初中数学公式合集
初中必背88个数学公式打印

初中必背88个数学公式打印1、过两点有且只有一条直线。
2、两点之间线段最短。
3、同角或等角的补角相等。
4、同角或等角的余角相等。
5、过一点有且只有一条直线和已知直线垂直。
6、直线外一点与直线上各点连接的所有线段中,垂线段最短。
7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行。
8、如果两条直线都和第三条直线平行,这两条直线也互相平行。
9、同位角相等,两直线平行。
10、内错角相等,两直线平行。
11、同旁内角互补,两直线平行。
12、两直线平行,同位角相等。
13、两直线平行,内错角相等。
14、两直线平行,同旁内角互补。
15、定理:三角形两边的和大于第三边。
16、推论:三角形两边的差小于第三边。
17、三角形内角和定理:三角形三个内角的和等于180°。
18、推论1:直角三角形的两个锐角互余。
19、推论2:三角形的一个外角等于和它不相邻的两个内角的和。
20、推论3:三角形的一个外角大于任何一个和它不相邻的内角。
21、全等三角形的对应边、对应角相等。
22、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等。
23、角边角公理( ASA):有两角和它们的夹边对应相等的两个三角形全等。
24、有两角和其中一角的对边对应相等的两个三角形全等。
25、边边边公理(SSS):有三边对应相等的两个三角形全等。
26、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等。
27、定理1:在角的平分线上的点到这个角的两边的距离相等。
28、定理2:到一个角的两边的距离相同的点,在这个角的平分线上。
29、角的平分线是到角的两边距离相等的所有点的集合。
30、等腰三角形的性质定理:等腰三角形的两个底角相等 (即等边对等角)。
31、等腰三角形顶角的平分线平分底边并且垂直于底边。
32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合。
33、等边三角形的各角都相等,并且每一个角都等于60°。
初中数学公式大全

初中数学公式大全1.三角函数公式:- sin(A+B) = sinAcosB + cosAsinB- cos(A+B) = cosAcosB - sinAsinB- tan(A+B) = (tanA + tanB) / (1- tanAtanB)- sin2A = 2sinAcosA- cos2A = cos^2(A) - sin^2(A)- tan2A = (2tanA) / (1-tan^2(A))2.三角正弦定理:a / sinA =b / sinB =c / sinC(其中a、b、c为三角形的边长,A、B、C为对应的角度) 3.三角余弦定理:c^2 = a^2 + b^2 - 2abcosC(其中a、b、c为三角形的边长,C为对应的角度)4.二次方程求根公式:x = (-b ± √(b^2 - 4ac)) / (2a)(其中a、b、c为二次方程ax^2 + bx + c = 0的系数)5.直角三角形勾股定理:a^2+b^2=c^2(其中a、b为直角三角形的两条直角边,c为斜边)6.两点间距离公式:AB=√((x2-x1)^2+(y2-y1)^2)(其中A(x1,y1)、B(x2,y2)为平面上两点的坐标)7.平行线性质:-相交线段比例定理:若把两条平行线分别与一条直线相交,那么直线所夹各相交线段的比例是相同的。
-平行线的倾斜角相等。
8.圆的性质:-周长公式:C=2πr-面积公式:S=πr^2(其中r为圆的半径)9.百分数计算公式:-部分数=(部分/总数)×100%-总数=(部分数/百分数)×100%-百分数=(部分数/总数)×100%10.数列公式:-等差数列通项公式:an = a1 + (n-1)d(其中an为第n项,a1为首项,d为公差)-等差数列前n项和公式:Sn = (a1 + an) * n / 2 -等比数列通项公式:an = a1 * r^(n-1)(其中an为第n项,a1为首项,r为公比)-等比数列前n项和公式:Sn=a1*(1-r^n)/(1-r)。
初中数学所有公式中考必备

初中数学所有公式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数1、正方形:C周长S面积a边长周长=边长×4,C=4a 面积=边长×边长,S=a×a2、正方体:V:体积a:棱长表面积=棱长×棱长×6 ,S表=a×a×6体积=棱长×棱长×棱长,V=a×a×a3、长方形C周长S面积a边长周长=(长+宽)×2 ,C=2(a+b) 面积=长×宽,S=ab4、长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2 ,S=2(ab+ah+bh)(2)体积=长×宽×高,V=abh5、三角形s面积a底h高面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形:s面积a底h高面积=底×高s=ah7、梯形:s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形:S面积C周长∏ d=直径r=半径(1)周长=直径×∏=2×∏×半径,C=∏d=2∏r(2)面积=半径×半径×∏9、圆柱体:v体积h:高s底面积r底面半径c底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体:v体积h高s底面积r底面半径体积=底面积×高÷3植树问题1、非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2、封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1小时=60分1分=60秒1小时=3600秒小学数学几何形体周长面积体积计算公式1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.×a=a25、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2 ,S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径=πr2常见的初中数学公式1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理(ASA) 有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247 勾股定理的逆定理如果三角形的三边长a、b、c有a2+b2=c2关系,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理n边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形60 矩形性质定理1 矩形的四个角都是直角61 矩形性质定理2 矩形的对角线相等62 矩形判定定理1 有三个角是直角的四边形是矩形63 矩形判定定理2 对角线相等的平行四边形是矩形64 菱形性质定理1 菱形的四条边都相等65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即S=(a×b)÷267 菱形判定定理1 四边都相等的四边形是菱形68 菱形判定定理2 对角线互相垂直的平行四边形是菱形69 正方形性质定理1 正方形的四个角都是直角,四条边都相等70 正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理1 关于中心对称的两个图形是全等的72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74 等腰梯形性质定理等腰梯形在同一底上的两个角相等75 等腰梯形的两条对角线相等76 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77 对角线相等的梯形是等腰梯形78 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 ,S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三点确定一个圆。
初中数学公式大全(绝对经典)

初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
初中数学各种常用公式大全

初中数学各种常用公式大全初中数学是我们学习过程中的重要学科之一,其中包含了大量的公式。
接下来,本文将为大家整理出初中数学中各种常用公式大全。
1. 直线方程:点斜式:y - y1 = k(x - x1)斜截式:y = kx + b截距式:x/a + y/b = 12. 二次函数:标准式:y = a(x - m)² + n顶点式:y = a(x - h)² + k一般式:y = ax² + bx + c3. 三角函数:正弦函数:sin θ = 对边 / 斜边余弦函数:cos θ = 临边 / 斜边正切函数:tan θ = 对边 / 临边余切函数:cot θ = 临边 / 对边4. 平面几何:欧拉公式:V - E + F = 2三角形面积公式:S = 1/2bh 正方形面积公式:S = a²长方形面积公式:S = ab圆面积公式:S = πr²圆周长公式:C = 2πr5. 空间几何:球体表面积公式:S = 4πr²球体体积公式:V = (4/3)πr³直角坐标系中两点距离公式:d = √((x2-x1)² + (y2-y1)² + (z2-z1)²)6. 概率统计:全概率公式:P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bn)P(Bn) 贝叶斯公式:P(B|A) = P(A|B)P(B) / [P(A|B)P(B) + P(A|Bc)P(Bc)]期望公式:E(X) = ∑xiP(xi)方差公式:Var(X) = E(X²) - [E(X)]²以上就是初中数学各种常用公式的大全。
在学习过程中,我们需要结合不同的题型,运用不同的公式,寻找最佳解决方案,让我们更好地应对数学考试。
初中所有数学公式

1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角对应相等,两三角形相似(ASA)92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94判定定理3三边对应成比例,两三角形相似(SSS)95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97性质定理2相似三角形周长的比等于相似比98性质定理3相似三角形面积的比等于相似比的平方99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
初中数学各种公式大全
初中数学各种公式大全初中数学中有很多重要的公式,下面是一份初中数学各种公式的完整版,包括代数、几何、概率统计等方面的公式。
一、代数篇1.平方差公式:$(a+b)(a-b)=a^2-b^2$2. 完全平方公式:$(a+b)^2=a^2+2ab+b^2$、$(a-b)^2=a^2-2ab+b^2$3. 二次方程的根与系数的关系:若$x_1$和$x_2$是方程$ax^2+bx+c=0$的两个根,则$x_1+x_2=-\frac{b}{a}$、$x_1x_2=\frac{c}{a}$4. 一元一次方程求解公式:$x=\frac{c-b}{a}$5.等差数列通项公式:$a_n=a_1+(n-1)d$6.等差数列前n项和公式:$S_n=\frac{n}{2}(a_1+a_n)=\frac{n}{2}[2a_1+(n-1)d]$7.等比数列通项公式:$a_n=a_1\cdot q^{(n-1)}$8.等比数列前n项和公式(当$,q,<1$时):$S_n=\frac{a_1(1-q^n)}{1-q}$9. 二项式定理:$(a+b)^n=C_n^0a^n+C_n^1a^{(n-1)}b+C_n^2a^{(n-2)}b^2+...+C_n^kb^{(n-k)}+...+C_n^nb^n$10. 二次根式的性质:$\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}$和$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$二、几何篇1.相似三角形的性质:对应角相等、对应边成比例2.直角三角形勾股定理:若$a$、$b$、$c$为直角三角形的两条直角边和斜边,则$c^2=a^2+b^2$3. 正弦定理:$\frac{a}{\sin A}=\frac{b}{\sinB}=\frac{c}{\sin C}=2R$(其中$R$为三角形外接圆的半径)4. 余弦定理:$c^2=a^2+b^2-2ab\cos C$5. 面积公式:$\triangle ABC=\frac{1}{2}ab\sin C$6. 圆的面积公式:$S=\pi r^2$7. 矩形面积公式:$S=a\cdot b$8. 平行四边形面积公式:$S=bh$9. 梯形面积公式:$S=\frac{1}{2}(a+b)h$10. 扇形面积公式:$S=\frac{1}{2}r^2\theta$三、概率与统计篇1. 事件的概率:$P(A)=\frac{N(A)}{N(S)}$(其中$N(A)$为事件$A$发生的次数2. 随机事件的概率:$P(A\cup B)=P(A)+P(B)-P(A\cap B)$3.等可能事件的概率:$P(A)=\frac{m}{n}$(其中$m$为事件$A$的可能结果数,$n$为试验的总可能结果数)4. 组合数公式:$C_n^k=\frac{n!}{k!(n-k)!}$(其中$n!$表示$n$的阶乘)5. 二项分布公式:$P(X=k)=C_n^kp^kq^{(n-k)}$(其中$X$为二项分布的随机变量,$p$为单次实验中事件$A$的概率,$q=1-p$)6. 正态分布标准化公式:$x=\frac{X-\mu}{\sigma}$(其中$X$为正态分布的随机变量,$\mu$为正态分布的均值,$\sigma$为正态分布的标准差)以上是初中数学中各种公式的完整版,供你参考。
初中数学公式大全表
初中数学公式大全表初中数学是数学学科中的一部分,涵盖了代数、几何、函数、概率统计等内容。
在初中数学学习中,学生需要掌握一些基础的数学公式,以便在解题过程中能够快速运用。
下面是初中数学常用的一些公式大全表:1. 代数公式:- 次方公式:(a+b) = a + 2ab + b, (a-b) = a - 2ab + b- 平方差公式:a - b = (a+b)(a-b)- 和差化积公式:sin(a±b) = sin(a)cos(b) ± cos(a)sin(b), cos(a±b) = cos(a)cos(b) sin(a)sin(b)- 二次方程求根公式:x = (-b ±√(b-4ac)) / (2a)2. 几何公式:- 面积公式:矩形面积 = 长×宽, 三角形面积 = 1/2 ×底×高- 周长公式:矩形周长 = 2 × (长 + 宽), 三角形周长 = 边1 + 边2 + 边3- 三角函数公式:sinθ = 对边/斜边, cosθ = 邻边/斜边, tanθ = 对边/邻边3. 函数公式:- 直线方程:y = mx + c(m为斜率,c为截距)- 一次函数求解:两点确定一次函数,设两点为(x, y)和(x, y),斜率为m = (y-y) / (x-x)- 二次函数顶点公式:顶点坐标为(-b/2a, f(-b/2a))4. 概率统计公式:- 组合公式:C(n, m) = n! / (m!(n-m)!)- 排列公式:P(n, m) = n! / (n-m)!- 事件概率:P(A) = n(A) / n(S), P(A∪B) = P(A) + P(B) - P(A∩B)以上只是初中数学中常用的一些公式,掌握了这些公式,可以在解题过程中快速运用,提高解题效率。
但是,在学习数学的过程中,重要的是理解公式的推导过程和运用场景,而不仅仅是死记硬背。
(完整版)初中数学必背公式大全
初中数学必背公式大全1 同角或等角的补角相等2 同角或等角的余角相等3 过两点有且只有一条直线4 两点之间线段最短5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS)有三边对应相等的两个三角形全等26 斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 定理线段垂直平分线上的点和这条线段两个端点的距离相等38 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上39 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半40 直角三角形斜边上的中线等于斜边上的一半41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247 勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理n边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60 矩形性质定理1 矩形的四个角都是直角61 矩形性质定理2 矩形的对角线相等62 矩形判定定理1 有三个角是直角的四边形是矩形63 矩形判定定理2 对角线相等的平行四边形是矩形64 菱形性质定理1 菱形的四条边都相等65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即S=(a×b)÷267 菱形判定定理1 四边都相等的四边形是菱形68 菱形判定定理2 对角线互相垂直的平行四边形是菱形69 正方形性质定理1 正方形的四个角都是直角,四条边都相等70 正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理1 关于中心对称的两个图形是全等的72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74 对角线相等的梯形是等腰梯形75 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等76 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰77 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边78 等腰梯形性质定理等腰梯形在同一底上的两个角相等79 等腰梯形的两条对角线相等80 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形81 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d82 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d83 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b84 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半85 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三点确定一个圆。
(完整版)初中数学公式大全(整理打印版)
初中数学公式大全初中数学定理、公式汇编一、数与代数1. 数与式(1) 实数实数的性质:①实数a 的相反数是—a ,实数a 的倒数是a1(a ≠0); ②实数a 的绝对值: ⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a③正数大于0,负数小于0,两个负实数,绝对值大的反而小。
二次根式:①积与商的方根的运算性质:b a ab ⋅=(a ≥0,b ≥0);b a b a =(a ≥0,b >0);②二次根式的性质:⎩⎨⎧<-≥==)0()0(2a a a a a a (2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即nm n m a a a -=÷(a ≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即n n n b a ab =)((n 为正整数);④零指数:10=a (a ≠0);⑤负整数指数:n n aa 1=-(a ≠0,n 为正整数); ⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即22))((b a b a b a -=-+;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即2222)(b ab a b a +±=±;分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即m b m a b a ⨯⨯=;mb m a b a ÷÷=,其中m 是不等于零的代数式; ②分式的乘法法则:bdac d c b a =⋅; ③分式的除法法则:)0(≠=⋅=÷c bcad c d b a d c b a ; ④分式的乘方法则:n nn ba b a =)((n 为正整数); ⑤同分母分式加减法则:cb ac b c a ±=±; ⑥异分母分式加减法则:bccd ab b d c a ±=±; 2. 方程与不等式 ①一元二次方程02=++c bx ax (a ≠0)的求根公式:)04(2422≥--+-=ac b aac b b x ②一元二次方程根的判别式:ac b 42-=∆叫做一元二次方程02=++c bx ax (a ≠0)的根的判别式:⇔>∆0方程有两个不相等的实数根;⇔=∆0方程有两个相等的实数根;⇔<∆0方程没有实数根;③一元二次方程根与系数的关系:设1x 、2x 是方程02=++c bx ax (a ≠0)的两个根,那么1x +2x =a b -,1x 2x =ac ; 不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变; ②不等式两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;3. 函数一次函数的图象:函数y=kx+b(k 、b 是常数,k ≠0)的图象是过点(0,b )且与直线y=kx 平行的一条直线;一次函数的性质:设y=kx+b (k ≠0),则当k>0时,y 随x 的增大而增大;当k<0, y 随x 的增大而减小;正比例函数的图象:函数kx y =的图象是过原点及点(1,k )的一条直线。