哈里伯顿定点压裂技术

哈里伯顿定点压裂技术
哈里伯顿定点压裂技术

哈里伯顿定点压裂技术

提纲

一CobraFrac连续油管射孔,压裂

二CobraMaxFracV&H连续油管射孔,套管压裂

三Cobrajet

四、连续油管校深工具介绍

五、FastDr111Plug快钻压裂塞

六Surgifrac水力喷射压裂

七遇油膨胀分隔器+开关滑套+膨胀式尾管悬挂器

八哈里伯顿压裂液系统

一、.CobraFrac-现行射孔,通过连续油管+跨越式

封隔器进行压裂

工具串

CobraFracbottomhole assembly

CobraFrac

_cobraFrac工艺应用情况

1、使用大尺寸的连续油管施工<2-3/8"0r2-7/8">

2、自1999年以来完成了5000多口井,3万多层的施工

3、安全可靠

4、最大排量4方/分钟·少

5、最高地层温度120'C

6、最高砂比1920公斤/方<110%)

7、最大井深2400m垂深

8、单层最大加砂量80吨

9、最大地面压力52MPa

cobraFrac使用大外径连续油管<2-3/8"0r2-7/8">和跨越式封隔器A施工工作量受连续油管抗压等级限制

B最大砂比可以到16ppg(1920kg/m3>

C大多数作业深度小于7000ft(2100M),但如果有合适的连续油管配合哈里伯顿的井下工具可以更大

D有时需要下CCL(DepthPro>

CobraFrac优点一与常规压裂对比

常规压裂

高排量,套管压裂

高排量多射孔段笼统压裂

不能很好的处理每一个射孔段<有些孔段未被压开)

压裂增产效果不能令人满意

CobraFraC

一趟管柱进行多层压裂

每层施工不需要很大排量

针对各射孔段进行优化设计

常规压裂增产效果的1.5倍

是常规压裂增产效果

CobraFrac工艺的不足

连续油管的损耗

要求大外径的连续油管<最小需要2一3/8">

在此施工规模下对跨越式封隔器是很大考验

如射孔段较长,则需要下CCL

CobraFrac压裂实例

SPE81739,EriCBUrkhglterburtonEnergy,WendellSalas,SerViCeSb5 E2RGbCAP

VermeloParkProlect一overview

·E1PasoEnergy

.43口井CobraFrac

,5-1/2-in.套管

封隔器跨度,1一3M

·深度300一900M

CobraFracCOmpletions

每口井4一18层

平均每口井9层。

预先射孔

无桥塞

加砂规模:15吨/M

平均排量1.3方/分钟

CobraFrac压裂实例-英国

.完成五口井52层压裂

平均每口井8一2层

射孔段1.2M一3.1M

单层加砂量12-70吨

平均排量1.7m3/min

平均泵压:35一40MPa

最大深度1200M

连续油管和2-7/8"

52层共加砂1180吨砂,连续油管寿命大约70%

二、cobraMax一使用连续油管喷砂射孔,通过环空压裂,留砂塞分割各层

CObraMax V 连续油管水力射孔,套管压裂技术-直井

CObraMax H&V

CObraMax H 连续油管水力射孔,套管压裂技术-水平井

Combra max service

1、是一种新型的压裂方式

2、无分隔器

3、使用1.75”以上连续油管120度射孔也可用1.5”连续油管180度l货砂射孔

4.通过环空进行压裂

5.通过砂桥分层

6.作业后连续油管冲砂

Combra max施工步骤

水力喷砂射孔

连续油管保护装置

Combra max优点

1.一趟管柱完成射孔及压裂

2、排量可以较大<受套管及井口承压限制)

3.砂比不受限

4、施工规模可以很大<加砂量不受限)

5、对连续油管磨损很小,可以保证一盘连续油管完成多口井的施工

6、可以使用较小外径的连续油管

7、井下工具简单,效率很高,施工风险小

8.自2004年使用以来,成功完成上千口井数万层施工实例2、澳大利亚应用实例旧常作业)

4.5”套管

TVD2808m-2600m

4层压裂

1.75”CTU,3个喷嘴

地层温度108℃

单层加沙量42吨<24方)

一天完成4层压裂

三combrjt

四,校深工具介绍

1.DepthProTM

工具外径2.25,,,3.25,,和3.5,,

连续油管保持恒定泵速

磁性探头探测到套管接箍

电磁阀推动活塞关闭循环孔

连续油管压力上升

循环孔打开

连续油管压力下降、

2、MCCL

MCCL贯串结构图

五、fastdrill plug 快钻压裂塞

特点:

用于套管压裂,适用于多种套管尺寸<3.5”、4.5”、5.5”、7”)一趟电缆同时射孔及坐封压裂塞

压裂后可快速钻掉压裂塞<十分钟便可钻掉一个)

材质很轻,非常容易挤出

六、水力喷射压裂

水力喷射压裂概念

七、Delta stim completion service分层压裂完井服务

Delta stim completion service分层压裂完井服务

Delta stim sleeves-the sleeves can be opened by dropping a ball fromp1EanqFDPw

Surface but retain ability to be shift closed at a later date滑套可地面投球打开,并有能力后期关闭DXDiTa9E3d

Swell technology system-provides zonal isolation without mechanical manipulation 无机械操作的隔离系统RTCrpUDGiT

Versaflec liner hanger-liner hanger system with superior sealing elements5PCzVD7HxA

超级密封胶皮的膨胀式尾管悬挂器系统

八、哈利伯顿压裂液系统

对压裂液如下要求:

低残留:减少对地层的污染

粘土控制:减少粘土的膨胀及运移

高粘度:提高携砂能力

抗剪切性能:

低温彻底破胶:减少地层污染,提高返排率

好的表面活性剂:保持润湿性,提高返排率

低摩阻:有利于提高施工排量,提高施工成功率

延时交联:降低摩阻

哈利伯顿压裂液体系

适用温度:50'C、250'C

低残留

低摩阻

良好的破胶体系

良好的抗剪切及剪切恢复特性

通过特殊的添加剂降低表面张力和接触面张力,提高返排率

哈里伯顿有多种成熟的压裂工艺技术,可以满足不同井况的压裂需求

哈坦伯顿有专业的专家团队,对全世界服务提供全面的技术支持

哈里伯顿有经验丰富的施工团队及领先的压裂设备,满足各种压裂

需要

哈里伯顿有优秀的压裂液系统,满足各种地层压裂要求

申明:

所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

施工工序流程图

施工流程图 模板工程钢筋工程混凝土工 土石方工程 基础分部施工: 主体分部施工: 施工准备 测量放线 主体子分部:二次结构施工 装饰分部:内外墙抹灰 防水工程地面工程门窗工程 内外涂料 五金、玻璃安装 竣工验收 竣工清理 成品保护 水、调式、 测试 屋面工程 开工 熟悉图纸材料准备机具准备施工准备 技术、劳力准备 灯具安装 洁具安装 其 他 安 装 施 工 水 电 安 装 施 工 预留预埋 安装 (布 管、排 线)

开工准备: 一、立项 二、环评、安评 三、委托设计院做平面方案 四、规划、消防窗口总平面方案审批 五、出蓝图 六、建设用地规划许可证 七、单体建筑物三个以上设计方案 八、设计方案审批 九、出施工图 十、建设工程规划许可证 十一、图纸审查 十二、建筑工程消防施工图审核 十三、建设工程招标 十四、安全监督手续 十五、质量监督手续 十六、施工许可证 十七、开工建设 出让国有土地使用权设定登记 1)土地登记申请书 2)国有建设用地使用权出让合同及政府批复元件 3)建设用地规划许可证原件及复印件 4)建设用地使用权出让金及契税缴纳证明 5)营业执照及组织机构代码证原件及复印件 6)法定代表人及委托代理人身份证明原件及复印件 7)地籍测量的数据及图件 建设用地规划许可证 1)建设用地规划许可证申报表 2)建设项目的有效计划批准文件 3)已经批准的建设项目选址意见书和项目用地规范图 4)规划设计条件及附图 5)划拨土地证明或土地出让、转让合同 6)已批准的总平面图 建设工程规划许可证 1)建设工程规划许可证申请表 2)经办人身份证及复印件 3)计划批文 4)土地权属证明文件 5)施工图三套(含建设项目总施工图、建筑单体施工图、工程定位图及竖向设计、管线综合、绿化及做法施工图) 6)方线(测绘)资料

最新压裂技术现状及发展趋势资料

压裂技术现状及发展趋势 (长城钻探工程技术公司) 在近年油气探明储量中,低渗透储量所占比例上升速度在逐年加大。低渗透油气藏渗透率、孔隙度低,非均质性强,绝大多数油气井必须实施压裂增产措施后方见产能,压裂增产技术在低渗透油气藏开发中的作用日益明显。 1、压裂技术发展历程 自1947年美国Kansas的Houghton油田成功进行世界第一口井压裂试验以来,经过60多年的发展,压裂技术从工艺、压裂材料到压裂设备都得到快速的发展,已成为提高单井产量及改善油气田开发效果的重要手段。压裂从开始的单井小型压裂发展到目前的区块体积压裂,其发展经历了以下五个阶段[1]:(1)1947年-1970年:单井小型压裂。压裂设备大多为水泥车,压裂施工规模比较小,压裂以解除近井周围污染为主,在玉门等油田取得了较好的效果。 (2)1970年-1990年:中型压裂。通过引进千型压裂车组,压裂施工规模得到提高,形成长缝增大了储层改造体积,提高了低渗透油层的导流能力,这期间压裂技术推动了大港等油田的开发。 (3)1990年-1999年:整体压裂。压裂技术开始以油藏整体为单元,在低渗透油气藏形成了整体压裂技术,支撑剂和压裂液得到规模化应用,大幅度提高储层的导流能力,整体压裂技术在长庆等油田开发中发挥了巨大作用。 (4)1999年-2005年:开发压裂。考虑井距、井排与裂缝长度的关系,形成最优开发井网,从油藏系统出发,应用开发压裂技术进一步提高区块整体改造体积,在大庆、长庆等油田开始推广应用。 (5)2005年-今:广义的体积压裂。从过去的限流法压裂到现在的直井细分层压裂、水平井分段压裂,增大储层改造体积,提高了低渗透油气藏的开发效果。 2、压裂技术发展现状 经过五个阶段的发展,压裂技术日趋完善,形成了三维压裂设计软件和压裂井动态预测模型,研制出环保的清洁压裂液体系和低密度支撑剂体系,配备高性能、大功率的压裂车组,使压裂技术成为低渗透油气藏开发的重要手段之一。 2.1 压裂工艺和技术

压裂施工现场质量保证措施

压裂施工现场质量保证措施 即执行以下施工标准Q/SY 31-2002《压裂工程质量技术监督及验收规范》、SY/T5836-93 《中深井压裂设计施工方法》、SY6443-2000《压裂酸化作业安全规定》、Q/CNPC·HB0856-2004《压裂施工作业技术规程》、Q/CNPC·HB 0857-2004《压裂酸化工作液现场技术规程》、SY/T5587.5《常规修井作业规程》以及《井下作业井控实施细则》等。 根据山西吕梁地区的地形及现场情况特制订本压裂施工现场质量规范。 近年煤层气井压裂施工有关技术指标完成情况: (l)生产时效:95%;(2)设备完好率:97%;(3)工程质量全优率:99.5%;(4)施工一次合格率:100%;(5)资料全准率:99.7%;(6)单项资料合格率:96.0%;(7)单项资料全优率:96.0%。(8) HSE目标管理100%。 5.1压裂施工现场质量规范预案 5.1.1车辆摆放 a、按顺序进入井场,避免在井场内发生冲突,做到准确快速摆放。 b、混砂车的摆放要考虑加砂车的停放和混砂车进排出管线的连接。 c、仪表车的摆放要考虑对井口及施工场地的观察。 5.1.2压裂液和支撑剂的检查 a施工前压裂队要准确测量压裂液总量,并做好记录。 b、压裂液配制是否均匀,有无结块和漂浮物,并作记录。 c、压裂队负责目测检查压裂液、支撑剂量和类型,并作记录,同时观察支撑剂是否有杂质,是否潮湿或有结块。如果有不合格应请示有关领导,并有指示记录。 5.1.3井口及施工管柱的检查 a、施工前压裂队要查看井口类型,检查升高短节,绷绳及大螺栓是否上齐上紧,阀门是否齐全,开关灵活。检查井口放喷管线和平衡管线是否连接好并固定。 b、用油管压裂井,施工指挥现场落实下井管柱深度,并计算核实顶替量。施工员要现场复核。 5.1.4高低压管线的连接 a、管线的连接必须确保施工质量和施工安全的要求,高压管线连接要有一定活动余地,高压每条管线要有“桥“连接,低压管线连接不要有死弯,尽量平直。 b、混砂车的上水和排出管线的连接必须满足施工排量的要求,大型施工时要用联通器。 c、各车在接管汇时要检查密封胶垫的完好情况,彻底清洗丝扣并涂油,然后砸紧。 5.1.5启泵前的检查及准备

压裂施工井下监测技术简介

压裂施工井下监测技术 简介

二O一七年五月二十五日

压裂施工井下监测技术简介 1开展压裂施工井下监测的目的意义 水力压裂是油气层增产的最有效方法之一,目前尽管水力压裂在理论、设备、工艺技术等方面都有了较快的发展,但在现场施工中仍存在不少问题。例如现场施工时如何根据施工曲线确定裂缝类型、裂缝的延伸状况及准确获得裂缝的几何尺寸、滤失系数、闭合压力、闭合时间、地层主应力等都没得到有效的解决。随着油气藏整体压裂技术的发展,压裂的实时监测及压后评估技术必将受到广泛重视,相应的压力分析及解释技术也急需进一步的发展和完善。此外,同一区块 一口井的压裂测试和解释,对于准确取得压裂所需要的参数并即时修改压裂设计是非常必要的,从而为下一次压裂措施作业提供借鉴和指导作用,这也是近年来实时监测及压后评估受到广泛关注的重要原因。 压裂压力是指压裂施工过程和停泵后井底或井口压力,压裂压力曲线是指压裂压力随时间的变化关系。由于目前缺少直接测量水力裂缝的长度及导流能力等重要参数的手段,因此影响了分析压裂成败的原因及进一步提高水力裂缝效果的途径。但是地下填砂裂缝的存在总要反映在压裂前后油井压力与产量的变化上来,特别是压力与产量随时间的变化速度与水力裂缝的长短、导流能力的大小等参数有直接关系。通过对施工过程中压力曲线的分析,可以确定裂缝的延伸方式和施工期间任意时刻裂缝的几何参数,对停

泵后压力曲线(称为压降曲线)的分析,能为压裂设计提供重要的设计参数,如地层有效滤失系数、压裂液效率等。因而对压裂压力曲线的分析可以提高压裂施工的成功率和有效率。 2压裂施工监测技术的发展趋势 压裂施工过程及其后的排液过程中都包含有许多反映油气层和裂缝性质的参数,如何进行该过程的动态监测及反演地层参数及有关裂缝的参数的获得是今后发展的主要方向,它可以及时、快速、高效、准确地了解地层参数及有关裂缝的参数,达到快速评价压裂效果的目的。同时可以部分取消压裂后的试井测试(如测温、关井静压、示踪测井等),减少不必要的测试费用并可提前生产等。 根据国外文献报道,在压裂施工中井口压力与井下层位附近的压力有很大的区别,井下压力消除了磨阻影响,更加客观、真实地反映层位部位在施工过程中的压力变化,其井下压力监测资料分析结果可更真实地评价压裂施工效果,对下次压裂设计指导意义更大。鉴于江汉油田目前压裂施工动态监测中存在的问题和缺陷,米油院环测所研究一套压裂施工井下监测的新理论、新方法,充分利用压裂施工过程中压力监测的信息,达到快速、高效评价压裂效果、反演地层参数及裂缝参数的目的。利用这一方法,可以达到如下目的: (1)快速。利用本项目研究的方法可以快速地了解地层参数, 在压裂施工完成后,即可求出地层及裂缝的参数,如在压裂施工完成 停泵后只要再继续监测2-3小时的井底压力随时间的下降情况,就可 以了解压裂施工形成的裂缝长度、裂缝高度和裂缝导流能力等。

压裂施工工作流程图

压裂施工工作流程图 工作流程:(1)调度室安排生产任务→(2)压裂队接受生产任务→(3)查看施工井场道路→(4)落实井场准备情况→(5)按照施工设计准备施工设备→(6)检查施工设备→(7)召开出车前的安全会议→(8)队车行驶到达井场外→(9)在试油队HSE监督台填写记录→(10)检查试油队井场准备的情况→(11)施工设备进入井场摆放→(12)检查施工液体→(13)高低压管线及电缆连接→(14)召开施工前的安全脚底会→(15)清理并隔离施工高压区→(16)压裂施工→(17)施工结束→(18)召开施工总结会→(19)队车返回→(20)回场检验并反馈信息。 流程内容: (1)调度安排生产任务: 做什么:生产任务要清楚,行车路线要清楚,设备状况要清楚,队伍现状要清楚,工作环境要清楚。怎么作:交代生产任务(哪个试油队,哪个机组,在什么地方,行车路线,怎么联系,施工设计,准备情况,特殊要求);了解设备状况(设备是否完好,性能能否满足施工要求);了解队伍状况(人力资源是否配备到位,人员体力能否满足工作需要,队伍是否有情绪,生活有无保障);了解工作情况(天气情况,道路情况,井场情况,外部环境情况)。 谁来作:调度员 做到什么程度:使压裂队带队干部工作任务清楚;行车路线清楚;准备情况清楚;连接方式清楚;特殊要求清楚。 (2)压裂队接受生产任务: 做什么:生查任务要清楚,设备状况要清楚,队伍现状要清楚,工作环境要清楚;行车路线要清楚;准备情况要清楚;联系方式要清楚;特殊要求要清楚。 怎么作:从调度员处接受生产任务,了解工作环境,了解行车路线,了解准备情况,掌握联系方式,清楚特殊要求,检查设备状况,了解队伍现状。 谁来做:压裂队带队干部 做到什么程度:生产任务清楚,设备状况要清楚,队伍现状要清楚,工作环境要清楚,行车路线清楚,准备情况清楚,联系方式清楚,特殊要求清楚。 (3)查看施工井场道路: 做什么:从停车场到施工井场的道路进行检查,对道路的风险进行识别,根据压裂设备的外型尺寸、

水平井分段多簇压裂工艺的应用

水平井分段多簇压裂工艺的应用 【摘要】鸭平4井位于玉门油田鸭西白垩系是典型的低渗透储层,井深3456m,水平段210m,实施了2段6簇的压裂,同步实施了裂缝监测,取得了理想的效果;压裂共入井液量1961.4 m3,总沙量159 m3,最高砂比26.2%,平均砂比14.5%;该井是玉门油田实施多段多簇压裂工艺的第一口井,是开发低渗透油藏水平井的新突破,探索了一条中深水平井压裂改造的新途径。 【关键词】玉门油田压裂低渗透油藏 1 鸭平4井油藏储层特征 鸭平4井水平段方位角基本在NW280-290°之间,二者基本呈90°夹角,因此有利于沿井筒形成横切裂缝。图1?鸭平4井裂缝方位及体积改造裂缝形 态 对比邻井,该井具有储层厚度较大,缝高易扩展,储层物性较好,液体效率低的特点。该井水平段较短,为提高储层动用程度及施工效率,采用水平井分段多簇压裂工艺,实现体积改造(SRV)。在水平井筒周围储层,形成一定密度的裂逢网络;从而提高增产改造体积。 2 实施分段多簇压裂设计方案 根据该井施工排量的要求,本井分两段进行压裂,每段3簇,每簇射孔段1m,孔密16孔/米,每段共计射48孔,具体射孔参数见表1。 2.1 第一段采用油管传输射孔 采用102枪127弹,孔径10.2mm,穿深680mm,相位角60°。该射孔条件下,8 m3/ min的施工排量,总孔眼摩阻小于1MPa;若压裂施工时仅1簇进液,则计算显示其孔眼摩阻将大于8MPa,则第二层被压开,这时有两簇进液,理论计算出的孔眼摩阻超过2Mpa。 2.2 第二段采用电缆射孔 采用86枪,22.7g深穿透射孔弹,孔径8.12m,穿深为729mm,相位角60°。该射孔方式在8m3/min的施工排量下,总孔眼摩阻小于3MPa;仅1簇进液时孔眼摩阻将高达20MPa,则第二簇被压开,两簇进液时的孔眼摩阻超过5MPa,同样,这种情况能够保证第三簇也能够被压开。 采用分簇射孔工艺,根据摩阻预测,每段射孔孔眼数为48孔,3簇施工时8m3/min的排量较为适宜,既能保证总孔眼摩阻很低,又能起到限流作用(限流摩阻>12MPa)从而保证压开每个射孔簇。

(完整版)工程部工作流程图(1)

项目工程部标准 工 程 部 工 作 流 程 图 108

工程部工作流程图目录●岗位工作流程类 一、工程部主管岗位工作流程图 二、工程部监理及内业工作流程图 ●采购控制管理流程类 三、施工单位招标作业流程图 四、甲供材料采购控制流程图 ●施工现场管理流程类 五、现场签证工作流程图 六、工程变更流程图 1、工程设计变更流程图 2、工程技术核定流程图 3、办理客户工程变更相关手续流程图 七、施工组织设计(或方案)评审流程图 八、施工图会审流程图 九、施工现场巡场管理流程图 十、单位工程基础分部结构验收流程图 十一、单位工程主体部分验收流程图 十二、单位工程竣工验收流程图 109

110 一、工程部主管岗位工作流程图 项目工程质量计划 前期工作 接收施工图纸 并组织会审 确定施 工单位 了 解场貌及管线位 置三通一平 单位工程开工 施工图预算 审核 总平及道路施工控制 工程竣工验收 工程移交 工程结算 主体工程施工 成本过程控制 施工单位控制 地基.基础施工 装饰工程施工 工程质量工期控制 安全文明施工控制 监理单位控制 设计变更控制 采购控制 拆 迁 合同控制管理

111 二 、工程部员工岗位管理流程图 ` 图纸会审 进场通知单 施工组织设计 红线交接 质监、安监备案 现场临时设施搭建 场地原始标高测量 水、电表原始读数记录 现场用电安全验收、大型机械设备安全验收 开工报告 基础工程 桩基础工程 承台基础工程 地下室工程 地基处理工程 基坑开挖控制 原材料、混凝土配合比控制 试桩;桩验收; 地基验槽; 基础钢筋验收; 基础验收; 基础回填; 其它验收、隐蔽验收 防水工程 定位放线 定位复线 其它基础工程 技术方案控制 基坑围护 周边建筑 沉降观测 安全检查 文明施工 夜间施工 签证实物量记录 基础验收 主体工程 一层施工 标准层施工 结构转换层施工 顶层施工 屋面结构施工 进场材料检验 钢筋焊接测试 混凝土质量监控 隐蔽工程验收 后浇带、预埋铁件 沉降观测点设置 水电预留、预埋 砖砌体质量控制 其它关键质量控制 文明施工 安全检查 设备检查 外脚手架、内支撑体系检查 沉降观测 夜间施工 接下页 逐月抄表,每月办 理《施工单位水、电使用确认单》 技术核定单 工程总进度计划 工程采购计划 各阶段进度计划 每 月 进 度 计 划 每周进度计划 进采购流程 实际完成情况 计划调整修改 进 度 质量 规划局验线 正式施工图纸 三通一平、接收红线 工程承包合同 施工许可证 工程监理(土建和安装) 内业 过程资料管理

国内大型压裂技术的应用与发展_张光生

第41卷第1期 辽 宁 化 工 Vol.41,No. 1 2012年1月 Liaoning Chemical Industry January,2012 收稿日期: 2011-09-19 国内大型压裂技术的应用与发展 张光生1,2,王维波1,杨冬玉1,廖 晶2,张红丽3,王雷波4,王华军1 (1. 西安石油大学石油工程学院, 陕西 西安 710065; 2. 河南油田勘探开发研究院地质实验室, 河南 南阳 473132; 3. 中国石油川庆钻探长庆钻井公司第二工程项目部, 甘肃 庆阳 745100; 4. 北京恩瑞达科技有限公司压裂套管堵漏项目部, 北京 100192) 摘 要:大型压裂在我国的应用与发展已有十余年时间,但大型压裂目前尚无明确的界定标准。国内近年来形成了低渗透薄互层油藏大型压裂、大型酸化压裂改造、大型加砂压裂、低伤害大型压裂等一系列成熟的大型压裂技术。大型压裂具有地质条件复杂多样、机组功率大、施工规模大、增产效果显著等特点,在今后很长时期内将继续担当低渗透油气层勘探试油,新井投产和油层改造的重任。 关 键 词:大型压裂;低渗;薄互层油藏;裂缝;酸化压裂 中图分类号:TE 357 文献标识码: A 文章编号: 1004-0935(2012)01-0046-05 1 中小规模压裂向大型压裂的变化 水力压裂凭借由地面向井内泵注液体的能量,使油层破裂,继而填以支撑剂,形成并保持裂缝,从而改善油气层导流能力,以达到油水井增产增注的目的。水力压裂技术是人们在认识地层、开发油气资源的长期实践中逐步总结出来的成果。 1947年7月世界第一口压裂井在美国堪萨斯州Hugoton 气田Kelpper 1井成功压裂[1] ,至今已有上百万井次的压裂作业。1954年中国开始应用水力压裂,20世纪70年代逐步对油层水力压裂基本原理、压裂工艺、压裂液、支撑剂、压裂工具、压裂设备、压裂施工中的事故预防和处理等问题进行研究和实践。五十多年来,水力压裂技术已由简单的、低液量、低排量压裂增产方法发展成为一项标准的开采工艺技术。最初的压裂作业,液量一般只有几立方米,而现代大型压裂作业液量已达几百立方米,支撑剂达上百吨。 大型压裂(Massive Hydraulic Fracturing,MHF)是相对于中小规模的压裂而言,虽然目前没有文献或者资料对大型压裂做出明确界定,但公开出版的文献中普遍将压裂液用量400 m 3 以上、加砂量50 m 3 以上、最高施工泵压60 MPa 以上,同时动用了数台较大功率机组且有较大排量和较长作业时间的压裂作业称为大型压裂。20世纪90年代国内开始实施大型压裂施工,迄今已完全具备大型、超大型压裂的技术能力。如果能制定明确的大型压裂标准,无疑将有利于行业技术实力的量化比较和品牌形象的树立。 2 国内大型压裂技术应用现状 2.1 应用现状 为研究致密气藏而发展起来的的水力压裂技术,其作业规模从小型发展到大型甚至超大型已成为压裂技术发展的一个重要方面。国内近年来将其广泛应用于油气藏增产改造,并取得良好增产效果。胜利、新疆、四川等油气田,屡屡以压裂液用量、加砂量、最高施工泵压等关键参数,不断刷新和创造国内大型压裂规模纪录。表1汇总了近年来国内部分大型压裂井况与施工参数。 大型压裂不仅应用于低渗透薄互层砂岩油藏、低孔-特低渗薄互层油藏、低渗砂砾岩油藏、潜山裂缝性变质岩油藏、火山岩油藏、致密页岩气藏、低压气藏、低渗透砂岩气藏等,而且也用于碳酸盐岩油气藏酸压改造,以及煤层气压裂[2,3] 。 2.2 主要技术的研究与开发 (1)低渗透薄互层油藏大型压裂技术 ① 二维流动的拟三维裂缝扩展模拟技术[4] 大型压裂技术的出现使人们认识到裂缝内过高的压力容易克服遮挡层岩石应力,使水力压裂的裂缝沿长、宽、高三个方向同时延伸。低渗透薄互层砂岩油藏隔层薄、强度低,裂缝的长高比往往小于4,以前只考虑流体一维流动的拟三维裂缝扩展模型就不够真实。根据低渗薄互层油藏大型压裂的特点,在适当假设的基础上,应用线弹性断裂理论,建立流体沿着裂缝高度和长度方向流动的拟三维裂缝扩展

压裂工程施工专项技术服务合同协议书范本模板

发包方(甲方):________________________________ 承包方(乙方):________________________________ 根据《中华人民共和国合同法》的相关规定,鉴于甲方希望就________压裂施工项目获得乙方的施工专项技术服务,并同意支付相应的施工服务报酬。 鉴于乙方拥有提供上述专项技术服务和施工的能力,并同意向甲方提供这样的施工和技术服务。经双方平等协商,在真实、充分的表达各自意愿的基础上,达成如下协议。 第一条工作量及合同期限 1.施工服务的项目名称:________________________ 2.工作量:________________________ 3.履行期限:________________________ 4.履行地点:________________________________ 第二条技术要求及施工质量 2.1.施工服务的技术要求及施工质量:技术要求按石油天然气总公司压裂施工技术规范及压裂施工设计执行;施工质量严格按压裂施工设计执行。 第三条工程价款 本合同为单价合同,单井费用按以下标准确定: 3.1.施工作业费用:按《________________公司________年压裂酸化工程费用结算标准执行》,见附件1。 3.2.费用调整 3.2.1因设计变更或其它甲方认可的增减工作量,增减相应的费用。 3.2.2增减工作量依据以下列顺序确认: 3.2.2.1设计(含补充)、甲方指令(含甲方批复的申请)。

2.2.2.2监督现场记录。 3.2.2.3乙方现场记录(各类报表)或乙方提供的其它证明材料。 3.2.3压裂入井材料按甲方认定的实际使用量结算。 3.2.4对于乙方超出设计范围和因乙方原因造成返工、延误所增加的工作量,甲方不予考虑。 3.2.5因乙方自身管理不善或设备能力局限等原因额外增加的工作量或设备,甲方不予考虑。 3.2.6维持正常施工的材料消耗,包括但不限于以下情况:常用材料消耗不作为增加工作量的依据。 3.2.7因乙方为加快施工进度而增加设备、选用特殊工具、采用特殊措施或材料等不作为增加工作量的依据。 3.2.8因设计原因造成无法压开地层,费用另议。 3.2.9甲方承担下达有关指令造成的相关费用。下达有关指令应由甲方相关室和分管领导签认后,方可作为结算时的调整依据,事后补签不予认可(特殊情况可先采取措施,但须及时补办签认手续)。 3.2.10乙方被认为完全了解甲方设计要求,并有能力执行甲方设计,任何因不能充分理解甲方设计所造成的损失,乙方承担全部责任。 第四条付款方式 4.1根据甲方安排,单项工程完工后,并经甲方项目评审验收合格,交齐全部资料、报告,完成竣工决算,并提交等额增值税专用发票一个半月后三个月内付至总价的90-95%,余5-10%作为质量保证金(保证金不计利息),待质量保证期满,无质量及相关问题甲方向乙方支付保证金。遇有特殊情况可根据施工进度按照中国石化东北油气分公司有关办法在中国石化股份公司资金计划下达后,由乙方提供收款凭据后按进度工程款拨付。 4.2进度工程款方式:根据单项工程进度,凭甲方出具的阶段验收签证分期支付,甲方向乙方支付工程进度款至80%,余款待全部工程完工验收合格、完工报告和甲方所需的各项资料向甲方交割完毕并提交等额增值税专用发票一个半月后三个月内付至总价的90-95%,余5-10%作为质量保证金(保证金不计利息),待质量保证期满,无质量及相关问题甲方向乙方支付保证金。 4.3每次拨付进度款前,乙方应向甲方提出拨付申请并进行进度结算,甲方在收到拨付申请和发

页岩气水平井分段压裂复杂缝网形成机制

油气藏评价与开发 第7卷第5期2017年10月 RESERVOIR EVALUATION AND DEVELOPMENT 页岩气水平井分段压裂复杂缝网形成机制 许文俊,李勇明,赵金洲,陈曦宇,彭瑀 (西南石油大学油气藏地质及开发工程国家重点实验室,四川成都610500) 摘要:水平井分段压裂是页岩气高效开发的重要技术手段,有意识地利用水力裂缝沟通页岩储层中的天然裂缝,使其闭合的部分重新开启,开启的部分又相互连通,从而在地层中形成具有较大规模的复杂裂缝网络,有利于实现地层中页岩气向井筒的高效流动。为了合理优化页岩储层压裂设计方案,提高页岩储层压裂改造效果,需先认清页岩水平井分段压裂复杂缝网形成机制。基于位移不连续理论,建立了水平井分段压裂多裂缝干扰模式下的地应力场模型,分析了天然裂缝在复杂地应力场和存在压裂液滤失作用的情况下,发生张开或剪切破裂形成复杂缝网的机理。分析表明:水力裂缝诱导应力虽能降低地层原始水平应力差,但也会增加地层中天然裂缝发生张开和剪切破裂的难度,不利于复杂裂缝网络的形成。压裂液滤失是导致地层中天然裂缝发生张开和剪切破裂形成复杂裂缝网络的关键因素,天然裂缝的剪切破裂区域要远大于张开破裂区域,多条水力裂缝滤失效应的叠加更有利于形成具有较大波及区域的复杂裂缝网络。充分考虑压裂液滤失对复杂裂缝网络形成的影响,对提高页岩气水平井分段多簇压裂改造效果具有重要意义。 关键词:分段压裂;位移不连续理论;剪切破裂区域;张开破裂区域;复杂缝网 中图分类号:TE357文献标识码:A Formation mechanism of complex fracture network under horizontal well staged fracturing in shale gas reservoir Xu Wenjun,Li Yongming,Zhao Jinzhou,Chen Xiyu and Peng Yu (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu,Sichuan 610500,China) Abstract:Horizontal well staged fracturing is an important technology for shale gas production,whose essence is to use hydraulic fracture to activate natural fractures.The natural fractures can make closed parts reopen and opened parts interconnect,and then form complex fracture network in shale reservoirs,accordingly,shale gas will flow to the wellbore through complex fracture network efficiently.In order to optimize shale reservoir fracturing design and improve the effects of shale reservoir fracturing,it is necessary to fully understand the formation mechanism of complex fracture network in staged fractured shale horizontal wells.Based on the displacement discontinuity theory,a complex stress field calculation model which takes into consideration hydraulic fracture inter?ference is established,which analyzes the mechanism that natural fractures occur open and shear fracture,and then the complex fracture network under the circumstance of complex ground stress field and fracturing fluid leak-off was formed.The results demon?strate that although the hydraulic fracture induced stress field can reduce the original horizontal stress difference,it would also in?crease the difficulty of natural fractures opening and shearing,which is unbeneficial for the formation of complex fracture network. Moreover,it is attained that fracturing fluid leak-off is the key factor that leads to the open and shear fracture of natural fractures in the formation of complex fracture network and the shear rupture zone of natural fractures is much larger than the open rupture zone, furthermore,the superposition of multiple hydraulic fracture filtration effect is more favorable for the formation of complex fracture network with a larger spread area.The impacts of fracturing fluid leak-off on complex fracture network have important significance for improving staged fracturing transformation of shale horizontal wells. Key words:staged fracturing,displacement discontinuity theory,shear rupture zone,open rupture zone,complex fracture network 收稿日期:2016-10-31。 第一作者简介:许文俊(1991—),男,在读博士研究生,油气田增产改造理论与技术方面的研究。 基金项目:国家自然科学基金重大项目“页岩地层动态随机裂缝控制机理与无水压裂理论”(51490653);国家重点基础研究发展计划“中国南方海相页岩气高效开发的基础研究”(2013CB228004)。

体积压裂技术的研究与应用

体积压裂技术的研究与应用 摘要:对于低渗油藏,由于此类型的储油层密度高,渗透率较低,所以就不能使用常规的压裂形成单一裂缝的增产改造措施,因为此措施不能达到商业的开采价值,因而为了提升其商业开采价值就要探索新的压裂改造技术。在国内提出了体积压裂改造超低渗油藏的设想,其根据是参考国外的页岩气体积压裂技术。国内通过体积压裂的方法在靖安油田初次实验及应用。经实践后得出,虽然低渗油藏储层致密、渗透率低,但是在经体积压裂后,其形成了复杂缝网和增大改造体积,这样不仅在初期油量产出大,而且给与后期稳产极大支持。 关键词:低渗致密增产改造体积压裂缝网 一、体积压裂作用机理 “体积压裂”顾名思义,就是指将可以进行渗流的有效储集体通过压裂的方法“打碎”,这样就形成了一个网络裂缝,通过这样的压裂方式能使储层基质与裂缝壁面的接触面积达到最大化,使得油气可以从任何方向渗流到裂缝的距离最短化,将储层整体渗透率提高到一定的程度,从而使储层可以实现长、宽、高三维立体方向的改造。在工程的施工过程中,通过(1)低猫液体(2)大液量(3)高排量这三项,加以转向技术及材料的应用的辅助,利用直井分层压裂技术和水平井分段改造技术等手段,可以将裂缝网络系统形成规模最大化,储层动用率就会相应的提高,从而提高非常规油气藏采收率。 二、体积压裂的技术特征 2.1 体积压裂改造的条件 (1)地层有天然的裂缝且发育良好;(2)岩石中硅质成分含量高,容易在高压下产生裂缝。岩石在压裂过程中容易产生剪切力破坏,不是形成单一的裂缝,而是有利于形成复杂的网状裂缝,从而提高裂缝密度增加缝隙体积;(3)较小的敏感力度,适用于大型的滑溜水压裂。较弱的水敏地层,有利于提高压裂液的用液规模,同时使用滑溜水压裂,滑溜水黏度低,可以进入天然裂缝中,迫使天然裂缝延展距离增加缝隙体积,扩大了改造体积。 2.2 体积压裂改造技术 国内常用的体积压裂技术是滑溜水大型压裂技术。体积压裂工艺有两个特征。第一“两大”:大排量、大液量。第二“两小”:(1)小粒径低密度支撑剂,支撑剂一般采用70/100目和40/70目陶粒;(2)低砂比,最高砂比不超过支撑剂总量的20.0%。 2.3 体积压裂液体系

关于水平井分段压裂的研究及探讨

关于水平井分段压裂的研究及探讨 【摘要】能源作为现代社会的稀缺资源,直接影响着人们的生产生活,对能源的开发也是极为重要的工程。在石油储存量较小且渗透性较差的油田内,水平井是较为有效的开发方式。如果遇到油气层渗流阻力较大、渗透率极低的情况,则需要将其压开数量不等的裂缝,加强油气的渗透性及减少渗流阻力。本文简单阐述了水平井分段压力技术的原理,各种类型的分段压裂技术,包括封隔器分段压裂、段塞分段压裂、封隔器配合滑套喷砂器分段压裂、水力喷射分段压裂、TAP 分段压裂技术等,为从事能源行业的人员提供一定的技术参考。 【关键词】水平井分段压裂技术研究 由于各个油田的地质情况不一样,在开发的过程中许多特殊情况,如低渗透油气藏、稠油油气藏、储量较小、渗透阻力大等情况,需要采用水平井,其优势在于生产效率高、泄油面积大、储量的动用度较高。为了达到进一步提高水平井的产量,需要对水平井进行压裂,从而形成数量较多的裂缝,提高油气的产量,提升生产效率,但是由于水平井的跨度较大,要达到理想的压裂效果要求分段工具具有性能良好、体积合适、操作性强等特征,才能有效的提高单位油井的油气产量,实现经济效益及资源的充分开发[1]。 1 水平井分段压裂工艺的基本原理 水平井压裂后,其裂缝的形状、性能均有所区别,主要和水平井筒轴线方向及地层的主要应力的方向有着较为密切的关系。该项工艺能够提高产量的原理为压裂使石油的渗流方式发生了改变。进行压裂处理之前,石油的径向流流线主要处于井底的位置,渗透受到较大的阻力,压裂完成后,径向流流线与裂缝壁面呈平行关系,渗流受到的阻力较小。裂缝的主要形态有以下几种:①横向裂缝:当水平井筒和主要应力的方向为呈垂直关系时,即会形成横向裂缝;②纵向裂缝:当水平井筒与主要应力的方向呈平行关系时,即会形成纵向裂缝;③扭曲裂缝:当水平井筒和主要应力有一定的角度时,即会构成扭曲裂缝。压裂后形成的横向裂缝适用于渗透性较差储藏层,其可以明显的促进油井改造。而渗透性好、裂缝性的储藏层则需要利用纵向裂缝来提升改造效果[2]。 2 各种类型的分段压裂工艺2.1 段塞分段压裂 段塞分段压裂工艺是在水平井施工进入尾声时,采用年度较高的物质植入井筒中,使之形成堵塞现象,在利用其它材料,如浓度较高的支撑剂、填砂液体胶塞或者超粘完井液等,进行填充性裂缝。该工艺的优势在于对于工具的要求较低,不需要特殊工具即可以安全设计方案进行施工活动,但是其缺陷在于施工时间较长,在进行冲胶塞施工时容易出现损伤,且由于胶塞强度的限制,在深度较大的水平井中不能达到理想的封隔效果,因此逐渐被新的分段压裂技术所取代[3]。 2.2 TAP分段压裂工艺

国内压裂技术进展

中国石油压裂酸化业务的发展综述 近些年,中国石油压裂酸化发展声势夺人,水平井裸眼分段压裂酸化工具等一批技术利器先后登场。从技术工艺来说,历经直井分层压裂、水平井分段压裂和井组整体压裂,由单纯追求裂缝长度发展到最大限度寻求被压开储层体积。 今年,一吨瓜尔胶一度高达每吨2.1万美元,两年前这一价格还仅为1950美元。作为传统压裂液,瓜尔胶身价倍增的推手正是全球如火如荼的压裂酸化业务。且不说压裂酸化在北美页岩气开发中大显身手,仅从中国石油压裂技术的发展就可窥见一斑。 时势造英雄 压裂酸化是一种旨在改善石油在地下流动环境,提高油井产量的储层改造工艺技术,虽应用年头不短,但整体发展速度相对较慢,不仅是工程技术产业链上的一块短板,而且在井下作业业务的庞大队伍中也势单力薄。 然而近些年,中国石油压裂酸化发展声势夺人,水平井裸眼分段压裂酸化工具等一批技术利器先后登场。昔日低调的角色为何成为今日的新秀? 时势造英雄。随着油气资源劣质化加剧,低渗透油气储量成为新增储量和上产主体,越来越多油气井需要储层改造。压裂酸化技术发展,不仅关系到稳定并提高单井产量“牛鼻子”工程的实施,而且影响着油气藏开发动用程度。 据统计,“十二五”期间,中国石油目标市场压裂酸化工作量需求约13.9万井次,年平均2.8万井次,2015年将比2010年增长30.5%,压裂层(段)数及加砂量将增长40%以上。 压裂酸化在建设“西部大庆”大舞台上充分证明了这一点。从“井井有油、口口不流”的“三低”油气藏,到如今“西部大庆”呼之欲出,以压裂为核心的井下技术作业,在长庆油田增储上产中起的作用不言而喻。40多年来,“吃压裂饭,过压裂年,唱压裂歌”的顺口溜无人不晓。 如今,要唱“压裂歌”的何止长庆油田一家。大庆油田薄互层水平井压裂和老井改造,川渝地区和塔里木地区的深井、高温高压储层改造及页岩气等非常规油气资源开发,都在热情地呼唤压裂酸化技术进步与更大规模应用。 在2012年勘探开发年会上,集团公司总经理周吉平把物探、钻完井及储层改造并列为三大核心工程技术。集团公司副总经理廖永远要求油田和工程技术企事业单位要“干优压裂活,吃好储改饭”。 整合出尖兵

压裂酸化技术服务中心及特色技术简介

压裂酸化技术服务中心(以下简称“中心”)自1985年成立以来,始终强调发展和创新,长期致力于压裂酸化应用技术与基础理论的研究,努力解决生产中的技术难题,为低渗透油气藏的勘探与开发提出新理论、新工艺、新技术、新方法、新材料,逐渐形成了一系列压裂酸化特色技术。“十五”期间,“中心”在国内外开展了卓有成效的现场技术服务。在国内,为16个油田的450余口重点井或疑难井提供了综合性科研攻关和技术服务,解决了塔里木、玉门等十几个油田的众多压裂酸化改造技术难题,为中石油的增储上产做出了贡献;在国外,为哈萨克斯坦、阿塞拜疆等8个国家(地区),设计施工180余口井,增产效果显著,为中国石油在国际上赢得了声誉。 “中心”获得了50项科研成果,其中获省部级以上科研成果奖14项,2004年获得中国石油天然气股份公司“油气田开发先进技术”金牌,2005年获中国石油天然气集团公司“优秀科技创新团队”等多项荣誉称号。

一、低渗透油藏开发压裂技术

二、复杂岩性储层酸压技术 研究对象:复杂岩性储层——碎屑岩、碳酸盐岩、粘土矿物各占1/3;以砂砾岩为主,交互白云质细砂岩、白云质泥岩。 累产113000吨,有效期2060天,目前41m 3/d。 累产123000吨,有效期910天,目前167.9m 3/d。 0.01 0.11101001000100000 10 20 30 40 50 60 70 闭合压力(MPa) 导流能力(μm 2.c m ) 复杂岩性:碎‘屑岩、碳酸盐岩、粘土矿物各占1/3

三、低渗油藏重复压裂技术 ●研究对象:针对低渗透油气藏前次压裂失效的井层,以增产稳产、提高开发效果为目的。 ●技术内容:该技术主要包括重复压裂井油藏与工程研究(复压前储层物性评价、剩余可采储量及地层能量评估、原有水力裂缝及其工艺技术评估等)、重复压裂前地应力场及重复压裂时机研究,转向重复压裂优化设计及其实施工艺技术,选井选层研究,中高含水期油藏重复压裂的油藏数值模拟技术,重复压裂材料与施工参数的研究、高砂比压裂施工工艺技术,重复压裂诊断与压后效果评价等技 主应力差值为3MPa 重复压裂选井

【CN110130867A】一种小井眼侧钻水平井分段多簇压裂方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910304847.1 (22)申请日 2019.04.16 (71)申请人 中国石油天然气股份有限公司 地址 100007 北京市东城区东直门北大街9 号中国石油大厦 (72)发明人 常笃 齐银 陆红军 张矿生  卜向前 任勇 苏良银 汪澜  刘兴银 赵广民  (74)专利代理机构 西安吉盛专利代理有限责任 公司 61108 代理人 赵娇 (51)Int.Cl. E21B 43/267(2006.01) E21B 33/134(2006.01) E21B 33/13(2006.01) (54)发明名称 一种小井眼侧钻水平井分段多簇压裂方法 (57)摘要 本发明公开了一种小井眼侧钻水平井分段 多簇压裂方法,根据储层情况确定压裂段数和射 孔位置,每段采用多簇射孔,完成第一段多簇压 裂,接着通过水力泵送小直径可溶桥塞实现第二 段和以后多段的分段压裂,其中压裂施工过程中 通过泵入可溶解暂堵转向颗粒,堵塞已起裂的 簇,迫使压裂液进入未起裂的簇,实现段内多簇 有效起裂,压裂施工完成后,小直径可溶桥塞、暂 堵转向颗粒在地层条件下自行溶解,不影响改造 效果,重复上述步骤,直至完成小井眼侧钻水平 井所有段的压裂,本发明可解决小直径可捞式桥 塞施工工序复杂、笼统压裂各簇开启率较低的问 题,本发明具有不钻塞、施工效率高、成本低的特 点,实现了小井眼侧钻水平井分段多簇压裂的目 的。权利要求书2页 说明书10页CN 110130867 A 2019.08.16 C N 110130867 A

无水压裂技术研究进展

Journal of Oil and Gas Technology 石油天然气学报, 2018, 40(3), 167-172 Published Online June 2018 in Hans. https://www.360docs.net/doc/8a1644709.html,/journal/jogt https://https://www.360docs.net/doc/8a1644709.html,/10.12677/jogt.2018.403080 The Advancement of Waterless Fracturing Technology Qi Teng1, Yang Zhang1, Junyan Liu1, Wei Li1, Yiliu Sun2,3 1Research Institute of Petroleum Engineering, Tarim Oilfield Company, PetroChina, Korla Xinjiang 2State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum, Beijing 3College of Petroleum Engineering, China University of Petroleum, Beijing Received: Dec. 28th, 2017; accepted: Jan. 28th, 2018; published: Jun. 15th, 2018 Abstract Shale gas was rich in China and its development was of great significance of energy strategy in China. At present, the technologies in shale development was mainly hydraulic fracturing, which was harmful to the shale reservoirs and in turn affected production after fracturing. Meanwhile, the shale gas reservoirs in China were widely distributed in remote west China where lacked wa-ter. Therefore, the waterless fracturing technology was urgently needed. In this paper, the four waterless fracturing technologies, including high energy gas fracturing, liquefied CO2 fracturing, foam fracturing and liquefied petroleum gas fracturing, were studied. Besides, the advantages, disadvantages, and the application status of the above 4 technologies were compared. By combin-ing the existing waterless fracturing technology with the actual geology and engineering situation, the waterless fracturing technology suitable for shale gas production in China is explored, which speeds up the commercial and efficient exploitation process of shale gas. Keywords Waterless Fracturing, High Energy Gas Fracturing, Liquefied CO2 Fracturing, Foam Fracturing, Liquefied Petroleum Gas Fracturing

相关文档
最新文档