙情况:渐开形,λ减小;渐收形,λ增大 (5)其他因素:转速高,对于内流式λ减小,对于外流式λ 增大。此外端面比压、密封面温度、粗糙度等都有一定影响。
2018/12/3
8
(六)弹簧比压的计算
Pt =F弹/S F弹可计算得出,但一般有误差±10%,这是由于制造厂、 制造工艺、原材料的化学成分、热处理工艺等存在差异的 缘故。 一般Pt =0.15~0.2Mpa(内装),0.3~0.6Mpa(外装),反应釜中,