七年级数学上册3.3解一元一次方程—去括号和去分母课件1(新)新人教

合集下载

人教版七年级上册第三章第二节解一元一次方程(二)——去括号与去分母(第1课时)

人教版七年级上册第三章第二节解一元一次方程(二)——去括号与去分母(第1课时)
义务教育教科书 数学 七年级 上册
3.3解一元一次方程(二) ——去括号与去分母 第1课时
学习目标
1.会用去括号解含括号的一元一次方程. 2.掌握解一元一次方程的具体步骤 3.掌握用一元一次方程解决实际问题的方法
复习导入
解方程:6x-7=4x-1 1、一元一次方程的解法我们学了哪几步?
移项
6x-4x=-1+7
X=0
(3)6(1 x 4) 2x 7 (1 x 1) X=6
2
3
2.解方程:3(5x-1)- 2(3x+2)=6(x-1)+2 解:去括号,得 15x-3-6x-4 =6x-6+2
移项得 15x-6x-6x =-6+2+3+4 合并同类项得 3x =3 系数化为1,得 x =1
★ 在前面再加上一个负号得6x-7=-(4x-1) 会吗?
自学指导1
自学课本93页,完成以下问题,(用时5分钟) 问题 1:若设上半年每月平均用电x度,
则下半年每月平均用电

上半年共用电
度,
下半年共用电
度,
可列方程
.
问题 2:以上方程有何特点?如何解方程? 问题 3:本题还有其他列方程的方法吗?
例题1 某工厂加强节能措施,去年下半年与上半年相比,
例 一艘船从甲码头到乙码头顺流行驶,用了2 h;从 乙码头返回甲码头逆流行驶,用了2.5 h.已知水流的 速度是3 km/h,求船在静水中的速度.
问题: 1.行程问题涉及哪些量?它们之间的关系是什么?
路程、速度、时间.
路程=速度×时间.
例 一艘船从甲码头到乙码头顺流行驶,用了2 h;从 乙码头返回甲码头逆流行驶,用了2.5 h.已知水流的 速度是3 km/h,求船在静水中的速度.

人教版数学七年级上册_解一元一次方程(二)—去括号与去分母课件(3课时、共71张)

人教版数学七年级上册_解一元一次方程(二)—去括号与去分母课件(3课时、共71张)

3.3 解一元一次方程(二)
——去括号与去分母 (第3课时)
学习目标: (1)会去分母解一元一次方程. (2)归纳一元一次方程解法的一般步骤,体会解方程中
化归和程序化的思想方法. (3)通过列方程,进一步体会模型思想.
教学重点: 建立一元一次方程模型解决实际问题以及解含有分数系
数的一元一次方程,归纳解一元一次方程的基本步骤.
根据往返路程相等,列出方程,得
2(x+3)=2.5(x-3)
去括号,得
2x+6=2.5x-7.5
移项及合并同类项,得
0.5x=13.5
系数化为1,得
x 27.
答:船在静水中的平均速度为 27 km/h.
活动3:巩固练习,拓展提高
一架飞机在两城之间航行,风速为24 km/h,顺风 飞行要2小时50分,逆风飞行要3小时,求两城距离.
移项,得
3 x-7 x+7=3-2 x-6
3 x=7 x+2 x=3-6-7
合并同类项,得
-2x=-10
系数化为1,得
x=5
活动2:巩固方法,解决问题
例 一艘船从甲码头到乙码头顺流行驶,用了2 h;从 乙码头返回甲码头逆流行驶,用了2.5 h.已知水流的 速度是3 km/h,求船在静水中的速度.
思考: 1.行程问题涉及哪些量?它们之间的关系是什么?
例:一艘船从甲码头到乙码头顺流行驶,用了2 h;从乙码头返
回甲码头逆流行驶,用了2.5 h.已知水流的速度是3 km/h,求
船在静水中的速度.
问题中的相等
解:设船在静水中的平均速度为x km/h 关系是什么?
则顺流的速度为_(_x_+__3_)_km/h,逆流速度为_(_x_-__3_)km/h.

2023-2024学年人教版七年级数学第三章3.3 解一元一次方程(二)——去括号与去分母

2023-2024学年人教版七年级数学第三章3.3 解一元一次方程(二)——去括号与去分母

设上半年每月平均用电x kW·h.
6x+6(x-2 000)=150 000 去括号
6x+6x-12000=150000 移项
6x+6x =150000+12000 合并同类项
12x =162000 系数化为1
x=13500
去括号法则的依据是乘法分配律,以及有理 数乘法的运算律. 去括号时注意用括号外面的 数乘括号内的每一个数,同时注意每一个乘 积的符号以及乘积的绝对值.
5x=-3 系数化为1
x3 5
一艘船从甲码头到乙码头顺流而行,用了 2 h;从乙码头返回甲码头逆流而行,用了 2.5 h,已知水流的速度是3 km/h,求船在静水 中的平均速度.
1.行程问题中的基本关系式是什么?
路程=速度×时间 2.船在水中航行,它的速度都和哪些量有关, 这些量之间的关系是怎样的?
1 x 1 x 1 x5 1 x4 x
6 12 7
2
解一元一次方程的基本步骤:
①去括号,移项; ② 合并同类项; ③ 未知数的系数化为1.
一个数,它的三分之二,它的一半,它 的七分之一,它的全部,加起来总共是33.
解:设这个数是x,
2 x 1 x 1 x x 33 327
97 x 33 42
2
4
去分母,得 2(x+1)-4=8+(2-x)
去括号,得 2x+2-4=8+2-x
移项,得
2x+x=8+2-2+4
合并同类项,得 3x=12
系数化为1,得
x4
23x x 1 3 2x 1
2
3
去分母,得 18x+3( x-l)=18-2(2x-1) 去括号,得 18x+3x-3=18-4x+2 移项,得 18x+3x+4x=18+2+3

3.3解一元一次方程(二)去括号与去分母(第1课时)(课件)七年级数学上册(人教版)

3.3解一元一次方程(二)去括号与去分母(第1课时)(课件)七年级数学上册(人教版)
分析:设上半年每月平均用电量xkW·h,
则下半年每月平均用电为(x-2000) kW·h.
上半年共用电为:6x kW·h;
上半年共用电为:6(x-2000) kW·h.
根据题意列出方程6x+6(x -2000)=150000
怎样解这个方
程呢?
探究新知
6x + 6 ( x-2000 ) = 150000系数化为1,得来自−6 = 84
=−
3
4
x=- .
3
例题讲解
(2)3 − 7( − 1) = 3 − 2( + 3)
解:去括号,得
− + = − −
移项,得
− + = − −
合并同类项,得
− = −
系数化为1,得
=
归纳总结
共得利息 0.36万元(不计利息税),求甲、乙两种存款各多少
万元?
解:解:设甲种存款 万元,乙种存款 万元.
根据题意,得1.5%x+2%(20-x)=0.36.
解得,x=8,所以20-8=12.
答:甲种存款8万元,乙种存款12万元.
中考链接
1.(2023·甘肃天水一模)解方程−2 2 + 1 = , ,以下去括号正
D. 2 6 3x 2
3.若 x 3 是一元一次方程2( + ) = 5(k 为实数)的解,则 k 的值是(
A.
1
2
1
B. 2
C.
11
2
D.
11
2
D)
分层作业
【基础达标作业】
4.去掉方程3( − 1) − 2( + 5) = 6中的括号,结果正确的是( B )

七年级数学上册教学课件《解一元一次方程(二)——去括号与去分母》(人教)

七年级数学上册教学课件《解一元一次方程(二)——去括号与去分母》(人教)

6x +6(x-2000) =150000
去括号
6x +6x-12000=150000
移项
6x +6x=150000+12000
合并同类项
12x=162000
系数化为1
x=13500
问题1 某工厂加强节能措施,前年下半年与上半年相比,月 平均用电量减少2000kW·h(千瓦·时),全年用电15万kW·h。 这个工厂去年上半年每月平均用电多少? (5)本题还有其他列方程的方法吗? 解:设下半年每月平均用电y kW· h。 根据题意,得 6y +6(y+2000) =150000 ② (6)试仿照解方程①方法解方程②。
实际问题的答案
检验
作业:教科书第91页习题3.3第1、6、7题。
随堂演练
1.方程4(a-x)-4(x+1)=60的解是x=-1,则a的值是( C ) A.-14 20 C. 14 D.-16 2.解方程5-5(x+8)=0的结果是 -7 。
3.解下列方程: (1) 5(x+8)-5=6(2x-7); (2) 4(x-1)+3(2x+1)=10(1-2x)。 4.一架飞机在两城之间飞行,风速为24km/h,顺风飞行需要 2小时50分,逆风飞行需要3h。求无风时飞机的航速和两城之 间的航程。
回顾此题和问题1的解决过程,说一说列一元一次方
程解决实际问题的方法和步骤。
回顾此题和问题1的解决过程,说一说列一元 一次方程解决实际问题的方法和步骤。 实际问题 一元一次方程
解 方 程
设未知数,列方程
实际问题的答案
检验
一元一次方程的解 (x=a)
知识归纳
1.“去括号法”解一元一次方程的步骤:

初中数学人教版七年级上册《第三章解一元一次方程(二)—去括号与去分母》课件

初中数学人教版七年级上册《第三章解一元一次方程(二)—去括号与去分母》课件

例 一架飞机在两城之间航行,风速为24 km/h,顺风飞行要2小时50分,
逆风飞行要3小时,求两城距离.
解:设飞机在无风时的速度为x km/h,
则在顺风中的速度为(x+24) km/h ,在逆风中的速度为(x-
根据题意,得
24)km/h.
17
6
+ 24 = 3( − 24).
解得 x=840.
若同时出发,则快者追上慢者时,快者用的时间=慢者用的时间.
3.航行问题
顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度.
顺风速度=无风速度+风速;逆风速度=无风速度-风速.
往返于A,B两地时,顺流(风)航程=逆流(风)航程.
甲、乙两运动员在长为100 m的直道AB(A,B为直道两端点)上进行匀速往
返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A
点后,又立即转身跑向B点……若甲跑步的速度为5 m/s,乙跑步的速度为
4 m/s,则起跑后100 s内,两人相遇的次数为( B
A.5
B.4
C.3
100×2
解:设两人相遇的次数为x,依题意有

5+4
解得x=4.5,
因为 x为整数,
所以 x取4.
我们可以解决哪些实际问题呢?
例 一艘船从甲码头到乙码头顺流而行,用了 2 h;从乙码头返
回甲码头逆流而行,用了 2.5 h.已知水流的速度是 3 km/h,求
船在静水中的平均速度.
分析:等量关系为这艘船往返的路程相等,即
顺流速度___顺流时间___逆流速度___逆流时

×
×
间.
解:设船在静水中的平均速度为 x km/h,

人教版数学七年级上册解一元二次方程(二)去括号与去分母课件


解:设目的地距学校 x km,则骑自行车所用
时间为
x 9
h,乘汽车所用时间为
x 45
h.
由题意得 解得
x - x = 40 . 9 45 60
x=7.5
答:目的地距学校7.5 km.
一通讯员骑自行车把信送往某地.如果每小时 行15 km,就比预定时间少用24分钟;如果每小 时行12 km,就比预定时间多用15分钟,那么预 定时间是多少小时?他去某地的路程是多少km?
2.为了使每天的产品刚好配套,应使生产的螺母恰好是螺 钉数量的________.
【变式思考 1】 某车间有 28 名工人,生产一种螺母和螺栓,每
人每天平均能够生产螺栓 12 个或螺母 18 个,第一天 安排 14 名工人生产螺栓、14 名工人生产螺母,问第 二天应安排多少工人生产螺栓、多少工人生产螺母, 才能使当天生产的螺栓和螺母与第一天生产的刚好 配套?(已知每个螺栓要配两个螺母)
合并同类项,得
10x=4 200
系数化为1,得
x=420.
答:A,B两地间的路程是420 km.
问题2 回顾本题列方程的过程,计算行程问题时 常用的数量关系是什么?
路程=速度×时间
某中学组织团员到校外参加义务植树活动,一 部分团员骑自行车先走,速度为 9 km/h,40分钟后 其余团员乘汽车出发,速度为 45 km/h,结果他们 同时到达目的地,则目的地距学校多少km?
【变式思考 2】 某车间有 27 名工人,生产一种螺母和螺栓,每人
每天平均能够生产螺栓 12 个或螺母 18 个,问应安排多 少工人生产螺栓、多少工人生产螺母,才能使当天生产 的螺栓和螺母刚好配套?(已知每个螺栓要配两个螺 母)
【变式思考 3】 某车间有 27 名工人,生产一种螺母和螺栓,每人每天平

2020年七年级数学上册 第3章 一元一次方程 3.3 解一元一次方程(二)—去括号与去分母 第2课时 去分母课件


D.x+4 2=3x
易错点 去分母时漏乘无分母的项导致错误.
自我诊断4. 方程x+2 1-1=2-33x的解为 x=97
.
1.解方程x-3 1-x+6 2=4-2 x的步骤如下,则错误的一步为( B ) A.2(x-1)-(x+2)=3(4-x) B.2x-2-x+2=12-3x C.4x=12 D.x=3
x 2
=3,解为x=2;第2个方程是
x 2

x 3

5程,是解为1x0x+=1x61;=第213个方,程其是解x3为+
x 4
=7,解为x=12,…,根据规律第10个方
x=110
.
10.解方程:
(1)2x5+3=32x-2x3-7;
(2)x-2 4+0.2x0-.5 0.3=00..0021x.
再 见!
C.12-2(5x+7)=-(x+17)
D.12-10x+14=-(x+17)
去分母解方程的应用
自我诊断3. 小华用x元买学习用品,若全买钢笔,刚好买3支,若全买笔记
本刚好买4本.已知一个笔记本比一支钢笔便宜2元,则下列方程中正确的
是( A )
A.x3=x4+2
B.x4=3x+2
C.x4=x+3 2
解:(1)x=-8; (2)x=-2116.
11.已知关于x的方程4x+m=3x+1的解比3x-
3x-m 2
=1的解小3,求m的
值. 3x-m
解:解方程4x+m=3x+1,得x=1-m,解方程3x- 2 =1,得x=
2-m
2-m
3 ,所以有1-m+3= 3 ,解得m=5.
12.某工厂第一车间人数比第二车间人数的
7.如果方程2-
x+1 3

人教版七年级数学上册3.利用去括号解一元一次方程课件

x=- 4 . 3
(2)3x-7( x-1)=3-2( x+3).
解:去括号,得
3 x-7 x+7=3-2 x-6.
移项,得
3 x-7 x+2 x=3-6-7.
合并同类项,得
-2x=-10.
系数化为1,得
x=5.
通过以上解方程的过程,你能总结出解含 有括号的一元一次方程的一般步骤吗?
去括号
移项 合并同类项
解:(1) 原式=-b;(2) 原式=-2a+3b.
去括号法则: 去掉“+ ( )”,括号内各项的符号不变. 去掉“– ( )”,括号内各项的符号改变.
用三个字母a,b,c表示去括号前后的变化规律: a + (b + c) = a + b + c
a -(b + c) = a -b - c
讲授新课
合并同类项 12x=162000
系数化为1 x=13500
方程中有带括号的 式子时,去括号是 常用的化简步骤.
例1 解下列方程:
(1)2x-( x+10)=5x+2( x-1);
解:去括号,得
2x-x-10=5x+2x-2.
移项,得
2x-x-5x-2x=-2+10.
合并同类项,得 6x=8.
系数化为1,得
方法总结:对于此类阶梯收费的题目,需要弄清楚 各阶段的收费标准,以及各节点的费用.然后根据缴 纳费用的金额,判断其处于哪个阶段,然后列方程 求解即可.
练一练
3. 某羽毛球协会组织一些会员到现场观看羽毛球比赛. 已知该协会购买了价格分别为300元/张和400元/张的 两种门票共8张,总费用为2700元.请问该协会购买 了这两种门票各多少张?
依题意,有(575+25)t=(575-25)(4.6-t). 解得t=2.2. 则(575+25)t=600×2.2=1 320. 答:这架飞机最远能飞出1 320 km就应返回.

人教版七年级数学上册3.3 《解一元一次方程:去分母》教学课件

3.3 解一元一次方程 ------去分母
下面的方程在求解中的步骤有: 在每一步求解时要注意什么 下面的方程在求解中有哪些步骤? ?
合并 知识回顾:请解下列题目,比一比谁快 , 去括号 移项 系数化为1
同类项 (1)12(x+1)= -(3x-1)
解:去括号,得
移项,得
12x+12=-3x+1
12x+3x=1-12 15x= - 11
特别关注
1.去分母时,应在方程的左右两边都乘以分母 的最小公倍数,不能漏乘没有分母的项。 2.括号前是负号的去掉括号时,括号内各项都要 变号。 3.移项是从方程的一边移到另一边,必须变号; 只在方程一边交换位置的项不变号。 4.合并同类项时,系数加、减要细心。 5.系数化为1时,要注意负号与分数。 6.求出解后养成检验的习惯。
3x 3 8 x 6
5 x 0 x 0 系数化为1,得
火眼金睛
• 下面的解方程的过程是否正确?不正确的 请改正。 x- 2 x+2 • (1) 3 = 6 -1 • 两边同乘以6,得 2x-2=x+2- 6 2x 1 5x 1 1 • (2) 6 4 • 去分母,得 2(2X-1)-3(5X+1)=1 2x 3 9x 5 0 • (3) 2 8 • 去分母,得 4(2X+3)-9X+5=8
x-1 2 x-1 =3- (3) 3 x+ 2 3
解:去分母(方程两边乘6),得
18 x+3( x-1)=18-2(2 x-1).
学.科.网
去括号,得 18 x+3 x-3=18-4 x+2
移项,得 18 x+3 x+4 x=18+2+3
合并同类项,得 25 x=23
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
移 1移 3合 1移905项 项 并 项---,同 , 11, 2801得类 得 得-项48-, 42得6--58-43- 20 20
2合 2合8并并- 同同-类9类项 8项-,,2得得
合系 --27数 并 化同1-4为类 21,项得,得
系系数数-6化化298为为1,得
知 识 点 二
( 21去 (395括号-121)( ) , 1-得 ( 68-32)1)- ( 4 2 - )
去去 3去0括 括 括号号号2,0,,-得得2得 0 10 - 5 - 8 - 4
21移 195项 -,322-得 1818-426 - 8 4
______________________ 系数化为 1,4 得
_______________________
三、研读课文
知识
(2)去分母,得: _1_8___(3___-_1)__1_8_-_(2_2__-_1_) 去括号,得

___1_8___3___- _3__1_8_-_4____2______
最小公倍数
二、学习目标
1 了解去分母的依据
2 会运用等式性质2正确去分 母解一元一次方程
三、研读课文
认真阅读课本第95页至第98页 的内容,完成下面练习,并体 验知识点的形成过程。
三、研读课文
解一元一次方程的一般步骤
分析:
知 识 点 一
( ( 分问 一12之))一题半设等+2,这量它它个关一的数系全的个为:部七数它x=分,_的3_之3它_三_一的分,三之二它分+的之它全二的部一,半,它+加的它的七 (起3)来列总方共程:是33,求这个数是多少
2-11
7
四、归纳小结
1、去分母,就是方程两边乘各分母的 最__小__公__倍__数____. 2、解一元一次方程的一般步骤包括:去分母、 _去__括__号___、移项、合__并__同__类__项_ 、系数化为1等.通
过的这__些__步__骤__可_形以式使转以化x为,未这知个数过的程方主程要逐依步据向等着式
2
10 各分5 母的最小公倍数)

5(3x+1)-10×2=(__3___-_2_)_-_( 2__2_____3_)_
识 点 一
分这两析个边:方乘1程01各,155x分于x+-5母是3-x2的方+04=最程x_=小左___-_3公边_2__-倍变_↓↓_-6_移去_2数为-__项括-5__是4号___1_120_0-0__,6_3__x2方__1_程2
合并同类项,得_____9_7_x__1_3_8_6____________
系数化为1,得______x___1_398_76______________
三、研读课文
解:3x 1 2 3x 2 2x 3
解方程: 3x 21 2 3x 2 ↓2去x1分03母,(方程两5边乘
第三章 一元一次方程
3.3解一元一次方程 --去括号与去分母
第六课时 解一元一次方程(4) (去分母)
一、新课引入
1、等式的性质2 等式两边乘同一个数, 或除以同一个不为0的数,结果____ 。 仍2相、等有些方程的系数是分数,要使方程 中各项系数都化成整数,方程两边必 须乘各分母的__________。
的基_本__性__质____和运算律等. 3、学习反思: ___________________________

移项,得
____18____3___4___1_8__2__3_________
合并同类项,得
____2_5____2_3____________
系数化为1,得 _________2_3____________
25
三、研读课文
解一元一次方程
练一练,解下列方程
知 识
(1)19 21( - 2)
归纳:解一元一次方程的一般步骤包括:
_去__分__母___、_去__括__号__、__移_项____、合__并__同_类__项__、

__系__数__化__为_1____.通过这些步骤可以使以x为 未知数的方程逐步向着x=a的形式转化,这

个过程主要依据等式的基本性质和运算律等

.

2、去分母要注意: (1)方程的每一项都要乘各分母的_最__小__公__倍__数_____ , 不要漏乘没有分母的项. (2)如果分子是一个多项式,去分母时要将分子作为 一个整体加上_括__号______.
___________32_χ____12χ____71_χ___χ___3_3________
(4)解方程:这个方程的所有分母的最小公倍数 是__4_2__,所以方程两边同乘__4_2__,
去分母,得____2_8_x__2_1_x__6_x__4_2_x__1_38_6_____
100 100
点 二
(2) 1 - 2
2
4
(3) 5 1 3 1 2
4
2
3
(4) 3 2 1 2 1 2 1
2
4
5
三、研读课文
(((1解24( 03) ) ):3去 去去 (1分 分)分2) 母 母 去-母, 2, 分0,得得 母 ( 5得 ,2得 -1)- ( 4 2 1)
三、研读课文
解一元一次方程

解:解(下1列)去方分程母,得:
识 点 二
_去_((2括_1_)号__1),_-_4得_1_8_-(_1_2_- _2)_ 2 -
__2___2_-_42__8__2_- _ _______4______
移_合_(项并__2,同_)_33得类__项__21,_2_2得_-_1__8_3__-2_-2_2_3_-4_1___
=_____(5_3____1)_-_2_0____1_6_x_=_↓_合7_并__同类项
右边变为10×(____3_1_0_-_2_-_↓_2系__数5_化_3_为_1_)
7
= ___(__3___- _2_)_-_( 2__2____x_3=_) ____1__6__
三、研读课文
相关文档
最新文档