小学数学级所有重点知识点汇总
(完整版)非常全的小学数学知识点汇总

一、各年级知识点:小学一年级九九乘法口诀表。
学会基础加减乘。
小学二年级完善乘法口诀表,学会除混合运算,基础几何图形。
小学三年级学会乘法交换律,几何面积周长等,时间量及单位。
路程计算,分配律,分数小数。
小学四年级线角自然数整数,素因数梯形对称,分数小数计算。
小学五年级分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
小学六年级比例百分比概率,圆扇圆柱及圆锥。
二、必背定义、定理公式三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π 公式:L=πd=2πr圆的面积=半径×半径×π 公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
三、计算方面读懂理解会应用以下定义定理性质公式1、加法交换律:两数相加交换加数的位置,和不变。
小学数学知识点和重点难点大全

小学数学知识点和重点难点大全一、整数及四则运算1.整数的认识2.整数的比较大小3.整数的加法、减法、乘法、除法运算4.整数的混合运算5.整数的括号运算6.整数的奇偶性7.整数的约数和倍数二、分数1.分数的认识2.分数的加法、减法、乘法、除法运算3.真分数、假分数和带分数之间的转化4.分数的比较大小5.分数的化简和约分6.分数的四则混合运算7.分数的加减混合运算三、小数1.小数的认识2.小数与分数的转化3.小数的加法、减法、乘法、除法运算4.小数的周期性与循环小数5.有限小数和无限小数的判断6.分数的小数化和小数的分数化7.小数的四则混合运算四、长度和面积1.长度单位的认识(米、厘米、千米)2.长度单位之间的换算3.长度的加法、减法运算4.面积单位的认识(平方米、平方厘米)5.面积单位之间的换算6.长方形和正方形的面积计算7.长方形和正方形的周长计算五、容量和质量1.容量单位的认识(升、毫升、立方米)2.容量单位之间的换算3.容量的加法、减法运算4.质量单位的认识(千克、克、吨)5.质量单位之间的换算6.质量的加法、减法运算7.容量和质量的换算六、几何图形1.点、线、线段、射线、角的认识2.三角形、四边形、多边形的认识3.正方形、长方形、圆的认识4.平行线、垂直线、相交线的认识5.直角、钝角、锐角的认识6.图形的对称性7.图形的放大和缩小七、时间1.时间的认识(秒、分钟、小时、一天的24小时)2.时刻的表示3.时钟的读法和时钟的表记4.时间的加法、减法运算5.天、周、月和年的认识6.日期的计算八、统计与概率1.数据的收集和整理2.数据的图表示法(条形图、折线图、饼图)3.数据的分析和解读4.概率的认识5.事件的概率计算6.试验和样本空间的认识7.赌博问题的概率计算以上为小学数学的知识点和重点、难点的大致概括,学生在学习数学时,应注重对每个知识点的透彻理解和巩固。
通过大量的练习和实际应用,培养学生的数学思维和解决问题的能力,以提高数学学习的效果。
小学1-6年级数学重点基础知识汇总

小学1-6年级数学重点基础知识汇总一、一年级数学。
1. 数的认识。
首先得认识10以内的数,就像认识自己的手指头一样简单。
1像小棒细又长,2像小鸭水上漂,3像耳朵听声音,4像小旗迎风飘,5像秤钩来买菜,6像哨子吹一吹,7像镰刀割青草,8像麻花拧一遭,9像勺子能盛饭,10像油条加鸡蛋。
这可都是基础中的基础哦。
知道数的大小,3比2大,就像三个苹果比两个苹果多。
2. 加减法。
加法就是把东西合起来。
1 + 1 = 2,就像你有1个小玩具,妈妈又给你1个,你就有2个啦。
减法呢,是把东西拿走一部分。
3 1 = 2,假如你有3颗糖,吃了1颗,就还剩下2颗。
3. 认识图形。
要认识长方形、正方形、三角形和圆形。
长方形长长的,正方形四四方方的,三角形有三个角,圆形就像个大皮球。
二、二年级数学。
1. 乘法口诀。
这个可太重要啦,背熟乘法口诀就像拥有了魔法。
一一得一,一二得二,二二得四……背熟了以后,做乘法题就特别快。
比如说2×3 = 6,因为口诀是二三得六嘛。
2. 长度单位。
厘米和米。
厘米就像小蚂蚁的一小步,很短很短;米呢,就像小朋友走一步的距离,比较长。
1米 = 100厘米,要是量比较短的东西就用厘米,像铅笔的长度;量比较长的东西,像教室的长度,就用米。
3. 除法初步。
除法就是平均分。
把10个苹果平均分给5个小朋友,每个小朋友就得到10÷5 = 2个苹果。
三、三年级数学。
1. 万以内数的认识和加减法。
数更大了,像1000、2000这样的数。
加减法的时候要注意数位对齐,就像排队一样,个位对个位,十位对十位,百位对百位。
比如3210 + 1230,先算个位0 + 0 = 0,再算十位1 + 3 = 4,百位2 + 2 = 4,千位3 + 1 = 4,结果就是4440。
2. 长方形和正方形的周长。
长方形的周长 = (长 + 宽)×2,正方形的周长 = 边长×4。
就像给长方形和正方形的四周围上栅栏,算栅栏的长度就是算它们的周长。
小学数学重点知识点总结归纳

小学数学重点知识点总结归纳小学数学的重点知识点主要包括数与代数、空间与形状、量与单位、数据与图表、运算与应用等方面。
以下是对这些知识点的总结归纳:一、数与代数:1.自然数:包括正整数和零,可以进行加法和乘法运算。
2.整数:包括自然数、负整数和零,可以进行加法、减法和乘法运算。
3.分数:包括真分数、假分数和整数部分,可以进行加法、减法、乘法和除法运算。
4.小数:由整数部分和小数部分组成,可以进行加法、减法、乘法和除法运算以及四舍五入。
5.负数:介于零和正整数之间的数,可以进行加法、减法和乘法运算。
6.数的比较:可以使用大于、小于和等于符号进行比较。
7.数的正负:正数和负数之间的相互转化。
二、空间与形状:1.几何图形的基本概念:点、线、面、角、直线、射线和线段等。
2.几何图形的分类:包括平面图形和立体图形,平面图形有圆、正方形、矩形、三角形、梯形、菱形等,立体图形有长方体、正方体、圆柱体、圆锥体、圆台等。
3.计算几何图形的周长和面积:矩形的周长为长和宽的两倍,矩形的面积为长乘以宽,三角形的面积为底边长度乘以高的一半,圆的周长为直径乘以π,圆的面积为半径的平方乘以π。
4.立体图形的表面积和体积:长方体的表面积为长方体的六个面积之和,长方体的体积为长方体的长乘以宽乘以高,球的表面积为球的直径的平方乘以π,球的体积为球的直径的立方乘以π除以65.图形的位置关系:包括在内和在外、相交和相切等。
三、量与单位:1.长度的单位:包括米、分米、厘米、毫米等,不同单位之间可以进行换算。
2.容积的单位:包括立方米、立方分米、立方厘米、立方毫米等,不同单位之间可以进行换算。
3.质量的单位:包括千克、克、毫克等,不同单位之间可以进行换算。
4.时间的单位:包括年、月、日、小时、分钟、秒等,不同单位之间可以进行换算。
5.温度的单位:包括摄氏度和华氏度,可以进行换算。
四、数据与图表:1.数字的读写:包括整数、小数、分数、百分数、普通数以及科学计数法表示的数的读法和写法。
最全面小学数学知识点归纳总结(精华版)

最全面小学数学知识点归纳总结(精华版)第一章数和数的运算一、整数1.自然数和零都是整数。
2.自然数是用来表示物体个数的数字,如1、2、3等。
6.整数的读法:从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法读,再在后面加上“亿”或“万”字。
每级末尾的零都不读,其它数位连续有几个零都只读一个零。
7.整数的写法:从高位到低位,一级一级地写。
哪一个数位上一个单位也没有,就在那个数位上写。
为了读写方便,一个较大的多位数常常改写成用“万”或“亿”作单位的数。
有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
二、小数1.小数的读法:整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
2.小数的写法:整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
3.小数的分类:⑴有限小数:小数部分的数位是有限的小数,如41.7、25.3、0.23等。
⑵无限小数:小数部分的数位是无限的小数,如4.333…、3.xxxxxxx…等。
⑶无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数,如√2.⑷循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。
三、正数和负数正数是大于零的数,数轴上右边的数叫做正数。
负数用负号“-”标记,如-2、-0.6、-32等。
零既不是正数,也不是负数,它是正、负数的界限。
正数都大于零,负数都小于零。
所有的数都可以用数轴上的点来表示,也可以用数轴来比较两个数的大小。
四、计数单位个、十、百、千、万、十万、百万、千万、亿都是计数单位。
每相邻两个计数单位之间的进率都是10.这样的计数法叫做十进制计数法。
五、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
个位、十位、百位、千位等。
直接得到小数,不能除尽的要进行长除法运算,直到小数部分无限循环为止。
小学数学重点知识点要点归纳

小学数学重点知识点要点归纳数学是一门基础性的科学,值得每个人去学习,尤其是孩子,更要去学习数学,并且以此来构架自己的思维体系。
下面是我为大家整理的关于学校数学重点学问点归纳,盼望对您有所关心!学校数学重点学问要点汇总【测量】1、在生活中,量比较短的物品,可以用毫米、厘米、分米做单位;量比较长的物体,常用米做单位;测量比较长的路程一般用千米做单位,千米也叫公里。
2、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
3、在计算长度时,只有相同的长度单位才能相加减。
4、长度单位的关系式有:①进率是10:1米=10分米1分米=10厘米1厘米=10毫米②进率是100:1米=100厘米1分米=100毫米③进率是1000:1千米=1000米1公里==1000米5、当我们表示物体有多重时,通常要用到质量单位。
在生活中,称比较轻的物品质量,可以用克做单位;称一般物品的质量,常用千克做单位;计量较重或大物品的质量,通常用吨做单位。
6、相邻两个质量单位的进率是1000。
1吨=1000千克1千克=1000克【万以内的加法和减法】1、读数和写数:①一个数的末尾不管有一个0或几个0,这个0都不读。
②一个数的中间有一个0或连续两个0,都只读一个0。
2、数的大小比较:①位数不同的数比较大小,位数多的数大。
②位数相同的数比较大小,先比较这两个数位上的数,假如位上的数相同,就比较下一位,以此类推。
3、求一个数的近似数:看数的后面一位,假如是0~4就用四舍法,假如是5~9就用五入法。
4、被减数是三位数的连续退位减法的运算步骤:①列竖式时相同数位肯定要对齐;②减法时,哪一位上的数不够减,从前一位退1,在本位上加上10再减;假如前一位是0,则再从前一位退1。
学校数学学问点总结分数和百分数分数和百分数的意义1、分数的意义:把单位“ 1” 平均分成若干份,表示这样的一份或者几份的数,叫做分数.在分数里,表示把单位“ 1” 平均分成多少份的数,叫做分数的分母;表示取了多少份的数,叫做分数的分子;其中的一份,叫做分数单位.2、百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数.也叫百分率或百分比.百分数通常不写成分数的形式,而用特定的“%”来表示.百分数一般只表示两个数量关系之间的倍数关系,后面不能带单位名称.3、百分数表示两个数量之间的倍比关系,它的后面不能写计量单位.4、成数:几成就是非常之几.分数的种类根据分子、分母和整数部分的不怜悯况,可以分成:真分数、假分数、带分数分数和除法的关系及分数的基本性质1、除法是一种运算,有运算符号;分数是一种数.因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子.2、由于分数和除法有亲密的关系,依据除法中“商不变”的性质可得出分数的基本性质.3、分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据.约分和通分1、分子、分母是互质数的分数,叫做最简分数.2、把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分.3、约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止.4、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分.5、通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数.倒数1、乘积是1的两个数互为倒数.2、求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置.3、1的倒数是1,0没有倒数分数的大小比较1、分母相同的分数,分子大的那个分数就大.2、分子相同的分数,分母小的那个分数就大.3、分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小.4、假如被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;假如整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大.百分数与折数、成数的互化:例如:三折就是30%,七五折就是75%,成数就是非常之几,如一成就是牐闯砂俜质褪?0%,则六成五就是65%.纳税和利息:税率:应纳税额与各种收入的比率.利率:利息与本金的百分率.由银行规定按年或按月计算.利息的计算公式:利息=本金×利率×时间百分数与分数的区分主要有以下三点:1.意义不同.百分数是“表示一个数是另一个数的百分之几的数.”它只能表示两数之间的倍数关系,不能表示某一详细数量.如:可以说1米是5米的20%,不行以说“一段绳子长为20%米.”因此,百分数后面不能带单位名称.分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”.分数不仅可以表示两数之间的倍数关系,如:甲数是3,乙数是4,甲数是乙数的?;还可以表示肯定的数量,如:犌Э恕米等.2.应用范围不同.百分数在生产、工作和生活中,常用于调查、统计、分析与比较.而分数经常是在测量、计算中,得不到整数结果时使用.3.书写形式不同.百分数通常不写成分数形式,而采纳百分号“%”来表示.如:百分之四十五,写作:45%;百分数的分母固定为100,因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数.而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数.学校数学学问点归纳总结(1)笔算两位数加法,要记三条1、相同数位对齐;2、从个位加起;3、个位满10向十位进1。
小学数学1—6年级知识点汇总
小学1-6年级数学重点知识、公式汇总+解读一年级知识点和重难点1、数与计算(1)20以内数的认识,加法和减法。
数数。
数的组成、顺序、大小、读法和写法。
加法和减法。
连加、连减和加减混合式题(2)100以内数的认识。
加法和减法。
数数。
个位、十位。
数的顺序、大小、读法和写法。
两位数加、减整十数和两位数加、减一位数的口算。
两步计算的加减式题。
2、量与计量钟面的认识(整时)。
人民币的认识和简单计算。
3、几何初步知识长方体、正方体、圆柱和球的直观认识。
长方形、正方形、三角形和圆的直观认识。
4、应用题比较容易的加法、减法一步计算的应用题。
多和少的应用题(抓有效信息的能力)5、实践活动选择与生活密切联系的内容。
例如根据本班男、女生人数,每组人数分布情况,想到哪些数学问题。
二年级知识点和重难点1、数与计算(1)两位数加、减两位数。
两位数加、减两位数。
加、减法竖式。
两步计算的加减式题。
(2)表内乘法和表内除法。
乘法的初步认识。
乘法口诀。
乘法竖式。
除法的初步认识。
用乘法口诀求商。
除法竖式。
有余数除法。
两步计算的式题。
(3)万以内数的读法和写法。
数数。
百位、千位、万位。
数的读法、写法和大小比较。
(4)加法和减法。
加法,减法。
连加法。
加法验算,用加法验算减法。
(5)混合运算。
先乘除后加减。
两步计算式题。
小括号。
2、量与计量时、分、秒的认识。
米、分米、厘米的认识和简单计算。
千克(公斤)的认识3、几何初步知识直线和线段的初步认识。
角的初步认识。
直角。
4、应用题加法和减法一步计算的应用题。
乘法和除法一步计算的应用题。
比较容易的两步计算的应用题。
5、实践活动与生活密切联系的内容。
例如调查家中本周各项消费的开支情况,想到哪些数学问题。
三年级知识点和重难点1、数与计算(1)一位数的乘、除法。
一个乘数是一位数的乘法(另一个乘数一般不超过三位数)。
0的乘法。
连乘。
除数是一位数的除法。
0除以一个数。
用乘法验算除法。
连除。
(2)两位数的乘、除法。
小学数学知识点大全
小学数学知识点大全小学阶段的数学学习是为未来的数学学习打下坚实基础的重要阶段。
以下是对小学数学知识点的全面梳理。
一、数与代数1、整数整数包括正整数、零和负整数。
从数数开始,我们认识了 1、2、3等自然数,零表示一个也没有。
而负数则是比零小的数,比如-1、-2 等。
2、数位与计数单位不同的数位代表不同的计数单位。
例如,个位的计数单位是“一”,十位的计数单位是“十”,百位的计数单位是“百”。
3、整数的四则运算加法:把两个或多个数合并成一个数的运算。
减法:已知两个数的和与其中一个加数,求另一个加数的运算。
乘法:求几个相同加数和的简便运算。
除法:已知两个因数的积与其中一个因数,求另一个因数的运算。
4、小数小数由整数部分、小数点和小数部分组成。
小数的意义是把一个整体平均分成 10 份、100 份、1000 份……表示这样的一份或几份是十分之几、百分之几、千分之几……5、小数的四则运算小数的加减法要注意小数点对齐,按照整数加减法的法则进行计算。
小数乘法先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
小数除法,先把除数变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位,然后按照除数是整数的除法进行计算。
6、分数把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。
分数的分子表示取的份数,分母表示平均分的份数。
7、分数的四则运算同分母分数相加减,分母不变,分子相加减。
异分母分数相加减,先通分,然后按照同分母分数加减法的法则进行计算。
分数乘法,分子相乘的积作分子,分母相乘的积作分母。
分数除法,除以一个数等于乘以这个数的倒数。
8、简易方程含有未知数的等式叫方程。
解方程的依据是等式的性质,即等式两边同时加上或减去同一个数,等式仍然成立;等式两边同时乘或除以同一个非零数,等式仍然成立。
二、图形与几何1、点、线、面、体点动成线,线动成面,面动成体。
例如,笔尖点在纸上是点,铅笔移动形成线,长方形绕一边旋转形成圆柱体。
重点小学数学知识点精心总结大全
第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。
2 自然数34 数位5整数a b能整除a 。
如果数a因为35的约数有1、2、5一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
例如:1168、4600、5 000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的数叫做偶数。
不能被2、3、5、7、83、89、97。
1例如把如126是12和1 8公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:1和任何自然数互质。
相邻的两个自然数互质。
两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质。
两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
如果两个数是互质数,它们的最大公约数就是1。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公1把整数1可以”和整数2纯小数:整数部分是零的小数,叫做纯小数。
小学数学最全知识要点汇总
第一部份数与代数.(一)数的认识.整数【正数、0、负数】一、一个物体也没有,用0表示.0和1、2、3……都是自然数.自然数是整数.二、最小的一位数是1,最小的自然数是0.三、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃.“+4”读作正四.“-4”读作负四. +4也可以写成4.四、像+4、19、+8844这样的数都是正数.像-4、-11、-7、-155这样的数都是负数.五、0既不是正数,也不是负数.正数都大于0,负数都小于0.六、通常情况下,比海平面高用正数表示,比海平面低用负数表示.七、通常情况下,盈利用正数表示,亏损用负数表示.八、通常情况下,上车人数用正数表示,下车人数用负数表示.九、通常情况下,收入用正数表示,支出用负数表示.十、通常情况下,上升用正数表示,下降用负数表示.小数【有限小数、无限小数】一、分母是10、100、1000……的分数都可以用小数表示.一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……二、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位.每相邻两个计数单位间的进率都是10.三、每个计数单位所占的位置,叫做数位.数位是按照一定的顺序排列的.四、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变.五、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简.六、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大.七、把一个数改写成用“万”或“亿”作单位的数,在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字.八、求小数近似数的一般方法:1先要弄清保留几位小数;2根据需要确定看哪一位上的数;3用“四舍五入”的方法求得结果.九、整数和小数的数位顺序表:分数【真分数、假分数】一、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数.表示其中一份的数,是这个分数的分数单位.二、两个数相除,它们的商可以用分数表示.即:a÷b=b/a(b≠0)三、小数和分数的意义可以看出,小数实际上就是分母是10、100、1000…的分数.四、分数可以分为真分数和假分数.五、分子小于分母的分数叫做真分数.真分数小于1.六、分子大于或等于分母的分数叫做假分数.假分数大于或等于1.七、分子和分母只有公因数1的分数叫做最简分数.八、分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变.九、小数的性质和分数的基本性质一致的,应用分数的基本性质,可以通分和约分.(马上点标题下“小升初”关注可获取更多教育经验、方法、学习资料,每天更新哟!)百分数【税率、利息、折扣、成数】一、表示一个数是另一个数的百分之几的数叫做百分数.百分数也叫百分率或百分比,百分数通常用“%”表示.二、分数与百分数比较:不同点相同点分数可以表示具体数量,可以有单位名称表示两个数之间的关系百分数不可以表示具体数量,不可以有单位名称三、分数、小数、百分数的互化.(1)把分数化成小数,用分数的分子除以分母.(2)把小数化成分数,先改写成分母是10、100、1000……的分数,再约分.(3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号.(4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位. (5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数),再把小数化成百分数.(6)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数.四、熟记常用三数的互化.五、1、出勤率表示出勤人数占总人数的百分之几.2、合格率表示合格件数占总件数的百分之几.3、成活率表示成活棵数占总棵数的百分之几.六、求一个数比另一个数多百分之几,就是求一个数比另一个数多的占另一个数的百分之几.七、1、多的÷“1”=多百分之几 2、少的÷“1”= 少百分之几八、应得利息是税前利息,实得利息是税后利息.九、利息= 本金×利率×时间十、应得利息-利息税= 实得利息十一、几折表示十分之几,表示百分之几十;几几折表示十分之几点几,表示百分之几十几.十二、1、原价×折扣=现价2、现价÷原价=折扣3、现价÷折扣=原价十三、几成表示十分之几表示百分之几十;几成几表示十分之几点几,表示百分之几十几.因数与倍数【素数、合数、奇数、偶数】一、4 ×3 = 12,12是4的倍数,12也是3的倍数,4和3都是12的因数.二、一个数最小的倍数是它本身,没有最大的倍数.一个数倍数的个数是无限的.三、一个数最小的因数是1,最大的因数是它本身.一个数因数的个数是有限的.四、5的倍数:个位上的数是5或0.2的倍数:个位上的数是2、4、6、8或0.2的倍数都是双数.3的倍数:各位上数的和一定是3的倍数.五、是2的倍数的数叫做偶数.不是2的倍数的数叫做奇数.六、一个数,如果只有1和它本身两个因数,这样的数就叫做素数(或质数).七、一个数,如果除了1和它本身还有别的因数,这样的数就叫做合数.八、在1—20这些数中:(1既不是素数,也不是合数)奇数:1、3、5、7、9、11、13、15、17、19.偶数:2、4、6、8、10、12、14、16、18、20.素数:2、3、5、7、11、13、17、19.(共8个,和为77.)合数:4、6、8、9、10、12、14、15、16、18、20.(共11个,和为132.)九、最小的奇数是1,最小的偶数是0,最小的素数是2,最小的合数是4.十、如果两个数是倍数关系,则大数是最小公倍数,小数是最大公因数. 十一、如果两个数只有公因数1,则最大公因数是1,最小公倍数是它们的乘积.(二)数的运算计算法则【整数、小数、分数】一、计算整数加、减法要把相同数位对齐,从低位算起.二、计算小数加、减法要把小数点对齐,从低位算起.三、小数乘法:1、先按整数乘法算出积是多少,看因数中一共有几位小数,就从积的右边起数出几位,点上小数点.2、注意:在积里点小数点时,位数不够的,要在前面用0补足.四、小数除法:1、商的小数点要和被除数的小数点对齐;2、有余数时,要在后面添0,继续往下除;3、个位不够商1时,要在商的整数部分写0,点上小数点,再继续除.4、把除数转化成整数时,除数的小数点向右移动几位,被除数的小数点也要向右移动几位.5、当被除数的小数位数少于除数的小数位数时,要在被除数的末尾用0补足.五、一个小数乘10、100、1000……只要把这个小数的小数点向右移动一位、两位、三位……六、一个小数除以10、100、1000……只要把这个小数的小数点向左移动一位、两位、三位……七、分数加、减法:1同分母分数相加减,把分子相加减,分母不变.2异分母分数相加减,要先通分化成同分母分数,然后再相加减.八、分数大小的比较:1同分母分数相比较,分子大的大,分子小的小.2异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小.九、分数乘分数,用分子相乘的积作分子,分母相乘的积作分母.十、甲数除以乙数(0除外),等于甲数乘乙数的倒数.四则运算关系加法一个加数= 和-另一个加数减法被减数= 差+ 减数减数= 被减数-差乘法一个因数= 积÷另一个因数除法被除数= 商×除数除数= 被除数÷商两个规律一、除法的商不变规律:被除数和除数同时乘或除以相同的数(0除外),商不变.二、乘法的积不变规律:如果一个因数乘几,另一个因数则除以几,那么它们的积不变.简便计算一、运算定律:运算定律用字母表示加法交换律a+b=b+a速度×时间=路程路程÷时间=速度路程÷速度=时间速度和×相遇时间=路程路程÷相遇时间=速度和路程÷速度和=相遇时间三、式与方程用字母表示数一、在一个含有字母的式子里,数字和字母、字母和字母相乘时,中间的乘号可以记作“·”,也可以省略不写.在省略数字与字母之间的乘号时,要把数字写在字母的前面.二、2a与a2意义不同:2a表示两个a相加,a2表示两个a相乘.即:2a=a +a,a2= a×a.三、用字母表示数:①用字母表示任意数:如X=4 a=6②用字母表示常见的数量关系:如s=vt③用字母表示运算定律:如a+b=b+a④用字母表示计算公式:S=ah方程与等式一、含有未知数的等式叫做方程.二、使方程左右两边相等的未知数的值,叫做方程的解.三、求方程的解的过程,叫做解方程.四、方程和等式的联系与区别:方程等式联系方程一定是等式,等式不一定是方程区别含有未知数不一定含有未知数五、等式的基本性质(一):等式两边同时加上(或减去)一个相同的数,所得结果仍然是等式.六、等式的基本性质(二):等式两边同时乘(或除以)一个不等于零的数,所得结果仍然是等式.七、列方程解应用题的一般步骤:①弄清题意,找出未知数并用X表示.②找出应用题中数量间的相等关系,并列出方程.③求出方程的解.④检验或验算,写出答案.(四)正比例与反比例比和比例一、比和比例的联系与区别:比与比例的区别1、意义不同比的意义两个数相除又叫做两个数的比.比例的意义表示两个比相等的式子叫做比例.2、名称不同比的名称两点读作比,比号前面的数叫做比的前项,比号后面的数叫做比的后项.比例的名称组成比例的四个数叫做比例的项,两端的两项叫做比例的的外项,中间的两项叫做比例的内项.3、性质不同比的性质比的前项和后项同时乘或者除以相同的数(0除外),比值不变.比例的性质在比例里,两个外项的积等于两个内项的积.4、应用不同应用比的意义求比值.应用比的性质化简比.应用比例的意义判断两个不能否组成比例.应用比例的性质不但可以判断两个比能否组成比例,还可以解比例.二、比同分数、除法的联系与区别:比分数除法联系前项分子被除数比号分数线除号后项分母除数比值分数值商比的基本性质分数的基本性质除法的商不变性质区别比表示两个数之间的关系.分数表示一个数.除法表示一种运算.三、求比值与化简比的区别:一般方法结果求比值根据比值的意义,用前项除以后项.是一个数.可以是整数、小数或分数.化简比根据比的基本性质,把比的前项和后项都乘或除以相同的数(零除外).是一个比.它的前项和后项都是整数,并且是互质数.四、化简比:①整数比的化简方法是:用比的前项和后项同时除以它们的最大公约数.②小数比的化简方法是:先把小数比化成整数比,再按整数比化简方法化简.③分数比的化简方法是:用比的前项和后项同时乘以分母的最小公倍数.五、比例尺:我们把图上距离和实际距离的比叫做这幅图的比例尺.六、比例尺=图上距离︰实际距离比例尺= 图上距离/ 实际距离正比例、反比例一、正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系.二、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系.千米:km米:m分米:dm厘米:cm毫米:mm 吨:t千克:kg克:g升:l毫升:ml平面图形【认识、周长、面积】一、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线.线段、射线都是直线上的一部分.线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的.二、从一点引出两条射线,就组成了一个角.角的大小与两边叉开的大小有关,与边的长短无关.角的大小的计量单位是(°).三、角的分类:小于90度的角是锐角;等于90度的角是直角;大于90度小于180度的角是钝角;等于180度的角是平角;等于360度的角是周角.四、相交成直角的两条直线互相垂直;在同一平面不相交的两条直线互相平行.五、三角形是由三条线段围成的图形.围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点.六、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形.按边分,可以分为等边三角形、等腰三角形和任意三角形.七、三角形的内角和等于180度.八、在一个三角形中,任意两边之和大于第三边.九、在一个三角形中,最多只有一个直角或最多只有一个钝角.十、四边形是由四条边围成的图形.常见的特殊四边形有:平行四边形、长方形、正方形、梯形.十一、圆是一种曲线图形.圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的长.通过圆心并且两端都在圆的线段叫做圆的直径.十二、有一些图形,把它沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形就是轴对称图形.这条直线叫做对称轴.十三、围成一个图形的所有边长的总和就是这个图形的周长.十四、物体的表面或围成的平面图形的大小,叫做它们的面积.十五、平面图形的面积计算公式推导:【1】平行四边形面积公式的推导过程?①把平行四边形通过剪切、平移可以转化成一个长方形.②长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,长方形的面积等于平行四边形的面积.③因为:长方形面积=长×宽,所以:平行四边形面积=底×高.即:S=ah. 【2】三角形面积公式的推导过程?①用两个完全一样的三角形可以拼成一个平行四边形.②平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,三角形面积等于和它等底等高的平行四边形面积的一半③因为:平行四边形面积=底×高,所以:三角形面积=底×高÷2. 即:S=ah ÷2.【3】梯形面积公式的推导过程?①用两个完全一样的梯形可以拼成一个平行四边形.②平行四边形的底等于梯形的上底和下底的和,平行四边形的高等于梯形的高,梯形面积等于平行四边形面积的一半.③因为:平行四边形面积=底×高,所以:梯形面积=(上底+下底)×高÷2.即:S=(a+b)h÷2.【4】画图说明圆面积公式的推导过程①把圆分成若干等份,剪开后,拼成了一个近似的长方形.②长方形的长相当于圆周长的一半,宽相当于圆的半径.③因为:长方形面积=长×宽,所以:圆面积=πr×r=πr2.即:S=πr2.十六、平面图形的周长和面积计算公式:长方形周长=(长+宽)×2 C = πd S = πr2长方形面积= 长×宽 C = 2πr S =π()2正方形周长= 边长×4r= d÷2S=π()2正方形面积= 边长×边长r=C ÷2π平行四边形面积= 底×高d=2r三角形面积= 底×高÷2d=c ÷π十七、常用数据:常用π值常用平方数2π=6.2812π=37.6812= 1 3π=9.4215π=47.122=4 4π=12.5616π=50.2432=9 5π=15.7018π=56.5242=16 6π=18.8420π=62.852=25 7π=21.9825π= 78.562=36 8π=25.1232π=100.4872=49 9π=28.26 2.25π=7.06582=64 10π=31.4 6.25π=19.62592=81立体图形【认识、表面积、体积】一、长方体、正方体都有6个面,12条棱,8个顶点.正方体是特殊的长方体.二、圆柱的特征:一个侧面、两个底面、无数条高.三、圆锥的特征:一个侧面、一个底面、一个顶点、一条高.四、表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积.五、体积:物体所占空间的大小叫做物体的体积.容器所能容纳其它物体的体积叫做容器的容积.六、圆柱和圆锥三种关系:①等底等高:体积1︰3②等底等体积:高1︰3③等高等体积:底面积1︰3七、等底等高的圆柱和圆锥:①圆锥体积是圆柱的1/3,②圆柱体积是圆锥的3倍,③圆锥体积比圆柱少2/3,④圆柱体积比圆锥多2倍.八、等底等高的圆柱和圆锥:锥1、差2、柱3、和4.九、立体图形公式推导:【1】圆柱的侧面展开后得到一个什么图形?这个图形的各部分与圆柱有何关系?(圆柱侧面积公式的推导过程)①圆柱的侧面展开后一般得到一个长方形.②长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高.③因为:长方形面积=长×宽,所以:圆柱侧面积=底面周长×高.④圆柱的侧面展开后还可能得到一个正方形.正方形的边长=圆柱的底面周长=圆柱的高.【2】我们在学习圆柱体积的计算公式时,是把圆柱转化成以前学过的一种立体图形(近似的)进行推导的,请你说出这种立体图形的名称以及它与圆柱体有关部分之间的关系?①把圆柱分成若干等份,切开后拼成了一个近似的长方体.②长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高.③因为:长方体体积=底面积×高,所以:圆柱体积=底面积×高.即:V=Sh. 【3】请画图说明圆锥体积公式的推导过程?①找来等底等高的空圆锥和空圆柱各一只.②将圆锥装满沙子,倒入圆柱中,发现三次正好装满,将圆柱里的沙子倒入圆锥中,发现三次正好倒完.③通过实验发现:圆锥的体积等于和它等底等高的圆柱体积的三分之一;圆柱的体积等于和它等底等高的圆锥体积的三倍.即:V=1/3Sh.十、立体图形的棱长总和、表面积、体积计算公式:名称计算公式长方体棱长总和长方体棱长总和= (长+宽+高)×4长方体表面积长方体表面积=(长×宽+长×高+宽×高)×2长方体体积长方体体积=长×宽×高正方体棱长总和正方体棱长总和=棱长×12正方体表面积正方体表面积=棱长×棱长×6正方体体积正方体体积=棱长×棱长×棱长圆柱体侧面积圆柱体侧面积=底面周长×高圆柱体表面积圆柱体表面积=侧面积+底面积×2圆柱体体积圆柱体体积=底面积×高圆锥体体积圆锥体体积=Sh(二)图形与变换一、变换图形位置的方法有平移、旋转等,在变换位置时,每个图形的相应顶点、线段、曲线应同步平移,旋转相同的角度.二、不改变图形的形状,只改变它的大小时,通常要使每个图形的要素,如长方形的长与宽,三角形的底与高等同时按相同比例放大或缩小.三、对称图形是对称轴两边的图形经对折后能够完全重合,而不是完全相同.(三)图形与位置一、当我们处在实际生活及情景中,面对教短距离时,通常用上、下、前、后来描述具体位置.二、当我们面对地图、方位图时,通常用东、西、南、北,南偏东、北偏东……来描述方向.再结合所示比例尺计算出具体距离,把方向与距离结合起来确定位置.第三部份统计与可能性(一)统计一、我们通常都是通过打勾、画圆、划“正”字的方法进行数据的收集和整理.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学级所有重点知识点汇总Lele was written in 2021小学数学1-6年级所有重点知识点汇总数学法则知识1.笔算两位数加法,要记三条A.相同数位对齐;B.从个位加起;C.个位满10向十位进1。
2.笔算两位数减法,要记三条A.相同数位对齐;B.从个位减起;C.个位不够减从十位退1,在个位加10再减。
3.混合运算计算法则A.在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;B.在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;C.算式里有括号的要先算括号里面的。
4.四位数的读法A.从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;B.中间有一个0或两个0只读一个“零”;C.末位不管有几个0都不读。
5.四位数写法A.从高位起,按照顺序写;B.几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。
6.四位数减法也要注意三条A.相同数位对齐;B.从个位减起;C.哪一位数不够减,从前位退1,在本位加10再减。
7.一位数乘多位数乘法法则A.从个位起,用一位数依次乘多位数中的每一位数;B.哪一位上乘得的积满几十就向前进几。
8.除数是一位数的除法法则A.从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;B.除数除到哪一位,就把商写在那一位上面;C.每求出一位商,余下的数必须比除数小。
9.一个因数是两位数的乘法法则A.先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;B.再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;C.然后把两次乘得的数加起来。
10.除数是两位数的除法法则A.从被除数高位起,先用除数试除被除数前两位,如果它比除数小,B.除到被除数的哪一位就在哪一位上面写商;C.每求出一位商,余下的数必须比除数小。
11.万级数的读法法则A.先读万级,再读个级;B.万级的数要按个级的读法来读,再在后面加上一个“万”字;C.每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
12.多位数的读法法则A.从高位起,一级一级往下读;B.读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;C.每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。
13.小数大小的比较比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。
14.小数加减法计算法则计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。
15.小数乘法的计算法则计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。
16.除数是整数除法的法则除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
17.除数是小数的除法运算法则除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。
18.解答应用题步骤A.弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;B.确定每一步该怎样算,列出算式,算出得数;C.进行检验,写出答案。
19.列方程解应用题的一般步骤A.弄清题意,找出未知数,并用X表示;B.找出应用题中数量之间的相等关系,列方程;C.解方程;D.检验、写出答案。
20.同分母分数加减的法则同分母分数相加减,分母不变,只把分子相加减。
21.同分母带分数加减的法则带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。
22.异分母分数加减的法则异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。
23.分数乘以整数的计算法则分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
24.分数乘以分数的计算法则分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。
25.一个数除以分数的计算法则一个数除以分数,等于这个数乘以除数的倒数。
26.把小数化成百分数和把百分数化成小数的方法把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,把百分号去掉,同时小数点向左移动两位。
27.把分数化成百分数和把百分数化成分数的方法把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数;把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。
数学口诀定义1.什么是图形的周长?围成一个图形所有边长的总和就是这个图形的周长。
2.什么是面积?物体的表面或围成的平面图形的大小叫做他们的面积。
3.加法各部分的关系:一个加数=和-另一个加数4.减法各部分的关系:减数=被减数-差被减数=减数+差5.乘法各部分之间的关系:一个因数=积÷另一个因数6.除法各部分之间的关系:除数=被除数÷商被除数=商×除数7.角A.什么是角?从一点引出两条射线所组成的图形叫做角。
B.什么是角的顶点?围成角的端点叫顶点。
C.什么是角的边?围成角的射线叫角的边。
D.什么是直角?度数为90°的角是直角。
E.什么是平角?角的两条边成一条直线,这样的角叫平角。
F.什么是锐角?小于90°的角是锐角。
G.什么是钝角?大于90°而小于180°的角是钝角。
H.什么是周角?一条射线绕它的端点旋转一周所成的角叫周角,一个周角等于360°8.垂直问题A.什么是互相垂直什么是垂线什么是垂足两条直线相交成直角时,这两条线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
B.什么是点到直线的距离?从直线外一点向一条直线引垂线,点和垂足之间的距离叫做这点到直线的距离。
9.三角形A.什么是三角形?有三条线段围成的图形叫三角形。
B.什么是三角形的边?围成三角形的每条线段叫三角形的边。
C.什么是三角形的顶点?每两条线段的交点叫三角形的顶点。
D.什么是锐角三角形?三个角都是锐角的三角形叫锐角三角形。
E.什么是直角三角形?有一个角是直角的三角形叫直角三角形。
F.什么是钝角三角形?有一个角是钝角的三角形叫钝角三角形。
G.什么是等腰三角形?两条边相等的三角形叫等腰三角形。
H.什么是等腰三角形的腰?有等腰三角形里,相等的两个边叫做等腰三角形的腰。
I.什么是等腰三角形的顶点?两腰的交点叫做等腰三角形的顶点。
J.什么是等腰三角形的底?在等腰三角形中,与其它两边不相等的边叫做等腰三角形的底。
K.什么是等腰三角形的底角?底边上两个相等的角叫等腰三角形的底角。
L.什么是等边三角形?三条边都相等的三角形叫等边三角形,也叫正三角形。
M.什么是三角形的高什么叫三角形的底从三角形的一个顶点向它的对边引一条垂线,顶点和垂足之间的线段叫做三角形的高,这个顶点的对边叫三角形的底。
N.三角形的内角和是多少度?三角形内角和是180°.10.四边形A.什么是四边形?有四条线段围成的图形叫四边形。
B.什么是平等四边形?两组对边分别平行的四边形叫做平行四边形。
C.什么是平行四边形的高?从平行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高。
D.什么是梯形?只有一组对边平行的四边形叫做梯形。
E.什么是梯形的底?在梯形里互相平等的一组边叫梯形的底(通常较短的底叫上底,较长的底叫下底)。
F.什么是梯形的腰?在梯形里,不平等的一组对边叫梯形的腰。
G.什么是梯形的高?从上底的一点往下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。
H.什么是等腰梯形?两腰相等的梯形叫做等腰梯形。
11.什么是自然数?用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……是自然数(自然数都是整数)。
12.什么是四舍五入法?求一个数的近似数时,看被省略的尾数最高位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。
这种求近似数的方法,叫做四舍五入法。
13.加法意义和运算定律A.什么是加法?把两个数合并成一个数的运算叫加法。
B.什么是加数?相加的两个数叫加数。
C.什么是和?加数相加的结果叫和。
D.什么是加法交换律?两个数相加,交换加数的位置后,它的和不变,这叫做加法交换律。
14.什么是减法?已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法。
15.什么是被减数什么是减数什么叫差在减法中已知的和叫被减数,减去的已知数叫减数,所求的未知数叫差。
16.加法各部分间的关系:和=加数+加数加数=和-另一加数17.减法各部分间的关系:差=被减数-减数减数=被减数-差被减数=减数+差18.乘法A.什么是乘法?求几个相同加数的和的简便运算叫乘法。
B.什么是因数?相乘的两个数叫因数。
C.什么是积?因数相乘所得的数叫积。
D.什么是乘法交换律?两个因数相乘,交换因数的位置,它们的积不变,这叫乘法交换律。
E.什么是乘法结合律?三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。
19.除法A.什么是除法?已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。
B.什么是被除数?在除法中,已知的积叫被除数。
C.什么是除数?在除法中,已知的一个因数叫除数。
D.什么是商?在除法中,求出的未知因数叫商。
20.乘法各部分的关系:积=因数×因数一个因数=积÷另一个因数21.除法A.除法各部分间的关系:商=被除数÷除数除数=被除数÷商B.有余数的除法各部分间的关系:被除数=商×除数+余数22.什么是名数?通常量得的数和单位名称合起来的数叫名数。
23.什么是单名数?只带有一个单位名称的数叫单名数。
24.什么是复名数?有两个或两个以上单位名称的数叫复名数。
25.什么是小数?仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫小数。
26.什么是小数的基本性质?小数的末尾添上零或者去掉零,小数大小不变,这叫小数的基本性质。
27.什么是有限小数?小数部分的位数是有限的小数叫有限小数。
28.什么是无限小数?小数部分的位数是无限的小数叫无限小数。
29.什么是循环节?一个循环小数的部分依次不断重复出现的数叫做这个数的循环节。