八年级数学上册 第六章 数据的分析 6.1 平均数教案 (新版)北师大版

合集下载

北师大版八年级上册 第六章 6.1 平均数 教案

北师大版八年级上册 第六章 6.1 平均数 教案

1.2平均数(教案)教学目标知识与技能:会求一组数据的算术平均数和加权平均数.过程与方法:通过有关平均数问题的解决,培养学生的判断能力和数据处理能力.情感态度与价值观:通过小组合作的活动,培养学生的合作意识和能力,让学生初步认识数学与人类生活密切联系及对人类历史发展的作用.教学重难点【重点】准确用算术平均数、加权平均数的知识进行计算.【难点】理解加权平均数的概念,会求一组数据的加权平均数.教学准备:【教师准备】教材的表格.【学生准备】复习平均数、加权平均数的含义.教学过程一、导入新课导入一:问题1【课件1】小组互助学习是课堂教学的一大特色,下面是某校八年级一班一组同学一周的成绩表,请你算出一周得分的平均数.问题2【课件2】下表是一组的四位同学某节课的得分情况:根据“互助小组”评价标准,A,B,C,D四位同学的得分按1∶2∶3∶4的比例确定小组的最后成绩,你能算出他们的最后得分吗?[处理方式]给学生5分钟的独立思考和解决问题的时间.学生得出问题1的答案为(90+94+92+98+96)÷5=94.学生也有可能采用选择“基数”的方法进行计算平均数.教师都应该给予中肯的评价,提倡利用简便算法方便自己的计算.然后进行追问“我们上节课学的算术平均数,谁来回顾一下定义”.引导学生复习算术平均数的定义:一般地,对于n个数x1,x2,…,x n,我们把(x1+x2+…+x n)叫做这n个数的算术平均数,简称平均数,记为.学生得出问题2的答案为=18.4,然后借助这种求法,引出加权平均数,从而自然地与本节新授内容衔接.[设计意图]用学生身边发生的事创设情境,回顾上节课所学知识,更好地调动了学生学习的积极性,体会到数学与生活的紧密联系,激发学生的学习兴趣和主动学习的欲望,引出课题.导入二:师:上个星期,某校进行了一次“爱满校园、情暖人心”的募捐活动.八年级一班的同学也慷慨解囊,下面是一组同学的捐款情况.(单位:元)5,3,2,5,8,5,10,10.师:这一组同学平均每人捐款多少元?生:(5+3+2+5+8+5+10+10)÷8=6(元).师:这是我们上节课学的算术平均数,谁来回顾一下定义?生:一般地,对于n个数x1,x2,…,x n,我们把(x1+x2+…+x n)叫做这n个数的算术平均数,简称平均数,记为.师:班长把全班43名同学的捐款情况列表如下:师:你能算出全班平均每人捐款多少元吗?[处理方式]学生根据自己的经验和上节课所学的加权平均数,迅速地在练习本或者黑板上列式,并计算出结果.生:(展示)≈6.26(元).师:解释一下.生:每个金额出现的次数不同,如捐3元钱的有6人,我就用6×3,捐5元钱的有21人,我就用5×21……最后除以所有人数的和.师:这其实就是加权平均数,这节课我们将继续研究“权”与“平均数”的有关问题.(教师板书课题)[设计意图]用学生身边发生的事创设情境,回顾上节课所学知识,更好地调动了学生的学习积极性,体会到数学与生活的紧密联系,同时使学生受到爱心教育.二、新知构建(1)、探究活动1[过渡语]平均数的不同计算方法会直接影响到统计的结果.某学校进行广播操比赛,比赛打分包括以下几项:服装统一、进退场有序、动作规范、动作整齐(每项满分10分).其中三个班级的成绩分别如下:师:若将服装统一、进退场有序、动作规范、动作整齐这四项得分依次按10%,20%,30%,40%的比例计算各班的广播操比赛成绩,那么哪个班的成绩最高?[处理方式]学生先思考一会儿后,教师让一组学生在黑板上进行展示.一组展示:若将服装统一、进退场有序、动作规范、动作整齐这四项得分依次按10%,20%,30%,40%的比例计算各班的广播操比赛成绩,则:一班的广播操成绩为9×10%+8×20%+9×30%+8×40%=8.4(分).二班的广播操成绩为10×10%+9×20%+7×30%+8×40%=8.1(分).三班的广播操成绩为8×10%+9×20%+8×30%+9×40%=8.6(分).因此,三班的广播操成绩最高.师:你认为上述四项中,哪一项更为重要?生1:服装统一.生2:进退场有序.生3:动作规范.生4:动作整齐.师:如果我们把服装统一、进退场有序、动作规范、动作整齐这四项的百分比改一下,三班的成绩还最好吗?生:(齐声回答)不一定.师:这四项的百分比在加权平均数中称为什么?生:“权”.师:很好,请你按自己的想法改变“权重”,重新设计一个评分方案.根据你的评分方案,看看哪一个班的比赛成绩最高,与同伴合作进行.[处理方式]对于这一问题,让学生先在小组内各抒己见,然后全班交流体会,归纳.二组展示设计方案:我们组认为动作规范更为重要,所以将服装统一、进退场有序、动作规范、动作整齐这四项得分依次按10%,20%,50%,20%的比例计算各班的广播操比赛成绩.一班的广播操成绩为9×10%+8×20%+9×50%+8×20%=8.6(分).二班的广播操成绩为10×10%+9×20%+7×50%+8×20%=7.9(分).三班的广播操成绩为8×10%+9×20%+8×50%+9×20%=8.4(分).因此,一班的广播操成绩最高.师:很好,哪个组再展示一下?三组展示设计方案:我们组认为除了服装统一不重要,其余三项都很重要,所以将服装统一、进退场有序、动作规范、动作整齐这四项得分依次按10%,30%,30%,30%的比例计算各班的广播操比赛成绩.一班的广播操成绩为9×10%+8×30%+9×30%+8×30%=8.4(分).二班的广播操成绩为10×10%+9×30%+7×30%+8×30%=8.2(分).三班的广播操成绩为8×10%+9×30%+8×30%+9×30%=8.6(分).因此,三班的广播操成绩最高.师:好像不论怎样算,二班都不赢.如果我非让二班胜出,谁有办法呢?生:我能办到!如果让我定标准,我让谁赢谁就赢,让谁输谁就输.二班最好的是服装统一,我就让这一项占最大比重,给70%,其余的都只占10%.一班的广播操成绩为9×70%+8×10%+9×10%+8×10%=8.8(分).二班的广播操成绩为10×70%+9×10%+7×10%+8×10%=9.4(分).三班的广播操成绩为8×70%+9×10%+8×10%+9×10%=8.2(分).因此,二班的广播操成绩最高,三班的广播操成绩最差,哈哈!师:赋予的“权”不同,其结果相同吗?生:同一题中,不同的“权”有不同的结果.师:明白“权”的重要性了吗?生:明白了.[设计意图]通过学生计算,自己再设计方案和交流,确实让他们体会到权的差异对结果的影响,认识到权的重要性.以上四项所占的比例不同,即权有差异,得出的结果就会不同,也就是说权的差异对结果有影响.(2)、探究活动2小明骑自行车的速度是15 km/h,步行的速度是5 km/h.(1)如果小明先骑自行车1 h,然后又步行了1 h,那么他的平均速度是多少?(2)如果小明先骑自行车2 h,然后步行了3 h,那么他的平均速度是多少?(3)你能从权的角度来理解这样的平均速度吗?[处理方式]找两个学生到黑板前展示计算过程,其余学生在下面独立完成.教师进行巡视其他学生解题情况.(1)=10(km/h);(2)=9(km/h).有些学生可能忘记单位或单位写错,要给予及时纠错,也可以让小组内互纠.学生完成(1)(2)问后要追问“为什么两个问题都是计算平均速度,结果却不同”,从而过渡到第(3)问.学生可能从“骑车与步行的时间不同”的角度考虑“一个骑1 h,一个骑2 h”,这时要引导学生理解权的问题.第(1)题中,骑车和步行速度的“权重”相等,平均速度等于它们的算术平均数:=10(km/h).第(2)题中,骑车和步行速度的“权”不同,所以求平均速度必须用加权平均数:=9(km/h).进而引导学生归纳:算术平均数其实是加权平均数的特殊情况.若各项“权”相等,就用算术平均数.[设计意图]通过这道题的练习,巩固了求加权平均数的方法,加深对权的意义的理解,体会算术平均数和加权平均数的联系和区别.[知识拓展]实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而,在计算某组数据的平均数时,往往给每个数据一个“权”.加权平均数中的“权”表示各个数据的比重,反映了各个数据在这组数据中的重要程度.三、课堂总结根据一些数据或项目的重要性不同,加权平均数会更倾向于对数据进行选择.四、课堂练习1.为了调查某一路口某时段的汽车流量,记录了15天同一时段通过该路口的汽车辆数,其中有2天是142辆,2天是145辆,6天是156辆,5天是157辆,那么这15天通过该路口汽车平均辆数为()A.146B.150C.153D.160答案:C2.下表中,若平均数为2,则x为()A.0B.1C.2D.3答案:B3.某市是一个严重缺水的城市,为鼓励市民珍惜每一滴水,某居委会表扬了100个节约用水模范户,5月份这100户节约用水的情况如下表:那么,5月份这100户平均每户节约用水的吨数为t.答案:1.154.某汽车配件厂在一个月(30天)中的零件产量如下:有2天是51件,3天是52件,5天是53件,9天是54件,6天是55件,4天是56件,1天是57件.则平均日产量是件.答案:54五、板书设计第2课时探究活动1探究活动2议一议六、布置作业(1)、教材作业【必做题】教材习题6.2第1,5题.【选做题】教材习题6.2第6题.(2)、课后作业【基础巩固】1.小明记录了今年元月某五天的最低温度(单位:℃):1,2,0,-1,-2,这五天的最低温度的平均值是()A.1 ℃B.2 ℃C.0 ℃D.-1 ℃2.在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额如下表所示:这8名同学平均每人捐款的金额为()A.3.5元B.6元C.6.5元D.7元3.李大伯承包一个果园,种植了100棵樱桃树,今年已进入收获期,收获时,从中任选并采摘了10棵树的樱桃,分别称得每棵树所产樱桃的质量如下表:据调查,市场上今年樱桃的批发价格为每千克15元,用所学的知识估计今年此果园樱桃的总产量与按批发价格销售樱桃所得的总收入分别是多少.【能力提升】4.某校为了招聘一名优秀教师,对入选的三名候选人进行教学技能与专业知识两种考核,现将甲、乙、丙三人的考核成绩统计如下:(1)如果校方认为教师的教学技能水平与专业知识水平同等重要,那么候选人将被录取;(2)校方认为教师的教学技能水平比专业知识水平重要,因此分别赋予它们6和4的权.计算他们赋权后各自的平均成绩,并说明谁将被录取.【拓展探究】5.某学校对初中毕业班经过初步比较后,决定从九(1)、(4)、(8)这三个班中推荐一个班为市级先进班集体的候选班.现对这三个班进行综合素质考评,下表是它们五项素质考评的得分表(以分为单位,每项满分为10分).(1)各班五项考评分的平均数分别是多少?(2)根据你对表中五个项目的重要程度的认识,设定一个各项考评内容的占分比例(比例的各项需满足:①均为整数;②总和为10;③不全相同),按这个比例对各班的得分重新计算,比较出大小关系,并从中推荐一个得分最高的班级作为市级先进班集体的候选班.【答案与解析】1.C2.C3.解:(14+21+27+17+18+20+19+23+19+22)÷10=20(千克),20×100=2000(千克),2000×15=30000(元).答:总产量为2000千克,总收入为30000元.4.解:(1)甲(2)根据题意得:甲的平均成绩为(85×6+92×4)÷10=87.8(分),乙的平均成绩为(91×6+85×4)÷10=88.6(分),丙的平均成绩为(80×6+90×4)÷10=84(分).因为乙的平均成绩最高,所以乙将被录取.5.解:(1)九(1)班的平均成绩:(10+10+6+10+7)÷5=8.6(分),九(4)班的平均成绩:(10+8×3+9)÷5=8.6(分),九(8)班的平均成绩:(9×3+10+6)÷5=8.6(分). (2)设行为规范权为3,学习成绩、艺术获奖、劳动卫生权为2,校运动会权为1,则九(1)班的平均成绩:(10×3+10×2+6+10×2+7×2)÷10=9(分),九(4)班的平均成绩:(10×3+8×2+8+9×2+8×2)÷10=8.8(分),九(8)班的平均成绩:(9×3+10×2+9+6×2+9×2)÷10=8.6(分).九(1)班的平均成绩最高,推荐九(1)班作为市级先进班集体的候选班.。

北师大版八年级上册 第六章 6.1 平均数 教案

北师大版八年级上册 第六章 6.1 平均数 教案

1.2平均数(教案)教学目标知识与技能:会求一组数据的算术平均数和加权平均数.过程与方法:通过有关平均数问题的解决,培养学生的判断能力和数据处理能力.情感态度与价值观:通过小组合作的活动,培养学生的合作意识和能力,让学生初步认识数学与人类生活密切联系及对人类历史发展的作用.教学重难点【重点】准确用算术平均数、加权平均数的知识进行计算.【难点】理解加权平均数的概念,会求一组数据的加权平均数.教学准备:【教师准备】教材的表格.【学生准备】复习平均数、加权平均数的含义.教学过程一、导入新课导入一:问题1【课件1】小组互助学习是课堂教学的一大特色,下面是某校八年级一班一组同学一周的成绩表,请你算出一周得分的平均数.日期周一周二周三周四周五得分90 94 92 98 96问题2【课件2】下表是一组的四位同学某节课的得分情况:姓名(编号) 小亮(A)小红(B)小英(C)小超(D)得分24 20 16 18根据“互助小组”评价标准,A,B,C,D四位同学的得分按1∶2∶3∶4的比例确定小组的最后成绩,你能算出他们的最后得分吗?[处理方式]给学生5分钟的独立思考和解决问题的时间.学生得出问题1的答案为(90+94+92+98+96)÷5=94.学生也有可能采用选择“基数”的方法进行计算平均数.教师都应该给予中肯的评价,提倡利用简便算法方便自己的计算.然后进行追问“我们上节课学的算术平均数,谁来回顾一下定义”.引导学生复习算术平均数的定义:一般地,对于n个数x1,x2,…,x n,我们把1n(x1+x2+…+x n)叫做这n个数的算术平均数,简称平均数,记为x̅.学生得出问题2的答案为24×1+20×2+16×3+18×4=18.4,然后借助这种求法,1+2+3+4引出加权平均数,从而自然地与本节新授内容衔接.[设计意图]用学生身边发生的事创设情境,回顾上节课所学知识,更好地调动了学生学习的积极性,体会到数学与生活的紧密联系,激发学生的学习兴趣和主动学习的欲望,引出课题.导入二:师:上个星期,某校进行了一次“爱满校园、情暖人心”的募捐活动.八年级一班的同学也慷慨解囊,下面是一组同学的捐款情况.(单位:元)5,3,2,5,8,5,10,10.师:这一组同学平均每人捐款多少元?生:(5+3+2+5+8+5+10+10)÷8=6(元).师:这是我们上节课学的算术平均数,谁来回顾一下定义?(x1+x2+…+x n)叫做这n 生:一般地,对于n个数x1,x2,…,x n,我们把1n个数的算术平均数,简称平均数,记为x̅.师:班长把全班43名同学的捐款情况列表如下:金额/元 2 3 5 8 10 20人数/人 2 6 21 4 9 1师:你能算出全班平均每人捐款多少元吗?[处理方式]学生根据自己的经验和上节课所学的加权平均数,迅速地在练习本或者黑板上列式,并计算出结果.生:(展示)2×2+3×6+5×21+8×4+10×9+20×1≈6.26(元).2+6+21+4+9+1师:解释一下.生:每个金额出现的次数不同,如捐3元钱的有6人,我就用6×3,捐5元钱的有21人,我就用5×21……最后除以所有人数的和.师:这其实就是加权平均数,这节课我们将继续研究“权”与“平均数”的有关问题.(教师板书课题)[设计意图]用学生身边发生的事创设情境,回顾上节课所学知识,更好地调动了学生的学习积极性,体会到数学与生活的紧密联系,同时使学生受到爱心教育.二、新知构建(1)、探究活动1[过渡语]平均数的不同计算方法会直接影响到统计的结果.某学校进行广播操比赛,比赛打分包括以下几项:服装统一、进退场有序、动作规范、动作整齐(每项满分10分).其中三个班级的成绩分别如下:服装统一进退场有序动作规范动作整齐一班9 8 9 8二班10 9 7 8三班8 9 8 9 师:若将服装统一、进退场有序、动作规范、动作整齐这四项得分依次按10%,20%,30%,40%的比例计算各班的广播操比赛成绩,那么哪个班的成绩最高?[处理方式]学生先思考一会儿后,教师让一组学生在黑板上进行展示.一组展示:若将服装统一、进退场有序、动作规范、动作整齐这四项得分依次按10%,20%,30%,40%的比例计算各班的广播操比赛成绩,则: 一班的广播操成绩为9×10%+8×20%+9×30%+8×40%=8.4(分).二班的广播操成绩为10×10%+9×20%+7×30%+8×40%=8.1(分).三班的广播操成绩为8×10%+9×20%+8×30%+9×40%=8.6(分).因此,三班的广播操成绩最高.师:你认为上述四项中,哪一项更为重要?生1:服装统一.生2:进退场有序.生3:动作规范.生4:动作整齐.师:如果我们把服装统一、进退场有序、动作规范、动作整齐这四项的百分比改一下,三班的成绩还最好吗?生:(齐声回答)不一定.师:这四项的百分比在加权平均数中称为什么?生:“权”.师:很好,请你按自己的想法改变“权重”,重新设计一个评分方案.根据你的评分方案,看看哪一个班的比赛成绩最高,与同伴合作进行.[处理方式]对于这一问题,让学生先在小组内各抒己见,然后全班交流体会,归纳.二组展示设计方案:我们组认为动作规范更为重要,所以将服装统一、进退场有序、动作规范、动作整齐这四项得分依次按10%,20%,50%,20%的比例计算各班的广播操比赛成绩.一班的广播操成绩为9×10%+8×20%+9×50%+8×20%=8.6(分).二班的广播操成绩为10×10%+9×20%+7×50%+8×20%=7.9(分).三班的广播操成绩为8×10%+9×20%+8×50%+9×20%=8.4(分).因此,一班的广播操成绩最高.师:很好,哪个组再展示一下?三组展示设计方案:我们组认为除了服装统一不重要,其余三项都很重要,所以将服装统一、进退场有序、动作规范、动作整齐这四项得分依次按10%,30%,30%,30%的比例计算各班的广播操比赛成绩.一班的广播操成绩为9×10%+8×30%+9×30%+8×30%=8.4(分).二班的广播操成绩为10×10%+9×30%+7×30%+8×30%=8.2(分).三班的广播操成绩为8×10%+9×30%+8×30%+9×30%=8.6(分).因此,三班的广播操成绩最高.师:好像不论怎样算,二班都不赢.如果我非让二班胜出,谁有办法呢?生:我能办到!如果让我定标准,我让谁赢谁就赢,让谁输谁就输.二班最好的是服装统一,我就让这一项占最大比重,给70%,其余的都只占10%.一班的广播操成绩为9×70%+8×10%+9×10%+8×10%=8.8(分).二班的广播操成绩为10×70%+9×10%+7×10%+8×10%=9.4(分).三班的广播操成绩为8×70%+9×10%+8×10%+9×10%=8.2(分).因此,二班的广播操成绩最高,三班的广播操成绩最差,哈哈!师:赋予的“权”不同,其结果相同吗?生:同一题中,不同的“权”有不同的结果.师:明白“权”的重要性了吗?生:明白了.[设计意图]通过学生计算,自己再设计方案和交流,确实让他们体会到权的差异对结果的影响,认识到权的重要性.以上四项所占的比例不同,即权有差异,得出的结果就会不同,也就是说权的差异对结果有影响.(2)、探究活动2小明骑自行车的速度是15 km/h,步行的速度是5 km/h.(1)如果小明先骑自行车1 h,然后又步行了1 h,那么他的平均速度是多少?(2)如果小明先骑自行车2 h,然后步行了3 h,那么他的平均速度是多少?(3)你能从权的角度来理解这样的平均速度吗?[处理方式]找两个学生到黑板前展示计算过程,其余学生在下面独立完成.教师进行巡视其他学生解题情况.(1)15×1+5×11+1=10(km/h);(2)15×2+5×32+3=9(km/h).有些学生可能忘记单位或单位写错,要给予及时纠错,也可以让小组内互纠.学生完成(1)(2)问后要追问“为什么两个问题都是计算平均速度,结果却不同”,从而过渡到第(3)问.学生可能从“骑车与步行的时间不同”的角度考虑“一个骑1 h,一个骑2 h”,这时要引导学生理解权的问题.第(1)题中,骑车和步行速度的“权重”相等,平均速度等于它们的算术平均数:15+52=10(km/h).第(2)题中,骑车和步行速度的“权”不同,所以求平均速度必须用加权平均数:15×2+5×32+3=9(km/h).进而引导学生归纳:算术平均数其实是加权平均数的特殊情况.若各项“权”相等,就用算术平均数.[设计意图]通过这道题的练习,巩固了求加权平均数的方法,加深对权的意义的理解,体会算术平均数和加权平均数的联系和区别.[知识拓展]实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而,在计算某组数据的平均数时,往往给每个数据一个“权”.加权平均数中的“权”表示各个数据的比重,反映了各个数据在这组数据中的重要程度.三、课堂总结根据一些数据或项目的重要性不同,加权平均数会更倾向于对数据进行选择.四、课堂练习1.为了调查某一路口某时段的汽车流量,记录了15天同一时段通过该路口的汽车辆数,其中有2天是142辆,2天是145辆,6天是156辆,5天是157辆,那么这15天通过该路口汽车平均辆数为()A.146B.150C.153D.160答案:C2.下表中,若平均数为2,则x为()分数0 1 2 3 4学生人数x 5 6 3 2A.0B.1C.2D.3答案:B3.某市是一个严重缺水的城市,为鼓励市民珍惜每一滴水,某居委会表扬了100个节约用水模范户,5月份这100户节约用水的情况如下表:每户节约用水量(单位:t) 1 1.2 1.5节水户数52 30 18那么,5月份这100户平均每户节约用水的吨数为t.答案:1.154.某汽车配件厂在一个月(30天)中的零件产量如下:有2天是51件,3天是52件,5天是53件,9天是54件,6天是55件,4天是56件,1天是57件.则平均日产量是件.答案:54五、板书设计第2课时探究活动1探究活动2议一议六、布置作业(1)、教材作业【必做题】教材习题6.2第1,5题.【选做题】教材习题6.2第6题.(2)、课后作业【基础巩固】1.小明记录了今年元月某五天的最低温度(单位:℃):1,2,0,-1,-2,这五天的最低温度的平均值是()A.1 ℃B.2 ℃C.0 ℃D.-1 ℃2.在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额如下表所示:金额/元 5 6 7 10人数/人 2 3 2 1这8名同学平均每人捐款的金额为()A.3.5元B.6元C.6.5元D.7元3.李大伯承包一个果园,种植了100棵樱桃树,今年已进入收获期,收获时,从中任选并采摘了10棵树的樱桃,分别称得每棵树所产樱桃的质量如下表:序号 1 2 3 4 5 6 7 8 9 10质量/kg 14 21 27 17 18 20 19 23 19 22据调查,市场上今年樱桃的批发价格为每千克15元,用所学的知识估计今年此果园樱桃的总产量与按批发价格销售樱桃所得的总收入分别是多少.【能力提升】4.某校为了招聘一名优秀教师,对入选的三名候选人进行教学技能与专业知识两种考核,现将甲、乙、丙三人的考核成绩统计如下:百分制候选人教学技能考核成绩/分专业知识考核成绩/分甲85 92乙91 85丙80 90(1)如果校方认为教师的教学技能水平与专业知识水平同等重要,那么候选人将被录取;(2)校方认为教师的教学技能水平比专业知识水平重要,因此分别赋予它们6和4的权.计算他们赋权后各自的平均成绩,并说明谁将被录取.【拓展探究】5.某学校对初中毕业班经过初步比较后,决定从九(1)、(4)、(8)这三个班中推荐一个班为市级先进班集体的候选班.现对这三个班进行综合素质考评,下表是它们五项素质考评的得分表(以分为单位,每项满分为10分).班级九(1)班九(4)班九(8)班行为规范10 10 9学习成绩10 8 10校运动会 6 8 9艺术获奖10 9 6劳动卫生7 8 9(1)各班五项考评分的平均数分别是多少?(2)根据你对表中五个项目的重要程度的认识,设定一个各项考评内容的占分比例(比例的各项需满足:①均为整数;②总和为10;③不全相同),按这个比例对各班的得分重新计算,比较出大小关系,并从中推荐一个得分最高的班级作为市级先进班集体的候选班.【答案与解析】1.C2.C3.解:(14+21+27+17+18+20+19+23+19+22)÷10=20(千克),20×100=2019(千克),2019×15=30000(元).答:总产量为2019千克,总收入为30000元.4.解:(1)甲(2)根据题意得:甲的平均成绩为(85×6+92×4)÷10=87.8(分),乙的平均成绩为(91×6+85×4)÷10=88.6(分),丙的平均成绩为(80×6+90×4)÷10=84(分).因为乙的平均成绩最高,所以乙将被录取.5.解:(1)九(1)班的平均成绩:(10+10+6+10+7)÷5=8.6(分),九(4)班的平均成绩:(10+8×3+9)÷5=8.6(分),九(8)班的平均成绩:(9×3+10+6)÷5=8.6(分).(2)设行为规范权为3,学习成绩、艺术获奖、劳动卫生权为2,校运动会权为1,则九(1)班的平均成绩:(10×3+10×2+6+10×2+7×2)÷10=9(分),九(4)班的平均成绩:(10×3+8×2+8+9×2+8×2)÷10=8.8(分),九(8)班的平均成绩:(9×3+10×2+9+6×2+9×2)÷10=8.6(分).九(1)班的平均成绩最高,推荐九(1)班作为市级先进班集体的候选班.。

最新新北师大版八年级数学 第六章 数据的分析 教案

最新新北师大版八年级数学 第六章 数据的分析 教案

最新新北师大版八年级数学第六章数据的分析教案第六章数据的分析1.平均数(第1课时)●教学目标:(一)知识与技能:掌握算术平均数、加权平均数的概念,会求一组数的算术平均数和加权平均数.(二)过程与方法:经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理的能力;通过有关平均数问题的解决,发展学生的数学应用能力.(三)情感态度与价值观:通过小组合作活动,培养学生的合作意识;通过解决实际问题,让学生体会数学与生活的密切联系.●教学重点:●教学难点:●教学方法:●教具准备:●教学过程:第一环节:情境引入1. 展示课本第八章的章前文字、章前图和一组问题,引入本章主题.2. 用篮球比赛引入本节课题:篮球运动是大家喜欢的一种运动项目,尤其是男生们更是倍爱有加.(1)影响比赛的成绩有哪些因素?(心理、技术、配合、身高、年龄等)(2)如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队更高”?要比较两个球队队员的身高,需要收集哪些数据呢?(收集两个球队队员的身高,并用两个球队队员身高的平均数作出判断)在学生的议论交流中引入本节课题:“平均数”.第二环节:合作探究内容1:算术平均数教材提供的中国男子篮球职业联赛 2011—2012 赛季冠亚军球队队员身高、年龄的表格,提出问题:“北京金隅队”和“广东东莞银行队”两支篮球队中,哪支球队队员的身材更为高大?哪支球队队员更为年轻?你是怎样判断的?与同伴交流.(1)学生先独立思考,计算出平均数,然后在小组交流.(2)各小组之间竞争回答,答对的打上星,给予鼓励.答案:北京金隅队队员的平均身高为1.98m,平均年龄为25.4 岁;广东东莞银行队队员的平均身高为2.00 m,平均年龄为24.1岁.所以,广东东莞银行队队员的身材更为高大,更为年轻.小结:日常生活中我们常用平均数来表示一组数据的“平均水平”.一般地,对于n个数x1,x2,…,xn,我们把n1(x1+x2+…+xn),叫做这n个数的算术平均数,简称平均数,记为x.内容2:加权平均数平均年龄﹦(19×1+22×4+23×2+26×2+27×1+28×2+29×2+35×1)÷(1+4+2+2+1+2+2+1)﹦25.4(岁)你能说说小明这样做的道理吗?学生经过讨论后可知,小明的做法还是根据算术平均数的公式进行计算的,只是在求相同加数的和时用了乘法,因此这是一种求算术平均数的简便方法.例1:某广告公司欲招聘广告策划人员一名,对A、B、C三名候选人进行了三项素质测试.他们的各项测试成绩如下表所示:(1)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?(2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4:3:1的比例确定各人的测试成绩,此时谁将被录用?引导学生思考讨论:第(1)(2)问中录用的人不一样说明了什么?从而认识由于测试的每一项的重要性不同,所以所占的比份也不同,计算出的平均数就不同,因此重要性的差异对结果的影响是很大的.在学生认识的基础上,结合例1给出加权平均数的概念:实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而,在计算这组数据的平均数时,往往给每个数据一个“权”.如例1中4,3,1分别是创新、综合知识、语言三项测试成绩的权,而称1341 88350472++⨯+⨯+⨯为A的三项测试成绩的加权平均数.第三环节:运用提高内容:1. 某次体操比赛,六位评委对选手的打分(单位:分)如下:9.5 ,9.3 ,9.1 ,9.5 ,9.4 ,9.3.(1)求这六个分数的平均分.(2)如果规定:去掉一个最高分和一个最低分,余下分数的平均值作为选手的最后得分,那么该选手的最后得分是多少?2. 某校在期末考核学生的体育成绩时,将早锻炼及体育课外活动表现占成绩的20%,体育理论测试占30%,体育技能测试占50%.小颖的上述成绩分别为92分、80分、84分,则小颖这学期的体育成绩是多少?3. 从一批机器零件毛坯中取出20件,称得它们的质量如下:(单位:千克)2001 2007 2002 2006 20052006 2001 2009 2008 2010(1)试求这批零件质量的平均数.(2)你能用新的简便方法计算它们的平均数吗?第四环节:课堂小结内容:引导学生用“我知道了…”,“我发现了…”,“我学会了…”,“我想我以后将…”的语言小结算术平均数和加权平均数的概念及运用.第五环节:布置作业●板书设计:●课后反思:●课题:1.平均数(第2课时)●教学目标:(一)知识与技能:会求加权平均数,体会权的差异其平均数的影响;理解算术平均数和加权平均数的联系与区别,能利用平均数解决实际问题.(二)过程与方法:通过探索算术平均数和加权平均数的联系与区别的过程,培养学生的思维能力;通过有关平均数的问题的解决,发展学生的数学应用能力.(三)情感态度与价值观:通过解决实际问题,体会数学与社会生活的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心.●教学重点:●教学难点:●教学方法:●教具准备:●教学过程:第一环节:情境引入请同学们回忆:什么是算术平均数?什么是加权平均数?在学生的复习交流中引入课题:本节课将继续研究生活中的加权平均数,以及算术平均数和加权平均数的联系与区别.第二环节:合作探究内容:1.做一做某学校进行广播操比赛,比赛打分包括以下几项:服装统一、进退场有(1)若将服装统一、进退场有序、动作规范、动作整齐这四项得分依次按10%,20%,30%,40%的比例计算各班的广播操比赛成绩,那么哪个班的成绩最高?(2)你认为上述四项中,哪一项更为重要?请你按自己的想法设计一个评分方案.根据你的评分方案,哪一个班的广播操比赛成绩最高?与同伴进行交流.对于第(1)问,抽取几个不同层次的学生做的结果展示,正确的答案是:一班的广播操成绩为:9×10%+8×20%+9×30%+8×40%﹦8.4(分)二班的广播操成绩为:10×10%+9×20%+7×30%+8×40%﹦8.1(分)三班的广播操成绩为:8×10%+9×20%+8×30%+9×40%﹦8.6(分)因此,三班的广播操成绩最高.对于第(2)问,归纳:以上四项所占的比例不同,即权有差异,得出的结果就会不同,也就是说权的差异对结果有影响.内容:2.议一议小颖家去年的饮食支出为3600元,教育支出为1200元,其他支出为7200元,小颖家今年的这三项支出依次比去年增长39%,3%,6%,小颖家今年的总支出比去年增长的百分数是多少?以下是小明和小亮的两种解法,谁做得对?说说你的理由. 小明:31(9%+30%+6%)= 15%小亮:%3.97200120036007200%61200%303600%9=++⨯+⨯+⨯由于小颖家去年的饮食、教育和其他三项支出金额不等,因此,饮食、教育和其他三项支出的增长率“地位”不同,它们对总支出增长率的“影响”不同,不能简单地用算术平均数计算总支出的增长率,而应将这三项支出金额3600,1200,7200分别视为三项支出增长率的“权”,从而总支出的增长率为小亮的解法是对的.第三环节:运用提高内容:1.小明骑自行车的速度是15千米/时,步行的速度是5千米/时. (1)如果小明先骑自行车1小时,然后又步行了1小时,那么他的平均速度是多少?(2)如果小明先骑自行车2小时,然后步行了3小时,那么他的平均速度是多少?你能从权的角度来理解这样的平均速度吗?(3)举出生活中加权平均数的实例,并解决之. 2. 课本P 139随堂练习第1,2题. 第四环节:课堂小结内容:说说算术平均数与加权平均数有哪些联系与区别?算术平均数是加权平均数各项的权都相等的一种特殊情况,即算术平均数是加权平均数,而加权平均数不一定是算术平均数.由于权的不同,导致结果不同,故权的差异对结果有影响. 第五环节:布置作业 ● 板书设计:● 课后反思:●课题:2.中位数与众数●教学目标:(一)知识与技能:掌握中位数、众数的概念,会求出一组数据的中位数与众数;能结合具体情境体会平均数、中位数和众数三者的区别,能初步选择恰当的数据代表对数据作出自己的正确评判.(二)过程与方法:通过解决实际问题的过程,区分刻画“平均水平”的三个数据代表,让学生获得一定的评判能力,进一步发展其数学应用能力.(三)情感态度与价值观:将知识的学习放在解决问题的情境中,通过数据分析与处理,体会数学与现实生活的联系,培养学生求真的科学态度.●教学重点:●教学难点:●教学方法:●教具准备:●教学过程:第一环节:情境引入在当今信息时代,信息的重要性不言而喻,人们经常要求一些信息“用数据说话”,所以对数据作出恰当的评判是很重要的.下面请看一例:某次数学考试,小英得了78分.全班共32人,其他同学的成绩为1个100分,4个90分,22个80分,2个62分,1个30分,1个25分.小英计算出全班的平均分为77.4分,所以小英告诉妈妈说,自己这次数学成绩在班上处于“中上水平”.小英对妈妈说的情况属实吗?你对此有何看法?平均数是我们常用的一个数据代表,但是在这里,利用平均数把倒数第五的成绩说成处于班级的“中上水平”显然是不属实的.原因是全班的平均分受到了两个极端数据30分和25分的影响,利用平均数反应问题就出现了偏差.怎样说明这个问题呢?我们需要学习新的数据代表——中位数与众数.第二环节:合作探究经理说:我公司员工收入很高,月平均工资为2700元.职员C说:我的工资是1900元,在公司算中等收入.职员D说:我们好几个人工资都是1800元.一位应聘者心里在琢磨:这个公司员工收入到底怎样呢?你怎样看待该公司员工的收入?学生四人小组讨论,交流自己的看法,教师对表现积极的学生予以鼓励.上述问题中,经理、职员C、职员D从不同的角度描述了该公司的收入情况:(1)月平均工资2700元,指所有员工工资的平均数是2700元,但只有正、副经理的工资比平均工资高,是他两人的工资把平均工资“拉”高了.(2)职员C的工资是1900元,恰好居于所有员工工资的“正中间”(恰有4人的工资比他高,有4人的工资比他低),我们称1900元是这组数据的中位数.(3)9个员工中有3个人的工资为1800元,出现的次数最多,我们称1800元是这组数据的众数.议一议:你认为用哪个数据表示该公司员工收入的平均水平更合适?结合上述问题的探究,引入中位数、众数的概念:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.一组数据中出现次数最多的那个数据叫做这组数据的众数.平均数、中位数、众数都是数据的代表,它们刻画了一组数据的“平均水平”.第三环节:运用提高(练习)1. 2011~2012 赛季北京金隅队队员身高的中位数、众数分别是多少?2. 你所调查的50名男同学所穿运动鞋尺码的平均数、中位数、众数分别是多少?你认为学校商店应多进哪种尺码的男式运动鞋?第四环节:课堂小结议一议:平均数、中位数和众数有哪些特征?1. 用平均数作为一组数据的代表,比较可靠和稳定,它与这组数据中的每一个数都有关系,对这组数据所包含的信息的反映最为充分,因此在现实生活中较为常用,但它容易受极端值的影响.2. 用中位数作为一组数据的代表,可靠性比较差,它不能充分利用所有数据的信息,但它不受极端值的影响,当一组数据中有个别数据变动较大时,可用它来描述这组数据的“集中趋势”.3. 用众数作为一组数据的代表,可靠性也比较差,其大小只与这组数据中的部分数据有关,但它不受极端值的影响.当一组数据中某些数据多次重复出现时,众数往往是人们尤为关心的一种统计量.要根据不同的实际需要,确定是用平均数、中位数还是众数来反映数据的平均水平.第五环节:布置作业●板书设计:●课后反思:●课题:3.从统计图分析数据的集中趋势●教学目标:(一)知识与技能:进一步理解平均数、中位数、众数等的实际含义;能从条形统计图、扇形统计图等统计图表中获取信息,求出或估计相关数据的平均数、中位数、众数.(二)过程与方法:初步经历数据的获取,并求出或估计相关数据的平均数、中位数、众数的过程,发展学生初步的统计意识和数据处理能力.(三)情感态度与价值观:通过探索活动,培养学生的探索精神和创新意识;通过相互间合作交流,让所有学生都有所获,共同发展.●教学重点:●教学难点:●教学方法:●教具准备:●教学过程:第一环节:情境引入为了检查面包的质量是否达标,随机抽取了同种规格的面包10个,这10个面包的质量如下图所示.(1)这10个面包质量的众数、中位数分别是多少?(2)估计这10个面包的平均质量,再具体算一算,看看你的估计水平如何.内容1:试一试:某次射击比赛,甲队员的成绩如下:(1)根据统计图,确定10次射击成绩的众数、中位数,说说你的做法,与同伴交流.(2)先估计这10次射击成绩的平均数,再具体算一算,看看你的估计水平如何.内容2:议一议:甲、乙、丙三支青年排球队各有12名队员,三队队员的年龄情况如下图:甲队队员年龄123451819202122年龄/岁人数乙队队员年龄1234561819202122年龄/岁人数丙队队员年龄1234561819202122年龄/岁人数(1)观察三幅图,你能从图中分别看出三支球队队员年龄的众数吗?中位数呢?(2)根据图表,你能大致估计出三支球队队员的平均年龄哪个大、哪个小吗?你是怎么估计的?与同伴交流.(3)计算出三支球队队员的平均年龄,看看你上面的估计是否准确? 内容3:做一做:小明调查了班级里20位同学本学期计划购买课外书的花费情况,并将结果绘制成了下面的统计图.(1)在这20位同学中,本学期计划购买课外书的花费的众数是多少? (2)计算这20位同学计划购买课外书的平均花费是多少?你是怎么计算的?与同伴交流.(3)在上面的问题,如果不知道调查的总人数,你还能求平均数吗?初三(1)班体育成绩510152025不及格及格中良好优秀成绩人数初三(2)班体育成绩510152025不及格及格中良好优秀成绩人数第三环节:运用提高内容:1. 课本P 145随堂练习题.2. 下图反映了初三(1)班、(2)班的体育成绩.(1)不计算,根据条形统计图,你能判断哪个班学生的体育成绩好一些吗? (2)你能从图中观察出各班学生体育成绩等级的“众数”吗?(3)如果依次将不及格、及格、中、良好、优秀记为55、65、75、85、95分,分别估算一下,两个班学生体育成绩的平均值大致是多少?算一算,看看你估计的结果怎么样?(4)初三(1)班学生体育成绩的有什么关系?你能说说其中的理由吗? 第四环节:课堂小结在本节课的学习中,你通过从统计图估计数据的平均数、中位数和众数的学习有什么认识,有什么经验?(学生交流,教师小结).第五环节:布置作业● 板书设计:● 课后反思:●课题:4.数据的离散程度(第1课时)●教学目标:(一)知识与技能:了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值.(二)过程与方法:经历表示数据离散程度的几个量度的探索过程,通过实例体会用样本估计总体的统计思想,培养学生的数学应用能力.(三)情感态度与价值观:通过小组合作活动,培养学生的合作意识;通过解决实际问题,让学生体会数学与生活的密切联系.●教学重点:●教学难点:●教学方法:●教具准备:●教学过程:第一环节:情境引入为了提高农副产品的国际竞争力,一些行业协会对农副产品的规格进行了划分,某外贸公司要出口一批规格为75g的鸡腿.现有2个厂家提供货源,它们的价格相同,鸡腿的品质也相近.质检员分别从甲、乙两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:甲厂:75 74 74 76 73 76 75 77 77 7474 75 75 76 73 76 73 78 77 72乙厂:75 78 72 77 74 75 73 79 72 7580 71 76 77 73 78 71 76 73 75把这些数据表示成下图:质量/g甲厂乙厂(1)你能从图中估计出甲、乙两厂被抽取鸡腿的平均质量是多少?(2)求甲、乙两厂被抽取鸡腿的平均质量,并在图中画出表示平均质量的直线.(3)从甲厂抽取的这20只鸡腿质量的最大值是多少?最小值又是多少?它们相差几克?从乙厂抽取的这20只鸡腿质量的最大值又是多少?最小值呢?它们相差几克?(4)如果只考虑鸡腿的规格,你认为外贸公司应购买哪家公司的鸡腿? 在学生讨论交流的的基础上,结合实例给出极差的概念:极差是指一组数据中最大数据与最小数据的差.它是刻画数据离散程度的一个统计量.第二环节:合作探究内容1: 如果丙厂也参与了竞争,从该厂抽样调查了20只鸡腿,它们的质量数据如下图:质量/g (1)丙厂这20只鸡腿质量的平均数和极差分别是多少?(2)如何刻画丙厂这20只鸡腿的质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与其相应平均数的差距.(3)在甲、丙两厂中,你认为哪个厂的鸡腿质量更符合要求?为什么? 数学上,数据的离散程度还可以用方差或标准差刻画. 方差是各个数据与平均数之差的平方的平均数,即:()()()[]222212 (1)x x x x x x ns n -++-+-=注:x 是这一组数据x 1,x 2,…,x n 的平均数,s 2是方差,而标准差就是方差的算术平方根.一般说来,一组数据的极差、方差、标准差越小,这组数据就越稳定.说明:标准差的单位与已知数据的单位相同,使用时应当标明单位;方差的单位是已知单位的平方,使用时可以不标明单位.内容2:由学生自主探索用计算器求下列一组数据的标准差:98 99 101 102 100 96 104 99 101 100请你使用计算器探索求一组数据的标准差的具体操作步骤.具体操作步骤是(以CZ1206为例):1.进入统计计算状态,按;2.输入数据然后按,显示的结果是输入数据的累计个数;3.按即可直接得出结果.内容3:1.分别计算从甲、丙两厂抽取的20只鸡腿质量的方差.2.根据计算结果,你认为哪家的产品更符合规格要?通过用计算器能计算出甲、丙两厂抽取的20只鸡腿的方差,得出方差较小的甲厂的产品更符合要求.第三环节:运用提高内容:1、甲、乙两支仪仗队队员的身高(单位:cm)如下:甲队:178 177 179 179 178 178 177 178 177 179乙队:178 177 179 176 178 180 180 178 176 178 哪支仪仗队队员的身高更为整齐?你是怎么判断的?学生在正确计算出两队的方差后,可判断出方差较小的仪仗队更为整齐.第四环节:课堂小结第五环节:布置作业●板书设计:●课后反思:●课题:4.数据的离散程度(第2课时)●教学目标:(一)知识与技能:进一步了解极差、方差、标准差的求法;会用极差、方差、标准差对实际问题做出判断.(二)过程与方法:经历对统计图中数据的读取与处理,发展学生初步的统计意识和数据处理能力.根据极差、方差、标准差的大小对实际问题作出解释,培养学生解决问题能力.(三)情感态度与价值观:通过解决现实情境中的问题,提高学生数学统计的素养,用数学的眼光看世界.通过小组活动,培养学生的合作意识和交流能力.●教学重点:●教学难点:●教学方法:●教具准备:●教学过程:第一环节:情境引入(1)回顾:什么是极差、方差、标准差?方差的计算公式是什么?一组数据的方差与这组数据的波动有怎样的关系?(2)计算下列两组数据的方差与标准差:①1,2,3,4,5;②103,102,98,101,99.第二环节:合作探究内容1:如图是某一天A、B两地的气温变化图,请回答下列问题:(1)这一天A、B两地的平均气温分别是多少?(2)A地这一天气温的极差、方差分别是多少?B地呢?(3)A、B两地的气候各有什么特点?A地内容2:我们知道,一组数据的方差越小,这组数据就越稳定,那么,是不是方差越小就表示这组数据越好呢?我们通过实例来探讨.议一议:某校从甲、乙两名优秀选手中选一名选手参加全市中学生运动会跳远比赛,该校预先对这两名选手测试了10次,测试成绩如下表:1 2 3 4 5 6 7 8 9 10选手甲的成绩(cm)585 596 610 598 612 597 604 600 613 601 选手乙的成绩(cm)613 618 580 574 618 593 585 590 598 624 (1)他们的平均成绩分别是多少?(2)甲、乙这10次比赛成绩的方差分别是多少?(3)这两名运动员的运动成绩各有什么特点?(4)历届比赛表明,成绩达到596cm就很可能夺冠,你认为为了夺冠应选谁参加这项比赛?(5)如果历届比赛表明,成绩达到610cm就能打破记录,你认为为了打破记录应选谁参加这项比赛?内容3:做一做:(1)两人一组,在安静的环境中,一人估计1分钟的时间,另一人记下实际时间,将结果记录下来.(2)在吵闹的环境中,再做一次这样的试验.(3)将全班的结果汇总起来,并分别计算安静状态和吵闹环境中估计结果的平均值和方差.(4 Array第三环节:运用提高内容:1. 甲、乙、丙三人的射击成绩如图所示:请回答:三人中,谁射击成绩更好,谁更稳定?你是怎么判断的?2.某校从甲乙两名优秀选手中选一名选手参加全市中学生田径百米比赛(100米记录为12.2秒,通常情况下成绩为12.5秒可获冠军).该校预先对这两名选手测试了8次,测试成绩如下表:1 2 3 4 5 6 7 8选手甲的成绩(秒)12.1 12.4 12.8 12.5 13 12.6 12.4 12.2 选手乙的成绩(秒)12 11.9 12.8 13 13.2 12.8 11.8 12.5 根据测试成绩,请你运用所学过的统计知识做出判断,派哪一位选手参加比赛更好?为什么?第四环节:课堂小结在本节课的学习中,你对方差的大小有什么新的认识?(学生交流,教师点拨,达成共识).新认识:方差越小表示这组数据越稳定,但不是方差越小就表示这组数据越好,而是对具体的情况进行具体分析才能得出正确的结论.第五环节:布置作业●板书设计:●课后反思:●课题:回顾与思考●教学目标:(一)知识与技能:会用计算器准确地求出一组数据的平均数、中位数和众数.了解平均数、中位数和众数的差别,能选择恰当的数据代表对数据作出评判,并解决实际问题.(二)过程与方法:初步经历调查、统计、分析、研讨等活动过程,在活动发展学生综合运用统计知识解决实际问题的能力.(三)情感态度与价值观:通过本章内容的回顾与思考,培养学生整理归纳知识的方法,逐步养成勤于思考、善于总结的好习惯.●教学重点:●教学难点:●教学方法:●教具准备:●教学过程:第一环节:归纳知识结构内容:本章内容已全部学完,请大家回忆一下,这一章学了哪些内容?这些内容之间有什么联系呢?留出时间让学生思考、交流、梳理知识,然后师生共同归纳总结出如下知识结构图:第二环节:回顾重点内容内容:引导学生根据知识结构图,把重点知识内容再回顾一下:1. 平均数、中位数、众数的概念及举例一般地,对于n个数x1,x2,…,xn,我们把n1(x1+x2+…+xn),叫做这n个数的算术平均数,简称平均数.一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.一组数据中出现次数最多的那个数据叫做这组数据的众数.2. 平均数、中位数、众数的特征(1)平均数、中位数、众数都是表示一组数据“平均水平”的特征数.(2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁.(3)中位数的计算简单,受极端数字影响较小,但不能充分利用所有数字的信息.当一组数据中个别数据变动较大时,可选择中位数来表示这组数据的“集中趋势”.(4)众数的可靠性较差,它不受极端数据的影响,求法简便.当一组数据中某些数据多次重复出现时,众数是我们关心的一种统计量.3. 算术平均数和加权平均数的联系与区别及举例算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数.4. 加权平均数中权的差异对平均数的影响及举例在实际问题中,一组数据里的各个数据的权未必相同,权的差异对平均数的影响较大.加权平均数中,由于权的不同,会导致结果的差异.第三环节:综合运用提高内容:1.从一批零件毛坯中抽取10件,称得它们的质量如下(单位:克): 400.0 400.3 401.2 398.9 399.8399.8 400.0 400.5 399.7 399.8利用计算器求出这10个零件的平均质量.2. 某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?3. 某公司销售部有营销人员15人,销售部为了制定某种商品的月销售量,统计了这(1)求这15位营销人员该月销售量的平均数、中位数和众数;(2)假设销售部负责人把每位营销员的月销售量定为320件,你认为是否。

八年级数学上册6.1平均数教学设计 (新版北师大版)

八年级数学上册6.1平均数教学设计 (新版北师大版)

八年级数学上册6.1平均数教学设计(新版北师大版)一. 教材分析平均数是八年级数学上册6.1的内容,主要让学生了解平均数的含义,掌握求平均数的方法,并能够运用平均数解决实际问题。

本节内容是在学生已经掌握了整数、实数、算术运算等知识的基础上进行学习的,为后续学习方差、标准差等统计量奠定了基础。

二. 学情分析八年级的学生已经具备了一定的数学基础,但对于平均数的理解和应用还有一定的困难。

学生在学习过程中,需要通过实例来理解平均数的含义,并通过大量的练习来掌握求平均数的方法。

同时,学生需要能够将平均数应用到实际问题中,提高解决实际问题的能力。

三. 教学目标1.了解平均数的含义,理解平均数在实际生活中的应用。

2.掌握求平均数的方法,能够熟练地计算平均数。

3.能够运用平均数解决实际问题,提高解决实际问题的能力。

四. 教学重难点1.重点:理解平均数的含义,掌握求平均数的方法。

2.难点:将平均数应用到实际问题中,提高解决实际问题的能力。

五. 教学方法1.实例教学法:通过具体的实例,让学生了解平均数的含义和应用。

2.练习法:通过大量的练习,让学生掌握求平均数的方法。

3.问题解决法:引导学生运用平均数解决实际问题,提高解决实际问题的能力。

六. 教学准备1.教学课件:制作课件,展示平均数的含义和求法。

2.练习题:准备一些练习题,让学生进行练习。

3.实际问题:准备一些实际问题,引导学生运用平均数解决。

七. 教学过程1.导入(5分钟)利用课件展示一些与平均数相关的实际问题,如班级学生的身高、体重等,引导学生思考:如何求这些数据的平均值?从而引出本节课的主题——平均数。

2.呈现(10分钟)讲解平均数的含义,让学生理解平均数是反映一组数据集中趋势的量。

通过举例说明,让学生了解平均数在实际生活中的应用。

3.操练(10分钟)让学生进行一些求平均数的练习,如计算班级学生的身高、体重等数据的平均值。

教师引导学生运用所学知识解决问题,并及时给予解答和指导。

北师大版数学八年级上册6.1平均数(第一课时)优秀教学案例

北师大版数学八年级上册6.1平均数(第一课时)优秀教学案例
随后,我会引导学生探讨平均数的性质,如:平均数是否受极端数据的影响、平均数是否一定能反映一组数据的真实情况等。通过这些讨论,让学生更深入地理解平均数的性质。
(三)学生小组讨论
在学生小组讨论环节,我会让学生分成小组,共同探讨一些与平均数相关的问题。例如:如何求一组数据的平均数?平均数在实际生活中有哪些应用?学生在讨论过程中,可以互相交流自己的观点和想法,提高他们的合作能力和解决问题的能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,让学生感受数学与生活的紧密联系,激发学生学习数学的内在动机。
2.培养学生积极思考、勇于探究的学习态度,让学生在解决实际问题的过程中,体验到数学的价值和乐趣。
3.通过对平均Байду номын сангаас的学习,培养学生公正、公平的价值观,让学生明白平均数是表示一组数据集中趋势的量,不应受到极端数据的影响。
北师大版数学八年级上册6.1平均数(第一课时)优秀教学案例
一、案例背景
北师大版数学八年级上册6.1平均数(第一课时)优秀教学案例,是基于学生已掌握小学阶段平均数概念的基础上,进一步深化对平均数性质和应用的理解。本节课的主要内容是引导学生通过现实生活中的实例,探究平均数的求法及其含义,培养学生解决实际问题的能力。
案例背景以一个班级学生的身高数据为例,让学生感受平均数在实际生活中的应用。教师可以设计一个身高统计表,展示班级中男女生各自的身高数据,并提出问题:“如果想知道这个班级学生的平均身高,应该如何计算?”引导学生思考并探讨求平均数的方法。
在学生探讨过程中,教师引导学生注意到,求平均数需要将所有数据加起来,然后除以数据的个数。通过对实际数据的处理,让学生体验到平均数的求法,并理解平均数是表示一组数据集中趋势的量。

北师大版数学八年级上册6.1平均数教学设计

北师大版数学八年级上册6.1平均数教学设计
1.教师通过多媒体展示一组数据:某班级学生身高的测量结果。引导学生观察这组数据,并提出问题:“如何描述这组数据的集中趋势?”
2.学生思考并回答,教师总结:我们可以通过计算平均数来描述数据的集中趋势。接着,教师提问:“平均数是什么?它有什么意义?”
3.学生根据已有知识,尝试回答问题。教师给予肯定,并引出本节课的教学内容:平均数。
4.实践题:让学生以小组为单位,选择一个感兴趣的话题,如班级学生的阅读量、家庭成员的业余运动时间等,进行调查和统计,计算平均数,并撰写调查报告,分析平均数背后的意义。
作业要求:
1.学生需独立完成作业,认真思考,确保解答的正确性。
2.提高题和拓展题要求学生写出解题过程,展示数据分析的能力。
3.实践题要求小组成员分工合作,共同完成调查和统计工作,撰写报告时要注重逻辑性和条理性。
1.培养学生对数学学科的兴趣,激发学习热情,使他们在学习过程中感受到数学的实用性和趣味性。
2.引导学生认识到平均数在生活中的广泛应用,增强数学与现实生活的联系,提高数学学习的积极性。
3.培养学生具备正确的价值观,使他们明白平均数只是一个反映数据集中趋势的指标,不能完全代表个体情况,避免用平均数对个体进行片面评价。
5.练习巩固:设计一些练习题,让学生独立完成,巩固所学知识。
6.总结拓展:对本节课所学内容进行总结,强调平均数的实际应用和意义,引导学生运用平均数解决生活中的问题。
7.课后作业:布置一些与平均数相关的实际问题,让学生课后完成,巩固所学知识,提高解决问题的能力。
二、学情分析
八年级的学生已经具备了一定的数学基础,掌握了基本的算术运算和数据分析能力。在学习平均数这一章节之前,学生们已经了解了数据收集、整理和描述的方法,具备了对数据进行简单统计分析的能力。但在抽象思维和逻辑推理方面,部分学生仍需加强。

北师大版数学八年级上册 6.1《平均数》教学设计

第六章数据的分析6.1平均数(第1课时)教学设计教材的地位与作用教学本节课主要让学生掌握数据统计中的算术平均数及加权平均数的概念,并学会数据分析作出决策,本节内容与生活密切相关,是学生应用数学知识解决实际问题的良好素材,也是教师对学生进行数学文化教育的途径之一1.掌握算术平均数,加权平均数的概念。

2.会求一组数据的算术平均数和加权平均数1.通过对数据的处理,发展学生初步的统计意识和数据处理的能力。

2.根据有关平均数的问题的解决,培养学生的合作意识和能力1.通过小组合作的活动,培养学生的合作意识和能力。

2.通过解决实际问题,让学生体会数学与生活的密切联系算术平均数,加权平均数的概念及计算加权平均数的概念及计算讨论法与启发性教学法多媒体、实物投影、计算器、《讲学稿(导学练)》、《课堂风采展示互评表》知识与技能过程与方法情感、态度与价值观重点难点目标教学重难点教学方法教学用具课前活动教学过程1.成立学习小组;2.选合作学习小组组长;3.学习合作要求。

4.小组合作学习《课堂风采展示互评表》有关内容。

一、自主学习:通过对《课堂风采展示互评1.计算25、16、15、20的平均数。

表》的操作培训,自然引出本2.计算12、9、16、15、11、21的平均数。

章课题,让学生切实体会“数写出求平均数的计算公式:学源于生活”,从而激发学生学习兴趣。

二、合作交流:CBA (中国篮球协会)2019-2019赛季冠亚军球队主要队员的身高、年龄,见课本136页图表:(阅读后回答)此题数据庞大,在设计教学环节中即需要用计算器运算,更1.北京金隅队队员平均身高,北京金隅队队员平均年龄。

需要小组合理分配、通力合(奇数组计算)2.广东东莞银行队队员平均身高,广东东莞银行队队员作。

目的:本题除了培养应用知识平均年龄。

(偶数组计算)的能力,更重要的培养学生动3.球队队员的身材更高大,球队队员更为年轻。

4.小组合作交流有没有更简单的计算北京金隅队队员平均年龄的手能力、合作能力方法。

八年级数学上册6.1平均数教案 新版北师大版

八年级数学上册6.1平均数教案新版北师大版一. 教材分析平均数是八年级数学上册6.1节的内容,新版北师大版教材在这一节主要介绍了平均数的定义、性质和求法。

通过学习,学生能够理解平均数的含义,掌握求平均数的方法,并能够运用平均数解决实际问题。

二. 学情分析学生在之前的学习中已经接触过一些统计和数据处理的知识,对于平均数的概念可能有一定的了解。

但是,对于平均数的性质和求法可能还不够熟悉。

因此,在教学过程中,需要引导学生通过实际例子来理解平均数的含义,并通过练习来巩固求平均数的方法。

三. 教学目标1.知识与技能:学生能够理解平均数的含义,掌握求平均数的方法,并能够运用平均数解决实际问题。

2.过程与方法:学生通过实际例子和练习,培养观察、分析和解决问题的能力。

3.情感态度与价值观:学生能够认识到数学与生活的联系,增强对数学的兴趣和信心。

四. 教学重难点1.重点:学生能够理解平均数的含义,掌握求平均数的方法。

2.难点:学生能够运用平均数解决实际问题。

五. 教学方法1.情境教学法:通过实际例子和情境,引导学生理解平均数的含义。

2.练习法:通过练习题,巩固求平均数的方法。

3.引导法:教师引导学生通过观察、分析和归纳来得出平均数的性质和求法。

六. 教学准备1.教具准备:黑板、粉笔、练习题。

2.教学资源:教材、多媒体课件。

七. 教学过程1.导入(5分钟)通过一个实际例子,如班级一次考试的成绩,引导学生思考如何求这个班级的平均成绩。

引发学生对平均数的兴趣。

2.呈现(10分钟)介绍平均数的定义和性质,通过多媒体课件展示平均数的性质和求法。

引导学生通过观察和分析,理解平均数的含义。

3.操练(10分钟)给学生发放练习题,让学生独立完成。

题目包括求一些数据的平均数,以及运用平均数解决实际问题。

教师在过程中给予学生必要的指导。

4.巩固(10分钟)学生分组讨论,互相交流解题心得和方法。

教师提问学生,了解学生的掌握情况,并给予及时的反馈和指导。

北师大版八年级数学上册第6章教案(教学设计)

第六章数据的分析6.1 平均数(第一课时)教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

重点、难点:1、重点:会求加权平均数2、难点:对“权”的理解教学过程:(一)课堂引入:1、若不选择教材中的引入问题,也可以替换成更贴近学生学习生活中的实例,下举一例可供借鉴参考。

求该校初二年级在这次数学考试中的平均成绩?下述计算方法是否合理?为什么?=(79+80+81+82)=80.5(二)、例习题分析:例1和例2均为计算数据加权平均数型问题,因为是初学尤其之前与平均数计算公式已经作过比较,所以这里应该让学生搞明白问题中是否有权数,即是选择普通的平均数计算还是加权平均数计算,其次若用加权平均数计算,权数又分别是多少?例2的题意理解很重要,一定要让学生体会好这里的几个百分数在总成绩中的作用,它们的作用与权的意义相符,实际上这几个百分数分别表示几项成绩的权。

(三)随堂练习:1、老师在计算学期总平均分的时候按如下标准:作业占100%、测验占30%、期中占35%、期末考试占35%,小关和小兵的成绩如下表:2、为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行测量,求这些灯泡的平均使用寿命?答案:1. =79.05 =80 2. =597.5小时(四)课堂小结:概述本节所学知识。

(五)课后练习:1、在一个样本中,2出现了x次,3出现了x次,4出现了x次,5出现了x次,则这个样本的平均数为 .2、某人打靶,有a次打中环,b次打中环,则这个人平均每次中靶环。

3、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、试判断谁会被公司录取,为什么?4、在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。

北师大版八年级上册6.1平均数(教案)

举例1:在计算平均数时,如何处理缺失数据或异常值,确保计算结果更具代表性。
举例2:解释平均数与中位数、众数在反映数据集中趋势时的不同特点,如平均数受异常值影(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“平均数”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算平均值的情况?”(如计算小组同学的平均身高)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平均数的奥秘。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平均数的基本概念、计算方法和在实际生活中的应用。通过实践活动和小组讨论,我们加深了对平均数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在实践活动方面,我发现同学们在分组讨论和实验操作过程中,参与度较高,能够积极投入到活动中。但我也注意到,有些小组在讨论时,个别同学过于依赖其他成员,自己思考不够。针对这个问题,我会在接下来的教学中,加强个别指导,鼓励每个同学都积极参与讨论,发挥自己的主观能动性。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平均数的基本概念。平均数是一组数据加起来除以数据个数得到的结果,它反映了数据的集中趋势。平均数在统计学中非常重要,可以帮助我们更好地理解数据的特征。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了平均数在计算班级同学平均成绩中的应用,以及它如何帮助我们了解班级的整体水平。
北师大版八年级上册6.1平均数(教案)
一、教学内容
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平均数
课题
平均数
课时安排
共(2)课时
上述两支篮球队中,哪支球队队员的身高更高?哪支球队的队员更为年轻?你是怎样判断的?与同伴进行交流.
自学互研 生成能力
平均年龄=(19×1+22×4+23×2+26×2+27×1+28×2+29×2+35×1)÷(1+4+2+2+1+2+2+1)=25.4(岁).

(修改人:)
板书设计:
平均数
教学反ห้องสมุดไป่ตู้:
通过探索算术平均数和加权平均数的联系与区别,培养学生的思维能力;通过有关平均数问题的解决,提升学生的数学应用能力.通过解决实际问题,体会数学与社会生活的密切联系,了解数学的价值,增进学生对数学的理解和增加学好数学的信心.
此资源为word格式,您下载后可以自由编辑,让智慧点亮人生,用爱心播种未来。感谢您的选用。
(3)(1),(2)问的结果一样吗?说明了什么?
课中作业实际问题中,一组数据里的各个数据的“重要程度”未必相同.因而,在计算这组数据的平均数时,往往给每个数据一个“权”.
例如在例题中4,3,1分别是创新,综合知识,语言三项测试成绩的权.则 为A的三项测试成绩的加权平均数.
交流展示 生成新知
课后作业设计:课本140页,习题6.2


师生合作完成教材第137页例题的学习与探究.
例 某广告公司欲招聘广告策划人员一名,对A、B、C三名候选人进行了三项素质测试.他们的各项测试成绩如下表所示:
测试项目
测试成绩/分
A
B
C
创新
72
85
67
综合知识
50
74
70
语言
88
45
67
(1)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?
(2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4∶3∶1的比例确定各人的测试成绩,此时谁将被录用?
相关文档
最新文档