江西省崇仁县2017-2018学年高一下学期期中考试数学试题Word版含答案
2017-2018学年高一下学期期中数学试卷Word版含解析

2017-2018学年高一下学期期中数学试卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.a、b为非零实数,且a<b,则下列命题成立的是()A.a2<b2B.< C.a2b<ab2D.<2.已知集合A={x|x2≥1},,则A∩(∁RB)=()A.(2,+∞)B.(﹣∞,﹣1]∪(2,+∞)C.(﹣∞,﹣1)∪(2,+∞) D.[﹣1,0]∪[2,+∞)3.已知△ABC中,内角A,B,C的对边分别为a,b,c,若a2=b2+c2﹣bc,bc=2,则△ABC 的面积为()A.B.1 C.D.4.已知数列{an }中,a1=3,an+1=﹣(n∈N*),能使an=3的n可以等于()A.14 B.15 C.16 D.175.在三角形△ABC中,角A,B,C的对边分别为a,b,c,且满足==,则=()A.B.C.D.6.在1和16之间插入3个数,使它们与这两个数依次构成等比数列,则这3个数的积()A.128 B.±128 C.64 D.±647.等差数列{an }的前n项和记为Sn,若a2+a6+a10=3,则下列各和数中可确定值的是()A.S6B.S11C.S12D.S138.在△ABC中,A=60°,a2=bc,则△ABC一定是()A.锐角三角形 B.钝角三角形 C.等腰三角形 D.等边三角形9.已知数列{an }的前n项和Sn=2n+t(t是实常数),下列结论正确的是()A.t为任意实数,{an}均是等比数列B.当且仅当t=﹣1时,{an}是等比数列C.当且仅当t=0时,{an}是等比数列D.当且仅当t=﹣2时,{an}是等比数列10.如果不等式<1对一切实数x均成立,则实数m的取值范围是()A.(1,3)B.(﹣∞,3) C.(﹣∞,1)∪(2,+∞)D.(﹣∞,+∞)11.已知正项等差数列{an }满足a1+a2015=2,则的最小值为()A.1 B.2 C.2014 D.201512.不等式2x2﹣axy+3y2≥0对于任意x∈[1,2]及y∈[1,3]恒成立,则实数a的取值范围是()A.a≤2 B.a≤2 C.a≤5 D.a≤二、填空题:本大题共4小题,每小题5分.13.一元二次不等式x2+ax+b>0的解集为x∈(﹣∞,﹣3)∪(1,+∞),则一元一次不等式ax+b<0的解集为.14.已知函数f(x)=,若使不等式f(x)<成立,则x的取值范围为.15.设{an } 为公比q>1的等比数列,若a2013和a2014是方程4x2﹣8x+3=0的两根,则a2015+a2016= .16.在△ABC中,a,b,c分别为三个内角A,B,C所对的边,设向量,,且,b和c的等差中项为,则△ABC面积的最大值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知函数f(x)=x2+3x+a(1)当a=﹣2时,求不等式f(x)>2的解集(2)若对任意的x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.18.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且=2csinA(1)确定角C的大小;(2)若c=,且△ABC的面积为,求a+b的值.19.设等差数列{an }的前n项和为Sn,n∈N*,公差d≠0,S3=15,已知a1,a4,a13成等比数列.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =a 2n ,求数列{b n }的前n 项和T n .20.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c 且acosC ,bcosB ,ccosA 成等差数列. (1)求B 的值;(2)求2sin 2A ﹣1+cos (A ﹣C )的取值范围.21.某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由长方形的休闲区A 1B 1C 1D 1(阴影部分)和环公园人行道组成.已知休闲区A 1B 1C 1D 1的面积为4000平方米,人行道的宽分别为4米和10米.(1)若设休闲区的长A 1B 1=x 米,求公园ABCD 所占面积S 关于x 的函数S (x )的解析式; (2)要使公园所占面积最小,休闲区A 1B 1C 1D 1的长和宽该如何设计?22.已知数列{a n }的通项为a n ,前n 项和为s n ,且a n 是s n 与2的等差中项,数列{b n }中,b 1=1,点P (b n ,b n+1)在直线x ﹣y+2=0上. (Ⅰ)求数列{a n }、{b n }的通项公式a n ,b n (Ⅱ)设{b n }的前n 项和为B n ,试比较与2的大小.(Ⅲ)设T n =,若对一切正整数n ,T n <c (c ∈Z )恒成立,求c 的最小值.2017-2018学年高一下学期期中数学试卷参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.a、b为非零实数,且a<b,则下列命题成立的是()A.a2<b2B.< C.a2b<ab2D.<【考点】2K:命题的真假判断与应用.【分析】举例说明A、C、D错误,利用反证法说明B正确.【解答】解:a、b为非零实数,且a<b.当a=﹣2,b=1时,有a<b,但a2>b2,故A错误;若a<0,b>0,则<;若a<b<0,假设<,则ab2>a2b,即b>a,假设成立;若b>a>0,假设<,则ab2>a2b,即b>a,假设成立.综上,<,故B正确;当a=﹣2,b=1时,有a<b,但a2b>ab2,故C错误;当a=﹣2,b=1时,有a<b,但,故D错误.故选:B.2.已知集合A={x|x2≥1},,则A∩(∁B)=()RA.(2,+∞)B.(﹣∞,﹣1]∪(2,+∞)C.(﹣∞,﹣1)∪(2,+∞) D.[﹣1,0]∪[2,+∞)【考点】1H:交、并、补集的混合运算.【分析】分别求解一元二次不等式和分式不等式化简集合A,B,然后利用交、并、补集的混合运算得答案.【解答】解:A={x|x2≥1}={x|x≤﹣1或x≥1},由,得0<x≤2,∴={x|0<x≤2},∴∁RB={x|x≤0或x>2},∴A∩(∁RB)=(﹣∞,﹣1)∪(2,+∞).故选:C.3.已知△ABC中,内角A,B,C的对边分别为a,b,c,若a2=b2+c2﹣bc,bc=2,则△ABC 的面积为()A.B.1 C.D.【考点】HR:余弦定理.【分析】利用余弦定理可得A,再利用三角形面积计算公式即可得出.【解答】解:△ABC中,∵a2=b2+c2﹣bc,∴cosA==,又A∈(0,π),∴A=,又bc=2,∴△ABC的面积S=sinA==,故选:D.4.已知数列{an }中,a1=3,an+1=﹣(n∈N*),能使an=3的n可以等于()A.14 B.15 C.16 D.17【考点】8H:数列递推式.【分析】利用递推关系可得:an+3=an,再利用数列的周期性即可得出.【解答】解:∵a1=3,an+1=﹣(n∈N*),∴a2=﹣,同理可得:a3=,a4=3,…,∴an+3=an,∴a16=a1=3,能使an=3的n可以等于16.故选:C.5.在三角形△ABC中,角A,B,C的对边分别为a,b,c,且满足==,则=()A.B.C.D.【考点】HP:正弦定理.【分析】由题意设a=7k、b=4k、c=5k(k>0),由余弦定理求出cosA的值,由正弦定理和二倍角的正弦公式化简所求的式子,可得答案.【解答】解:∵,∴设a=7k、b=4k、c=5k,(k>0)在△ABC中,由余弦定理得cosA==,由正弦定理得===,故选:C.6.在1和16之间插入3个数,使它们与这两个数依次构成等比数列,则这3个数的积()A.128 B.±128 C.64 D.±64【考点】88:等比数列的通项公式.【分析】利用等比数列通项公式及其性质即可得出.【解答】解:设此等比数列为{an },公比为q,a1=1,a5=16,∴a3==4.则a2a3a4==64.故选:C.7.等差数列{an }的前n项和记为Sn,若a2+a6+a10=3,则下列各和数中可确定值的是()A.S6B.S11C.S12D.S13【考点】84:等差数列的通项公式.【分析】由已知条件利用等差数列的通项公式能求出a6=1,从而利用等差数列的前n项和公式能求出S11.【解答】解:∵等差数列{an }的前n项和记为Sn,a2+a6+a10=3,∴3a6=3,解得a6=1,∴.∴各和数S6,S11,S12,S13中可确定值的是S11.故选:B.8.在△ABC中,A=60°,a2=bc,则△ABC一定是()A.锐角三角形 B.钝角三角形 C.等腰三角形 D.等边三角形【考点】HR:余弦定理;HP:正弦定理.【分析】由题意和余弦定理变形已知式子可得b=c,结合A=60°可判.【解答】解:∵在△ABC中A=60°,a2=bc,∴由余弦定理可得a2=b2+c2﹣2bccosA=b2+c2﹣bc,∴bc=b2+c2﹣bc,即(b﹣c)2=0,∴b=c,结合A=60°可得△ABC一定是等边三角形.故选:D9.已知数列{an }的前n项和Sn=2n+t(t是实常数),下列结论正确的是()A.t为任意实数,{an}均是等比数列B.当且仅当t=﹣1时,{an}是等比数列C.当且仅当t=0时,{an}是等比数列D.当且仅当t=﹣2时,{an}是等比数列【考点】87:等比数列.【分析】可根据数列{an }的前n项和Sn=2n+t(t是实常数),求出a1,以及n≥2时,an,再观察,t等于多少时,{an}是等比数列即可.【解答】解:∵数列{an }的前n项和Sn=2n+t(t为常数),∴a1=s1=2+t,n≥2时,an =sn﹣sn﹣1=2n+t﹣(2n﹣1+t)=2n﹣2n﹣1=2n﹣1当t=﹣1时,a1=1满足an=2n﹣1故选:B10.如果不等式<1对一切实数x均成立,则实数m的取值范围是()A.(1,3)B.(﹣∞,3) C.(﹣∞,1)∪(2,+∞)D.(﹣∞,+∞)【考点】3R:函数恒成立问题.【分析】不等式式<1对一切实数x均成立,等价于 2x2+2(3﹣m)x+(3﹣m)>0 对一切实数x均成立,利用判别式小于0,即可求出实数m的取值范围.【解答】解:不等式式<1对一切实数x均成立,等价于 2x2+2(3﹣m)x+(3﹣m)>0 对一切实数x均成立∴[2(3﹣m)]2﹣4×2×(3﹣m)<0,故m的取值范围为(1,3).故选:A.11.已知正项等差数列{an }满足a1+a2015=2,则的最小值为()A.1 B.2 C.2014 D.2015【考点】8F:等差数列的性质.【分析】正项等差数列{an }满足a1+a2015=2,可得a1+a2015=2=a2+a2014,再利用“乘1法”与基本不等式的性质即可得出.【解答】解:∵正项等差数列{an }满足a1+a2015=2,∴a1+a2015=2=a2+a2014,则=(a2+a2014)=≥=2,当且仅当a2=a2014=1时取等号.故选:B.12.不等式2x2﹣axy+3y2≥0对于任意x∈[1,2]及y∈[1,3]恒成立,则实数a的取值范围是()A.a≤2 B.a≤2 C.a≤5 D.a≤【考点】3W:二次函数的性质.【分析】不等式等价变化为a≤=+,则求出函数Z=+的最小值即可.【解答】解:依题意,不等式2x2﹣axy+y2≤0等价为a≤=+,设t=,∵x∈[1,2]及y∈[1,3],∴≤≤1,即≤≤3,∴≤t≤3,则Z=+=3t+,∵3t+≥2=2,当且仅当3t=,即t=时取等号,故a≤2,故选:B.二、填空题:本大题共4小题,每小题5分.13.一元二次不等式x2+ax+b>0的解集为x∈(﹣∞,﹣3)∪(1,+∞),则一元一次不等式ax+b<0的解集为.【考点】74:一元二次不等式的解法.【分析】由一元二次不等式x2+ax+b>0的解集为x∈(﹣∞,﹣3)∪(1,+∞),可知:﹣3,1是一元二次方程式x2+ax+b=0的两个实数根,利用根与系数的关系可得a,b.进而解出一元一次不等式ax+b<0的解集.【解答】解:∵一元二次不等式x2+ax+b>0的解集为x∈(﹣∞,﹣3)∪(1,+∞),∴﹣3,1是一元二次方程式x2+ax+b=0的两个实数根,∴﹣3+1=﹣a,﹣3×1=b,解得a=2,b=﹣3.∴一元一次不等式ax+b<0即2x﹣3<0,解得.∴一元一次不等式ax+b<0的解集为.故答案为:.14.已知函数f(x)=,若使不等式f(x)<成立,则x的取值范围为{x|x<3} .【考点】7E:其他不等式的解法.【分析】根据函数的表达式解关于x≥2时的不等式f(x)<即可.【解答】解:∴f(x)=,∴x<2时,不等式f(x)<恒成立,x≥2时,x﹣<,解得:2≤x<3,综上,不等式的解集是:{x|x<3},故答案为:{x|x<3}.15.设{an } 为公比q>1的等比数列,若a2013和a2014是方程4x2﹣8x+3=0的两根,则a2015+a2016=18 .【考点】88:等比数列的通项公式.【分析】由4x2﹣8x+3=0,解得x=,.根据{an } 为公比q>1的等比数列,若a2013和a2014是方程4x2﹣8x+3=0的两根,可得a2013=,a2014=.q=3.即可得出.【解答】解:由4x2﹣8x+3=0,解得x=,.∵{an } 为公比q>1的等比数列,若a2013和a2014是方程4x2﹣8x+3=0的两根,∴a2013=,a2014=,∴q=3.∴a2015+a2016=q2(a2013+a2014)=18.故答案为:18.16.在△ABC中,a,b,c分别为三个内角A,B,C所对的边,设向量,,且,b和c的等差中项为,则△ABC面积的最大值为.【考点】HT:三角形中的几何计算.【分析】根据,利用向量的性质建立关系与余弦定理结合可得A的大小.b和c的等差中项为,根据等差中项性质,可得b+c=1.△ABC面积S=bcsinA,利用基本不等式可得最大值.【解答】解:向量,,∵,∴b(b﹣c)+(c﹣a)(c+a)=0.得:b2﹣bc=﹣c2+a2.即﹣a2+b2+c2=bc由余弦定理:b2+c2﹣a2=2bccosA可是:bc=2bccosA.∴cosA=.∵0<A<π∴A=又b和c的等差中项为,根据等差中项性质,可得b+c=1.∴b+c,(当且仅当b=c时取等号)可得:bc≤.则△ABC面积S=bcsinA≤=.故答案为:.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知函数f(x)=x2+3x+a(1)当a=﹣2时,求不等式f(x)>2的解集(2)若对任意的x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.【考点】3W:二次函数的性质;74:一元二次不等式的解法.【分析】(1)直接利用二次不等式转化求解即可.(2)利用函数恒成立,分离变量,利用函数的最值求解即可.【解答】解:(1)当a=﹣2时,不等式f(x)>2可化为x2+3x﹣4>0,解得{x|x<﹣4或x>1} …(2)若对任意的x∈[1,+∞),f(x)>0恒成立,则a>﹣x2﹣3x在x∈[1,+∞)恒成立,设g(x)=﹣x2﹣3x则g(x)在区间x∈[1,+∞)上为减函数,当x=1时g(x)取最大值为﹣4,∴a得取值范围为{a|a>﹣4} ….18.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且=2csinA(1)确定角C的大小;(2)若c=,且△ABC的面积为,求a+b的值.【考点】HX:解三角形.【分析】(1)利用正弦定理把已知条件转化成角的正弦,整理可求得sinC,进而求得C.(2)利用三角形面积求得ab的值,利用余弦定理求得a2+b2的值,最后求得a+b的值.【解答】解:(1)∵=2csinA∴正弦定理得,∵A锐角,∴sinA>0,∴,又∵C锐角,∴(2)三角形ABC中,由余弦定理得c2=a2+b2﹣2abcosC即7=a2+b2﹣ab,又由△ABC的面积得.即ab=6,∴(a+b)2=a2+b2+2ab=25由于a+b为正,所以a+b=5.19.设等差数列{an }的前n项和为Sn,n∈N*,公差d≠0,S3=15,已知a1,a4,a13成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn =a2n,求数列{bn}的前n项和Tn.【考点】8M:等差数列与等比数列的综合.【分析】(Ⅰ)运用等比数列的性质和等差数列的通项公式和求和公式,解方程可得首项和公差,即可得到所求通项公式;(Ⅱ)设bn =a2n=2n+1+1,运用分组求和的方法,结合等比数列的求和公式,计算即可得到Tn.【解答】解:(I)依题意,a1,a4,a13成等比数列.即有a42=a1a13,则,解得,因此an =a1+(n﹣1)d=3+2(n﹣1)=2n+1,即an=2n+1.(Ⅱ)依题意,.Tn =b1+b2+…+bn=(22+1)+(23+1)+…+(2n+1+1),=22+23+…+2n+1+n==2n+2+n﹣4.20.在△ABC中,角A,B,C所对边分别为a,b,c且acosC,bcosB,ccosA成等差数列.(1)求B的值;(2)求2sin2A﹣1+cos(A﹣C)的取值范围.【考点】HR:余弦定理;HP:正弦定理.【分析】(1)由于acosC,bcosB,ccosA成等差数列,可得2bcosB=acosC+ccosA,再利用正弦定理、和差化积、诱导公式等即可得出.(2)由,可得A﹣C=2A﹣,再利用倍角公式即可化为2sin2A﹣1+cos(A﹣C)=,由于,可得<π,即可得出.【解答】解:(1)∵acosC,bcosB,ccosA成等差数列,∴2bcosB=acosC+ccosA,由正弦定理可得:2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,∵B∈(0,π),sinB ≠0,∴cosB=,B=.(2)∵,∴A﹣C=2A﹣,∴=,∵,∴<π,∴<≤1,∴2sin2A﹣1+cos(A﹣C)的取值范.21.某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形的休闲区A1B1C1D1(阴影部分)和环公园人行道组成.已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米.(1)若设休闲区的长A1B1=x米,求公园ABCD所占面积S关于x的函数S(x)的解析式;(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?【考点】7G:基本不等式在最值问题中的应用;5C:根据实际问题选择函数类型.【分析】(1)利用休闲区A1B1C1D1的面积为4000平方米,表示出,进而可得公园ABCD所占面积S关于x的函数S(x)的解析式;(2)利用基本不等式确定公园所占最小面积,即可得到结论.【解答】解:(1)由A1B1=x米,知米∴=(2)当且仅当,即x=100时取等号∴要使公园所占面积最小,休闲区A 1B 1C 1D 1的长为100米、宽为40米.22.已知数列{a n }的通项为a n ,前n 项和为s n ,且a n 是s n 与2的等差中项,数列{b n }中,b 1=1,点P (b n ,b n+1)在直线x ﹣y+2=0上. (Ⅰ)求数列{a n }、{b n }的通项公式a n ,b n (Ⅱ)设{b n }的前n 项和为B n ,试比较与2的大小.(Ⅲ)设T n =,若对一切正整数n ,T n <c (c ∈Z )恒成立,求c 的最小值.【考点】8K :数列与不等式的综合;8E :数列的求和;8I :数列与函数的综合.【分析】(Ⅰ)利用已知条件得出数列的通项和前n 项和之间的等式关系,再结合二者间的基本关系,得出数列{a n }的通项公式,根据{b n }的相邻两项满足的关系得出递推关系,进一步求出其通项公式;(Ⅱ)利用放缩法转化各项是解决该问题的关键,将所求的各项放缩转化为能求和的一个数列的各项估计其和,进而达到比较大小的目的;(Ⅲ)利用错位相减法进行求解T n 是解决本题的关键,然后对相应的和式进行估计加以解决.【解答】解:(Ⅰ)由题意可得2a n =s n+2, 当n=1时,a 1=2,当n ≥2时,有2a n ﹣1=s n ﹣1+2,两式相减,整理得a n =2a n ﹣1即数列{a n }是以2为首项,2为公比的等比数列,故a n =2n .点P (b n ,b n+1)在直线x ﹣y+2=0上得出b n ﹣b n+1+2=0,即b n+1﹣b n =2, 即数列{b n }是以1为首项,2为公差的等差数列, 因此b n =2n ﹣1.(Ⅱ)B n =1+3+5+…+(2n ﹣1)=n 2 ∴=. (Ⅲ)T n =①②①﹣②得∴又∴满足条件Tn<c的最小值整数c=3.。
2017-2018学年高一下学期期中考试数学试题-Word版含答案

2017-2018学年第二学期期中考试高一数学试题卷第Ⅰ卷(选择题 共40分)一、选择题:每小题4分,共40分.1.在等差数列{}n a 中,若136,2a a ==,则5a =( ) A .6 B .4 C .0 D .-22.如图,已知向量,,a b c ,那么下列结论正确的是( )A .a b c +=B .a b c +=-C .a b c -=-D .b c a += 3.用数学归纳法证明11112321nn +++<-(*,1n N n ∈>)时,第一步应验证不等式为( )A .1122+< B .111323++< C .11113234+++< D .111223++<4.已知平面向量a 和b 的夹角等于3π,2a =,1b =,则2a b -=( )A .2B C.D5.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c ,若030B =,c =2b =,则C =( ) A .3π B .3π或23π C. 4π D .4π或54π6.已知等比数列{}n a 中,12340a a a ++=,45620a a a ++=,则前9项之和等于( ) A .50 B .70 C. 80 D .907.已知向量,a b 满足1a =,2b =,且a 在b 方向上的投影与b 在a 方向上的投影相等,则a b -等于( )AB .3C. D .58.已知数列{}n a 满足121a a ==,2111n n n na a a a +++-=,则65a a -的值为( ) A .0 B .18 C. 96 D .6009.已知数列{}n a 是各项均不为0的正项数列,n S 为前n项和,且满足1n a =+,*n N ∈128(1)n n a +≤+-对任意的*n N ∈恒成立,求实数λ的最大值为( )A .-21B .-15 C.-9 D .-210.在ABC ∆中,AB AC =,点M 在BC 上,4BM BC =,N 是AM 的中点,1sin 3BAM ∠=,2AC =,则AM CN ∙=( )A .1B .2 C. 3 D .4第Ⅱ卷(非选择题 共110分)二、填空题(本大题共7小题,第11-14题每小题6分,第15-17题每小题4分,共36分)11.已知向量(2,5)a =,(,2)b x =-,且a b ⊥,则x =_________,a b -= . 12.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c,若01,30a b C ===,则c =____________,ABC ∆的面积S = .13.已知等差数列{}n a 中,1013a =,927S =,则公差d =________,100a = . 14.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c ,若1tan 2A =,1tan 3B =,2b =,则tanC =_________,c = .15.已知向量3OA =1OB =,0OA OB ∙=,点C 在AOB ∠内,且060AOC ∠=,设OC OA OB λμ=+(,R λμ∈),则λμ= .16.已知数列{}n a 的前n 项和n S 满足21n n S a =-,则1210181818a a a -+-+-= .17. O 是ABC ∆所在平面上的一点,内角,,A B C 所对的边分别是3、4、5,且3450OA OB OC ++=,若点P 在ABC ∆的边上,则OA OP ∙的取值范围为 .三、解答题 (本大题共5小题,共74分)18. 已知向量,,a b c 是同一平面内的三个向量,其中(1,1)a =-. (1)若32c =,且//c a ,求向量c 的坐标; (2)若1b =,且(2)a a b ⊥-,求a 与b 的夹角θ.19. 在ABC ∆中,角,,A B C 的对边分别是,,a b c ,已知cos (2)cos 0c B b a C ∙+-=. (1)求角C 的大小;(2)若2c =,a b ab +=,求ABC ∆的面积.20. 等比数列{}n a 的各项均为正数,且12231a a +=,23269a a a =,数列{}n b 满足31323log log log n n b a a a =+++.(1)求数列{}n a ,{}n b 的通项公式; (2)求设1n n nc a b =+(*n N ∈),求数列{}n c 的前n 项和n S . 21. 在锐角ABC ∆中,角,,A B C 所对的边分别是,,a b c ,且sin cos 20A a C b c -+-=.(1)求角A 的大小; (2)求cos cos B C +的范围. 22.已知数列{}n a 满足11a =,2114n n a a p +=+. (1)若数列{}n a 就常数列,求p 的值; (2)当1p >时,求证:1n n a a +<;(3)求最大的正数p ,使得2n a <对一切整数n 恒成立,并证明你的结论.2017-2018学年第二学期其中考试高一数学试题卷试卷答案一、选择题1-5:DBDAB 6-10:BACDA 11、12:二、填空题11. 5, 12. 1 ,13. 2 , 193 14. -1 , 15.1316. 961 17. [5,10]- 三、解答题18.解:(1)设(,)c x y =,由=32c ,且//c a 可得2218y x x y +=⎧⎨+=⎩ 所以33x y =-⎧⎨=⎩或33x y =⎧⎨=-⎩故(3,3)c =-,或(3,3)c =-(2)因为=1b ,且()2a a b ⊥-,所以()2=0a a b ⋅- 即220a a b -⋅=,所以220a b -⋅=,=1a b ⋅ 故2cos a b a bθ⋅==⋅,4πθ=19.(1)∵()cos 2cos 0c B b a C ⋅+-=,cos cos 2cos 0c B b C a C +-=,2cos 0a a C -=,∴1cos 2C =,=3C π(2)∵2c =,所以2222cos c a b ab C =+-,()()22423a b ab ab a b ab =+--=+-∴4ab =,1sin 2S ab C ==20.解:(1)因为等比数列{}n a 中23269a a a =,故22349a a =,0n a >,故1=3q 又因为122+31a a =,所以11=3a ,1=3nn a ⎛⎫⎪⎝⎭()313231log log log 122n n n n b a a a n +=+++=----=-(2)因为数列1+n n n c a b =,令数列{}n a 前n 项和n T ,数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n Q 则1113311==112313nn n T ⎛⎫- ⎪⎛⎫⎝⎭- ⎪⎝⎭-()1211=2n n+11n b n n ⎛⎫=- ⎪+⎝⎭111111=212122311n Q n n n ⎛⎫⎛⎫-+-+-=- ⎪ ⎪++⎝⎭⎝⎭1113211=1212312123n nn S n n⎛⎫⎛⎫⎛⎫---=-+- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭ 21.解:(1cos 20A a C b c -+-=, sin sin cos sin2sin 0C A A C B C -+-= 因为()sin =sin sin cos cos sin B A CA C A C +=+, sin cos sin 2sin 0C A A C C +-=sin 0C ≠cos 2A A +=sin()16A π+=,因为ABC ∆是锐角三角形,所以,62A ππ+=,3A π=(2)因为3A π=,所以23B C π+=,2cos cos cos cos =sin 36B C C C C ππ⎛⎫⎛⎫+=-++ ⎪ ⎪⎝⎭⎝⎭ 因为ABC ∆是锐角三角形,所以62C ππ<<,cos cos B C +的范围⎫⎪⎪⎝⎭22.解:(1)若数列{}n a 是常数列,则2111=+144a a p p =+=,34p =;显然,当34p =时,有=1n a (2)由条件得2211113=p 044a a a p a -=+-->得21a a >,又因为2221111,44n n n n a a p a a p +++=+=+,两式相减得()()()222221111111114444n n n n n n n n n n a a a a a a a a a a ++++++-=-=-=-+ 显然有0n a >,所以21n n a a ++-与1n n a a +-同号,而210a a ->,所以10n n a a +->; 从而有1n n a a +<. (3)因为()2211121144k k k k k a a a a p a p p +-=-+=-+-≥-, 所以()()()()1211111n n n a a a a a a n p -=+-+->+--,这说明,当1p >时,n a 越来越大,不满足2n a <,所以要使得2n a <对一切整数n 恒成立,只可能1p ≤,下面证明当1p =时,2n a <恒成立;用数学归纳法证明: 当1n =时,11a =显然成立;假设当n k =时成立,即2k a <,则当1n k =+时,22111121244k k a a +=+<⨯+=成立,由上可知对一切正整数n 恒成立,因此,正数p 的最大值是1。
2017-2018学年高一下学期期中考试数学试题Word版含答案

2017-2018学年高一下学期期中考试数学试题考试时间:120分钟 分值:150分一、单项选择题(共12小题,每小题5分,共60分) 1. 下列角中终边与 330° 相同的角是( ) A. 30°B. - 630°C. 630°D. - 30°2. 如果点)cos 2,cos (sin θθθP 位于第三象限,那么角θ所在象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3.向量概念下列命题中正确的是 ( ) A.若两个向量相等,则它们的起点和终点分别重合; B.模相等的两个平行向量是相等向量; C.若a 和b 都是单位向量,则a =b D.两个相等向量的模相等; 4.下列关系式正确的是( ) A.A B +B A = 0 B. a ·b 是一个向量C. A BA CB C-=D. 00=⋅AB 5. 已知扇形的半径是2,面积为8,则此扇形的圆心角的弧度数是 ( )A.4B. 8C. 2D.16.为了得到函数y=sin(2x -3π)的图像,可以将函数y= sin 2x 的图像( )A .向右平移6πB .向右平移3πC .向左平移6πD .向左平移3π7.已知34t a n =x ,且x 在第三象限,则=x cos ( )A. 54 B. 54- C.53 D.53-8.如图是函数y = 2sin(ωx + φ),φ<2π的图象,那么( )A. ω1110,φ =6πB. ω1011,φ = -6πC. ω,φ = 6πD. ω,φ = -6π9.余弦函数c o s ()4y xπ=+在下列哪个区间为减函数.( ) A .]4,43[ππ-B .]0,[π-C .]43,4[ππ-D .]2,2[ππ-10. 已知(3,1),(,1)a b x ==-,且//a b,则x 等于( ) A .13B .13-C .3D .-311.已知向量|a |=3,|b |=23,.a ·b =-3,则a 与b 的夹角是( ) A .150︒B .120︒C .60︒D .30︒12.已知ABC ∆的三个顶点A 、B 、C 及平面内一点P ,且AB PC PB PA =++,则点P 与ABC ∆的位置关系是( )A .P 在AB 边上或其延长线上 B.P 在ABC ∆外部 C. P 在ABC ∆内部 D.P 在AC 边上二、填空题(共4小题,每小题5分,共20分) 13. 已知sin α=135,α是第一象限角,则cos(п-α)的值为 .14. 已知(1,3)a =-,(1,)bt=,若(2)ab a-⊥,则||b= .15. 如右图,平行四边形A B C D 中,E 是边B C 上一点,G 为A C与D E 的交点,且3A G G C=,若A B=a,A D=b ,则用,a b 表示B G=.16. 已知函数y =3cos x (0≤x ≤2π)的图象和直线y =3围成一个封闭的平面图形,则其面积为 ..三、解答题(本大题共6小题,共70分)GE DCBA17.(本小题满分10分)如图所示,A ,B 是单位圆O 上的点,且B 在第二象限,C 是圆与x 轴正半轴的交点,A 点的坐标为⎝ ⎛⎭⎪⎫35,45,且A 与B 关于y 轴对称.(1)求sin ∠COA ; (2)求cos ∠COB .18.(本小题满分12分)19.(本小题满分12分)已知函数()s in()23xf xππ=-.(1)请用“五点法”画出函数()f x在长度为一个周期的闭区间上的简图(先在所给的表格中填上所需的数值,再画图);(2)当[0,2]x∈时,求函数()f x的最大值和最小值及相应的x的值.20.(本小题满分12分)已知向量13(,1),(,22am b ==。
2017-2018学年高一下学期期中考试数学试卷Word版含答案

2017-2018学年高一下学期期中考试数学试卷一(本大题共12小题,每小题5分,共60分.)1.下列说法中正确的是( )A .共线向量的夹角为00或0180.B .长度相等的向量叫做相等向量;C .共线向量就是向量所在的直线在同一直线上D .零向量没有方向.2.下列函数中为奇函数的是( )A.sin ||y x =B.sin 2y x =C.sin 2y x =-+D.sin 1y x =+3.已知角的终边经过点(4,3)-,则tan α=( ) A.34 B.34- C.43 D.43-4.函数5cos(4)6y x π=-的最小正周期是( )A.4πB.2πC.πD.2π5.在直角坐标系中,直线330x -=的倾斜角是( ) A.6π B. 3π C. 56π D. 23π6.函数3sin(2)6y x π=-+的单调递减区间( ) A 5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦()k Z ∈ B .511,1212k k ππππ⎡⎤++⎢⎥⎣⎦()k Z ∈ C .,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k Z ∈ D .2,63k k ππππ⎡⎤++⎢⎥⎣⎦()k Z ∈7.函数3sin(2)26y x π=++图象的一条对称轴方程是( ) A.12x π=- B.0x = C.23x π= D.3π8.下列选项中叙述正确的是( )A.终边不同的角同一三角函数值可以相等B.三角形的内角是第一象限角或第二象限角C.第一象限是锐角D.第二象限的角比第一象限的角大9.如果点)cos 2,cos (sin θθθP 位于第二象限,那么角θ所在象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限10.向量AB BO OM MB +++ 化简后等于( )A .ACB .BC C .AMD .AB11.已知函数sin()y A x B ωϕ=++的一部分图象如右图所示,如果0,0,||2A πωϕ>><,则( ) A. 4=AB.2ω=C.12πϕ=D.4=B12.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sin sin A B =,则有A B =;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是( ) A .1B .2C .3D .4二、填空(本大题共4小题,每小题5分,共20分.)13.以点(0,2)和(4,0)为端点的线段的中垂线的方程是 .14.圆x 2+y 2=4上的点到直线3x +4y -25=0的距离最小值为____________.15.已知=,=, =,=,=,则+++-= .16.三、解答题(本大题共6小题,17题10分其余每题12分共70分)17(本题满分10分)已知角α的终边经过一点(5,12)(0)P a a a ->,求ααcos sin 2+的值;18.(本题满分12分)已知ABC △的三个顶点(04)A ,,(26)B -,,(82)C ,;(1)求AB 边的中线所在直线方程. (2)求AC 的中垂线方程.19. (本题满分12分)若圆经过点(2,0),(4,0),(1,2)A B C ,求这个圆的方程.20. (本题满分12分)已知54cos ,cos(),01352πααββα=-=<<<且, (1)求α2tan 的值; (2)求cos β的值21(本题满分12分)已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>>< 的部分图象如图所示,(Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.22.(本题满分12分)已知函数2()sin cos 1(0)f x x x x ωωωω=⋅->的周期为π. (1)当[0,]2x π∈时,求()f x 的取值范围;(2)求函数()f x 的单调递增区间.2017-2018学年高一下学期期中考试数学试卷答案一(本大题共12小题,每小题5分,共60分.)1、A2、B3、B4、D5、D6、C7、C8、A9、D 10、D11、B 12、C二、填空(本大题共4小题,每小题5分,共20分.)13.230x y --= 14. 3 15. 0 16.17三、解答题(本大题共6小题,17题10分其余每题12分共70分)17(本题满分10分).已知角α的终边经过一点(5,12)(0)P a a a ->,求ααcos sin 2+的值;17.1913-;. 试题解析:(1)由已知a a a Y 13)12()5(22=-+=………………3分810分18.(本题满分12分)已知ABC △的三个顶点(04)A ,,(26)B -,,(82)C ,;(1)求AB 边的中线所在直线方程.(2)求AC 的中垂线方程.18.(1)3140x y +-=, (2)134-=x y【解析】(1)∵线段AB 的中点为(15)-,,∴AB 边的中线所在直线方程是512581y x -+=-+,,, 即3140x y +-=,……6分(2)AC 的中点为(4.3) ∴418024-=--=KAC ∴134)4(43-=-=-x y x y 即∴134-=x y AC 的中垂成方程为……12分19. (本题满分12分)若圆经过点(2,0),(4,0),(1,2)A B C ,求这个圆的方程.19.设圆的方程为022=++++F Ey Dx y x ……2分∴⎪⎩⎪⎨⎧=+++=++=++02504160F D 24F E D F D ……8分 得⎪⎪⎩⎪⎪⎨⎧=-==827-6D F E ……11分 ∴圆的方程为:0827622=+--+y x y x ………12分20. (本题满分12分)已知54cos ,cos(),01352πααββα=-=<<<且, (1)求α2tan 的值;(2)求cos β的值. 20.(1) 120119-;(2). cos β=6556 【解析】(1)由20,135cos π<<=a a 得 1cos ,072παα=<<,得 ∴,于是2)由02παβ<<<,得02παβ<-<又∵,∴由()βααβ=--得: ()cos cos βααβ=--⎡⎤⎣⎦()()cos cos sin sin ααβααβ=-+-655613125354135=⨯+⨯=…12分. 21. (本题满分12分)已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>>< 的部分图象如图所示, (Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.21.析:(Ⅰ)由图象可知2A =,125212122ππππω=+= ,所以2ω=; 所以()2sin(2)f x x ϕ=+,又图象的一个最高点为(,2)12π-所以2()2()122k k Z ππϕπ⋅-+=+∈,解得22()3k k Z πϕπ=+∈又2||,3πϕπϕ<∴=. 所以2()2sin(2)3f x x π=+.………6分(Ⅱ) 由)(1222322Z k k X k x ∈-=+=+πππππ得)(x f ∴的对称轴为)(122Z k k x ∈-=ππ 由ππk x =+322得)(32Z k k x ∈-=ππ)0,32)(ππ-∴kx f 的对称中心为()(Z k ∈……12分22.(本题满分12分)已知函数2()sin cos 1(0)f x x x x ωωωω=⋅->的周期为π. (1)当[0,]2x π∈时,求()f x 的取值范围;(2)求函数()f x 的单调递增区间. 22.]21,1[-,3,6[ππππ+-K K ,Z K ∈ 【解析】(1)解:.21)62sin(12sin 2322cos 1--=-+-=πωωωx x x y 20,,1,2T ππωπωωω>∴===∴= ∴函数1()sin(2).62f x x π=-- ……3分 若6562620ππππ≤-≤-≤≤x x 则1)62sin(21≤-≤-∴πx2121)62sin(1≤--≤-∴πx⎥⎦⎤⎢⎣⎡∴211-、的取值范围为y ……8分(2)令226222πππππ+≤-≤-k x k 得:326+≤≤-πππk x k )(Z k ∈)(]36[)(Z k k k x f ∈+-∴ππππ、的单调递增区间为………12分。
2017—2018学年人教版高一数学第二学期期中考试卷题库(共10套)

2017—2018学年人教版高一数学第二学期期中考试卷题库(共10套)2017—2018学年人教版高一数学第二学期期中考试卷(一)(考试时间120分钟满分150分)一.单项选择题(共4小题,每小题5分,共20分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项)1.已知全集U={1,2,3,4,5},集合M={3,4,5},N={1,2,5},则集合{1,2}可以表示为()A.M∩N B.(?U M)∩N C.M∩(?U N)D.(?U M)∩(?U N)2.设函数f(x)=,g(x)=x2f(x﹣1),则函数g(x)的递减区间是()A.(﹣∞,0]B.[0,1)C.[1,+∞)D.[﹣1,0]3.如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为()A.B.4 C. D.24.函数f(x)=2x﹣的一个零点在区间(1,2)内,则实数a的取值范围是()A.(1,3)B.(1,2)C.(0,3)D.(0,2)二.填空题:共2小题,每小题5分,共10分.5.已知点A(1,2)、B(3,1),则线段AB的垂直平分线的方程是______.6.若正三棱锥的侧面都是直角三角形,则侧面与底面所成的二面角的余弦值为______.三、解答题:解答应写出文字说明,证明过程或演算步骤.7.已知圆C:x2+y2﹣8y+12=0,直线l:ax+y+2a=0.若直线l与圆C相交于A,B两点,且,求直线l的方程.8.如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F分别为AC、DC的中点.(Ⅰ)求证:EF⊥BC;(Ⅱ)求二面角E﹣BF﹣C的正弦值.第二部分本学期知识和能力部分一.选择题:共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.9.下列函数中,周期为π,且在上为减函数的是()A.B.C.D.10.已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0 C.3 D.11.已知tanθ=,θ∈(0,),则cos(﹣θ)=()A.B.﹣C. D.12.设向量,满足|+|=,|﹣|=,则?=()A.1 B.2 C.3 D.513.在△ABC中,若∠A=60°,∠B=45°,,则AC=()A. B. C.D.14.已知平面向量,的夹角为,且||=,||=2,在△ABC中,=2+2,=2﹣6,D为BC中点,则||=()A.2 B.4 C.6 D.815.函数是()A.周期为π的奇函数 B.周期为π的偶函数C.周期为2π的奇函数D.周期为2π的偶函数16.为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位二.填空题:共2小题,每小题5分,共10分.17.设θ为第二象限角,若,则sinθ+cosθ=______.18.已知,是单位向量,?=0.若向量满足|﹣﹣|=1,则||的取值范围是______.三、解答题:解答应写出文字说明,证明过程或演算步骤.19.已知函数f(x)=Asin(x+φ)(A>0,0<φ<π),x∈R的最大值是1,其图象经过点.(1)求f(x)的解析式;(2)已知,且,,求f(α﹣β)的值.20.已知向量=(3,﹣4),=(6,﹣3),=(5﹣m,﹣(3+m)).(1)若点A,B,C能构成三角形,求实数m应满足的条件;(2)若△ABC为直角三角形,且∠A为直角,求实数m的值.21.已知函数f(x)=Asin(ωx+φ)(A,ω>0,﹣π<φ<π)在一个周期内的图象如图所示.(1)求f(x)的表达式;(2)在△ABC中,f(C+)=﹣1且?<0,求角C.22.已知△ABC的三个内角A、B、C的对边分别为a、b、c,且b2+c2=a2+bc,求:(1)2sinBcosC﹣sin(B﹣C)的值;(2)若a=2,求△ABC周长的最大值.23.已知函数f(x)=4cosωx?sin(ωx+)(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间[0,]上的单调性;(3)当x∈[0,]时,关于x的方程f(x)=a 恰有两个不同的解,求实数a的取值范围.参考答案一.单项选择题:1. B 2.B.3.C4.C.二.填空题:5.答案为:4x﹣2y﹣5=06.答案为:.三、解答题:7.解:将圆C的方程x2+y2﹣8y+12=0配方得标准方程为x2+(y﹣4)2=4,则此圆的圆心坐标为(0,4),半径为2.…过圆心C作CD⊥AB,则D为AB的中点,,因为|BC|=2,所以.…由,解得a=﹣7,或a=﹣1.…即所求直线的方程为7x﹣y+14=0或x﹣y+2=0.…8.(Ⅰ)证明:由题意,以B为坐标原点,在平面DBC内过B作垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线为z轴,建立如图所示空间直角坐标系,易得B(0,0,0),A(0,﹣1,),D(,﹣1,0),C(0,2,0),因而E(0,,),F(,,0),所以=(,0,﹣),=(0,2,0),因此=0,所以EF⊥BC.(Ⅱ)解:在图中,设平面BFC的一个法向量=(0,0,1),平面BEF的法向量=(x,y,z),又=(,,0),=(0,,),由得其中一个=(1,﹣,1),设二面角E﹣BF﹣C的大小为θ,由题意知θ为锐角,则cosθ=|cos<,>|=||=,因此sinθ==,即所求二面角正弦值为.第二部分本学期知识和能力部分一.选择题:9.A.10.C.11.C.12.A.13. B 14.A.15. C 16.C.二.填空题:17.解:∵tan(θ+)==,∴tanθ=﹣,而cos2θ==,∵θ为第二象限角,∴cosθ=﹣=﹣,sinθ==,则sinθ+cosθ=﹣=﹣.故答案为:﹣18.解:由,是单位向量,?=0.可设=(1,0),=(0,1),=(x,y).∵向量满足|﹣﹣|=1,∴|(x﹣1,y﹣1)|=1,∴=1,即(x﹣1)2+(y﹣1)2=1.其圆心C(1,1),半径r=1.∴|OC|=.∴≤||=.∴||的取值范围是.故答案为:.三、解答题:19.解:(1)依题意有A=1,则f(x)=sin(x+φ),将点代入得,而0<φ<π,∴,∴,故.(2)依题意有,而,∴,.20.解:(1)若点A、B、C能构成三角形,则这三点不共线,∵,故知3(1﹣m)≠2﹣m∴实数时,满足条件.(2)若△ABC为直角三角形,且∠A为直角,则,∴3(2﹣m)+(1﹣m)=0解得.21.解:(1)由图可知函数的最大值是2,最小值是﹣2,∴A=2,…∵T=+=,∴T=π=,可得:ω=2,…又∵f(x)过点(﹣,0),且根据图象特征得:﹣2×+φ=0+2kπ,k∈Z,∴φ=+2kπ,k∈Z,…而﹣π<φ<π,∴φ=.…∴f(x)=2sin(2x+).…(2)∵f(x)=2sin(2x+),∴f(C)=2sin(2C)=﹣1,…∴sin(2C)=﹣,…因为C为三角形内角,∴C=或,…又∵?=abcosC<0,0<C<π,∴cosC<0,<C<π,∴C=..…22.解:(1)∵b2+c2=a2+bc,∴a2=b2+c2﹣bc,结合余弦定理知cosA===,又A∈(0,π),∴A=,∴2sinBcosC﹣sin(B﹣C)=sinBcosC+cosBsinC=sin(B+C)=sin[π﹣A]=sinA=;(2)由a=2,结合正弦定理得:====,∴b=sinB,c=sinC,则a+b+c=2+sinB+sinC=2+sinB+sin(﹣B)=2+2sinB+2cosB=2+4sin(B+),可知周长的最大值为6.23.解:(1)f(x)=4cosωx?sin(ωx+)=2sinωx?cosωx+2cos2ωx,=(sin 2ωx+cos 2ωx)+,=2sin(2ωx+)+,因为f(x)的最小正周期为π,且ω>0,从而有=π,故ω=1.(2)由(1)知,f(x)=2sin(2x+)+.若0≤x≤,则≤2x+≤.当≤2x+≤,即0≤x≤时,f(x)单调递增;当≤2x+≤,即≤x≤时,f(x)单调递减.综上可知,f(x)在区间[0,]上单调递增,在区间[,]上单调递减;(3)x∈[0,]时,关于x的方程f(x)=a 恰有两个不同的解,即y=a与函数在[0,]上,与f(x)=2sin(2x+)+由两个交点,由函数图象可知:a∈[2,2+),实数a的取值范围[2,2+).2017—2018学年人教版高一数学第二学期期中考试卷(二)(考试时间120分钟满分150分)一.单项选择题(共4小题,每小题5分,共20分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.)1.已知集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A∩(?U B)=()A.{2}B.{2,3}C.{3}D.{1,3}2.一个几何体的三视图如图所示,已知这个几何体的体积为,则h=()A.B.C. D.3.过点A(2,3)且垂直于直线2x+y﹣5=0的直线方程为()A.x﹣2y+4=0 B.2x+y﹣7=0 C.x﹣2y+3=0 D.x﹣2y+5=04.在同一坐标系中画出函数y=log a x,y=a x,y=x+a的图象,可能正确的是()A.B.C.D.二.填空题:共2小题,每小题5分,共10分.5.函数f(x)=的定义域为______.6.已知圆C:(x﹣a)2+(y﹣2)2=4(a>0)及直线l:x﹣y+3=0,当直线l被C截得弦长为时,则a=______.三、解答题:解答应写出文字说明,证明过程或演算步骤.7.如图,矩形ABCD中,对角线AC、BD的交点为G,AD⊥平面ABE,AE⊥EB,AE=EB=BC=2,F为CE上的点,且BF⊥CE.(Ⅰ)求证:AE⊥平面BCE;(Ⅱ)求三棱锥C﹣GBF的体积.第二部分本学期知识和能力部分一.选择题:共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.8.下列函数中,周期为π,且在上为减函数的是()A.B.C.D.9.已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0 C.3 D.10.已知tanθ=,θ∈(0,),则cos(﹣θ)=()A.B.﹣C. D.11.设向量,满足|+|=,|﹣|=,则?=()A.1 B.2 C.3 D.512.已知函数f(x)=sin(2x+φ)(|φ|<π)的图象过点P(0,),如图,则φ的值为()A.B. C.或D.﹣或13.已知函数y=f(x),将f(x)的图象上的每一点的纵坐标保持不变,横坐标扩大到原来的2倍,然后把所得的图象沿着x轴向左平移个单位,这样得到的是的图象,那么函数y=f(x)的解析式是()A.B.C. D.14.已知,O为平面内任意一点,则下列各式成立的是()A.B.C.D.15.函数是()A.周期为π的奇函数 B.周期为π的偶函数C.周期为2π的奇函数D.周期为2π的偶函数二.填空题:共2小题,每小题5分,共10分.16.已知tanα=﹣,则=______.17.已知为非零向量,且夹角为,若向量=,则||=______.三、解答题:解答应写出文字说明,证明过程或演算步骤.18.已知,且cos(α﹣β)=,sin(α+β)=﹣,求:cos2α的值.19.已知向量=(3,﹣4),=(6,﹣3),=(5﹣m,﹣(3+m)).(1)若点A,B,C能构成三角形,求实数m应满足的条件;(2)若△ABC为直角三角形,且∠A为直角,求实数m的值.20.已知函数f(x)=A(2ωx+φ)(A>0,ω>0,0<φ<π)在x=时取最大值2,x1,x2是集合M={x∈R|f(x)=0}中的任意两个元素,且|x1﹣x2|的最小值为.(1)求函数f(x)的解析式;(2)若f(α)=,α∈(,),求sin(﹣2α)的值.21.已知函数f(x)=4cosωx?sin(ωx+)(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间[0,]上的单调性.22.已知向量=(2cos(﹣θ),2sin(﹣θ)),=(cos(90°﹣θ),sin(90°﹣θ))(1)求证:⊥;(2)若存在不等于0的实数k和t,使=+(t2﹣3),=﹣k+t满足⊥.试求此时的最小值.参考答案一.单项选择题:1.D.2.B.3.A.4. D二.填空题:5.答案为:{x|0<x≤2且x≠1}.6.答案为:三、解答题:7.(I)证明:∵AD⊥面ABE,AD∥BC,∴BC⊥面ABE,AE?平面ABE,∴AE⊥BC.…又∵AE⊥EB,且BC∩EB=B,∴AE⊥面BCE.…(II)解:∵在△BCE中,EB=BC=2,BF⊥CE,∴点F是EC的中点,且点G是AC的中点,…∴FG∥AE且.…∵AE⊥面BCE,∴FG⊥面BCE.∴GF是三棱锥G﹣BFC的高…在Rt△BCE中,EB=BC=2,且F是EC的中点.…∴.…第二部分本学期知识和能力部分一.选择题:8.A.9.C.10.C.11.A.12. A 13.D.14.A.15. C 二.填空题:16.答案为:.17.答案为:.三、解答题:18.解:∵<β<α<,∴0<α﹣β<,π<α+β<,∵cos(α﹣β)=,sin(α+β)=﹣,∴sin(α﹣β)==,cos(α+β)=﹣=﹣,则cos2α=cos[(α﹣β)+(α+β)]=cos(α﹣β)cos(α+β)﹣sin(α﹣β)sin(α+β)=×(﹣)﹣(﹣)×=﹣.19.解:(1)若点A、B、C能构成三角形,则这三点不共线,∵,故知3(1﹣m)≠2﹣m∴实数时,满足条件.(2)若△ABC为直角三角形,且∠A为直角,则,∴3(2﹣m)+(1﹣m)=0解得.20.解:(1)由x1,x2是集合M={x∈R|f(x)=0}中的任意两个元素,且|x1﹣x2|的最小值为.得:T=π.函数f(x)=A(2ωx+φ)(A>0,ω>0,0<φ<π)在x=时取最大值2,∴A=2.∴=π,解得ω=1,∴f(x)=2sin(2x+φ),∵在x=时取最大值,∴+φ=+2kπ,(k∈Z),0<φ<π),∴φ=,∴f(x)=2sin.(2)∵f(α)=,∴2sin=,∴sin=,∵sin(﹣2α)=cos,∵<2<π,∴==﹣,∴sin(﹣2α)=﹣.21.解:(1)f(x)=4cosωxsin(ωx+)=2sinωx?cosωx+2cos2ωx=(sin2ωx+cos2ωx)+=2sin(2ωx+)+,所以T==π,∴ω=1.(2)由(1)知,f(x)=2sin(2x+)+,因为0≤x≤,所以≤2x+≤,当≤2x+≤时,即0≤x≤时,f(x)是增函数,当≤2x+≤时,即≤x≤时,f(x)是减函数,所以f(x)在区间[0,]上单调增,在区间[,]上单调减.22.解:(1)∵=2cos(﹣θ)cos(90°﹣θ)+2sin(﹣θ)sin(90°﹣θ)=2cosθsinθ﹣2sinθcosθ=0,∴.(2)=4cos2θ+4sin2θ=4,=1,∵⊥,∴=[+(t2﹣3)]?(﹣k+t)=+=﹣4k+t(t2﹣3)=0,(k≠0,t≠0).∴,∴==﹣.2017—2018学年人教版高一数学第二学期期中考试卷(三)一、单项选择题(每小题5分满分60分)1.如图所示,程序框图(算法流程图)的输出结果是()A.3 B.4 C.5 D.82.下列说法中,正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间降雨B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C.“彩票中奖的概率是1%”表示买100张彩票一定有1张会中奖D.在同一年出生的367名学生中,至少有两人的生日是同一天3.某年级有12个班,现要从2班到12班中选1个班的学生参加一项活动,有人提议:掷两个骰子,把得到的点数之和是几就选几班,这种选法()A.公平,每个班被选到的概率都为B.公平,每个班被选到的概率都为C.不公平,6班被选到的概率最大D.不公平,7班被选到的概率最大4.抽查10件产品,设事件A:至少有2件次品,则A的对立事件为()A.至多有2件次品B.至多有1件次品C.至多有2件正品D.至多有1件正品5.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n人中,抽取35人进行问卷调查,已知高二被抽取的人数为13人,则n等于()A.660 B.720 C.780 D.8006.掷一枚骰子,则掷得奇数点的概率是()A.B.C.D.7.程序框图如图所示,该程序运行后输出的S的值是()A.﹣3 B.﹣C.D.28.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有()A.a>b>c B.b>c>a C.c>a>b D.c>b>a9.如图是2012年在某大学自主招生考试的面试中,七位评委为某考生打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为()A.84,4.84 B.84,1.6 C.85,1.6 D.85,410.已知点M(a,b)在圆O:x2+y2=4外,则直线ax+by=4与圆O的位置关系是()A.相离 B.相切 C.相交 D.不确定11.已知两定点A(﹣3,0),B(3,0),如果动点P满足|PA|=2|PB|,则点P的轨迹所包围的图形的面积等于()A.πB.4πC.9πD.16π12.(理科)已知两点A(0,﹣3),B(4,0),若点P是圆x2+y2﹣2y=0上的动点,则△ABP面积的最小值为()A.6 B.C.8 D.二、填空题(每小题5分,共20分)13.把二进制数11011(2)化为十进制数是______.14.若圆C1:x2+y2=1与圆C2:x2+y2﹣6x﹣8y+m=0外切,则m=______.15.将参加数学竞赛的1000名学生编号如下:0001,0002,003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法把编号分成50个部分,如果第一部分编号为0001,0002,0003,…,0020,第一部分随机抽取一个号码为0013,那么抽取的第40个号码为______.16.超速行驶已成为马路上最大杀手之一,已知某中段属于限速路段,规定通过该路段的汽车时速不超过80km/h,否则视为违规.某天,有1000辆汽车经过了该路段,经过雷达测速得到这些汽车运行时速的频率分布直方图如图所示,则违规的汽车大约为______辆.三、解答题(共70分)17.在某次测验中,有6位同学的平均成绩为75分.用x n表示编号为n(n=1,2, (6)的同学所得成绩,且前5位同学的成绩如下:编号n 1 2 3 4 5成绩x n70 76 72 70 72(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.18.已知A、B、C三个箱子中各装有2个完全相同的球,每个箱子里的球,有一个球标着号码1,另一个球标着号码2.现从A、B、C三个箱子中各摸出1个球.(I)若用数组(x,y,z)中的x、y、z分别表示从A、B、C三个箱子中摸出的球的号码,请写出数组(x,y,z)的所有情形,并回答一共有多少种;(Ⅱ)如果请您猜测摸出的这三个球的号码之和,猜中有奖.那么猜什么数获奖的可能性最大?请说明理由.19.设点M(x,y)在|x|≤1,|y|≤1时按均匀分布出现,试求满足:(1)x+y≥0的概率;(2)x+y<1的概率;(3)x2+y2≥1的概率.20.已知圆心为C的圆经过点A(0,2)和B(1,1),且圆心C在直线l:x+y+5=0上.(1)求圆C的标准方程;(2)若P(x,y)是圆C上的动点,求3x﹣4y的最大值与最小值.21.某连锁经营公司所属5个零售店某月的销售额和利润额资料如表:商店名称 A B C D E销售额x/千万元 3 5 6 7 9利润额y/百万元 2 3 3 4 5(1)画出销售额和利润额的散点图;(2)若销售额和利润额具有相关关系,用最小二乘法计算利润额y对销售额x的回归直线方程;(3)据(2)的结果估计当销售额为1亿元时的利润额.参考答案一、单项选择题:1.B.2.D.3.D.4. B 5.B.6.B.7.D.8.D.9.C.10.C.11.D.12.B.二、填空题13.答案为:27.14.答案为:9.15.答案为:0793.16.答案为280.三、解答题17.解:(1)根据平均数的个数可得75=,∴x6=90,这六位同学的方差是(25+1+9+25+9+225)=49,∴这六位同学的标准差是7(2)由题意知本题是一个古典概型,试验发生包含的事件是从5位同学中选2个,共有C52=10种结果,满足条件的事件是恰有一位成绩在区间(68,75)中,共有C41=4种结果,根据古典概型概率个数得到P==0.4.18.解:(Ⅰ)数组(x,y,z)的所有情形为:(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2),共8种.答:一共有8种.注:列出5、6、7种情形,得;列出所有情形,得;写出所有情形共8种,得.(Ⅱ)记“所摸出的三个球号码之和为i”为事件A i(i=3,4,5,6),…∵事件A3包含有1个基本事件,事件A4包含有3个基本事件,事件A5包含有3个基本事件,事件A6包含有1个基本事件,所以,,,,.…故所摸出的两球号码之和为4、为5的概率相等且最大.答:猜4或5获奖的可能性最大.…19.解:(1)如图,满足|x|≤1,|y|≤1的点组成一个边长为2的正方形ABCD,则S正方形ABCD=4;x+y=0的图象是AC所在直线,满足x+y≥0的点在AC的右上方,即在△ACD内(含边界),而S△ACD=S正方形ABCD=2,所以P(x+y≥0)==.(2)在|x|≤1,|y|≤1且x+y<1的面积为4﹣=,所以P(x+y<1)=.(3)在|x|≤1,|y|≤1且x2+y2≥1的面积为4﹣π,所以P(x2+y2≥1)=1﹣.20.解:(1)线段AB的中点为,又k AB=﹣1故线段AB的垂直平分线方程为即x﹣y+1=0…由得圆心C(﹣3,﹣2)…圆C的半径长故圆C的标准方程为(x+3)2+(y+2)2=25…(2)令z=3x﹣4y,即3x﹣4y﹣z=0当直线3x﹣4y﹣z=0与圆C相切于点P时,z取得最值…则圆心C(﹣3,﹣2)到直线3x﹣4y﹣z=0的距离为,解得z=﹣26或z=24故3x﹣4y的最小值为﹣26,最大值为24…21.解:(1)销售额与利润额成线性相关关系;(2)由已知数据计算得:=6,=3.4,b==0.5,a=3.4﹣0.5×6=0.4∴y对销售额x的回归直线方程为:y=0.5x+0.4;(3)∴当销售额为1亿元时,将x=10代入线性回归方程中得到y=5.4(千万元).2017—2018学年人教版高一数学第二学期期中考试卷(四)(考试时间120分钟满分150分)一.单项选择题(本题共12小题,每小题5分,共60分.在每小题列出的四个选项中,选出最符合题目要求的一项.)1.在平行四边形ABCD中, ++=()A.B.C.D.2.已知扇形的半径是2,面积为8,则此扇形的圆心角的弧度数是()A.4 B.2 C.8 D.13.以(﹣1,2)为圆心,为半径的圆的方程为()A.x 2+y2﹣2x+4y=0 B.x2+y2+2x+4y=0C.x2+y2+2x﹣4y=0 D.x2+y2﹣2x﹣4y=04.α是第四象限角,cosα=,则sinα=()A.B.C.D.5.要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位6.对于向量、、和实数λ,下列命题中真命题是()A.若?=0,则=0或=0 B.若λ=,则λ=0或=C.若2=2,则=或=﹣D.若?=?,则=7.已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<)的部分图象如图所示,则f(x)的解析式是()A.B.C.D.8.直线x﹣2y﹣3=0与圆C:(x﹣2)2+(y+3)2=9交于E、F两点,则△ECF的面积为()A.B. C.D.9.在平行四边形ABCD中,=,=,=2,则=()A.﹣B.﹣C.﹣D. +10.已知直线x+y=a与圆x2+y2=4交于A、B两点,且|+|=|﹣|,其中O为原点,则实数a的值为()A.2 B.﹣2 C.2或﹣2 D.或﹣11.已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C. D.(0,2]12.曲线y=+1(﹣2≤x≤2)与直线y=kx﹣2k+4有两个不同的交点时实数k的范围是()A.(,]B.(,+∞)C.(,)D.(﹣∞,)∪(,+∞)二.填空题(本题共4小题,每小题5分,共20分.)13.若圆O1:x2+y2=1与圆O2:(x﹣3)2+y2=r2(r>0)内切,则r的值为.14.已知向量=(3,1),=(1,3),=(k,7),若()∥,则k=.15.函数y=的定义域为.16.在等腰直角△ABC中,AB=AC=,D、E是线段BC上的点,且DE=BC,则?的取值范围是.三.解答题(本大题共6小题,共70分,解答应给出文字说明、证明过程或演算步骤.)17.已知半径为2的圆的圆心在x轴上,圆心的横坐标是正数,且与直线4x﹣3y+2=0相切.(1)求圆的方程;(2)若直线ax﹣y+5=0与圆总有公共点,求实数a的取值范围.18.已知||=4,||=2,且与夹角为120°求:(1)()?(+)(2)|2﹣|(3)与+的夹角.19.已知tan(π+α)=2,求下列各式的值:(1);(2).20.已知函数f(x)=sin(2x+)+1.(1)求函数f(x)的最小正周期和对称中心;(2)求函数f(x)的单调递增区间;(3)求函数f(x)在区间[0,]上的最大值和最小值.21.已知点A(﹣1,2),B(0,1),动点P满足.(Ⅰ)若点P的轨迹为曲线C,求此曲线的方程;(Ⅱ)若点Q在直线l1:3x﹣4y+12=0上,直线l2经过点Q且与曲线C有且只有一个公共点M,求|QM|的最小值.22.设0<α<π<β<2π,向量=(1,﹣2),=(2cosα,sinα),=(sinβ,2cosβ),=(cosβ,﹣2sinβ).(1)⊥,求α;(2)若|+|=,求sinβ+cosβ的值;(3 )若tanαtanβ=4,求证:∥.参考答案一.单项选择题:1.D.2.A.3.C.4.B.5.B.6.B.7.A.8.B.9.C.10.C.11.A.12.A.二.填空题:13.答案为:4.14.答案为5.15.答案为:{x|﹣+2kπ≤x≤+2kπ,k∈Z}.16.答案为:.三.解答题:17.解:(1)设圆心为M(m,0)(m∈Z).由于圆与直线4x﹣3y+2=0相切,且半径为2,所以=2,即|4m+2|=10.因为m为整数,故m=2.故所求的圆的方程是(x﹣2)2+y2=4.(2)因为直线ax﹣y+5=0与圆总有公共点,则圆心(2,0)到直线ax﹣y+5=0的距离不超过圆的半径,即≤2,解得a≤﹣,所以实数a的取值范围是(﹣∞,﹣].18.解:由题意可得||2=16,||2=4,且?=||||cos120°=﹣4,(1))()?(+)==16﹣8+4=12;(2)|2﹣|2=4=64+16+4=84,所以|2﹣|=2;(3)设与+的夹角为θ,则cosθ==,又0°≤θ≤180°,所以θ=30°,与的夹角为30°.19.解:(1)由已知得tanα=2.∴.(2)=20.解:(1)函数f(x)=sin(2x+)+1的最小正周期=π.由2x+=kπ,解得x=﹣,∴对称中心为(﹣,1).(2)由2kπ﹣≤2x+≤2kπ+,(k∈Z),解得kπ﹣≤x≤kπ+,∴函数f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z).(3)在区间[0,]上,2x+∈[,],∴当2x+=,即x=时,函数f(x)取得最大值+1,当2x+=,即x=时,函数f(x)取得最小值0.21.解:(Ⅰ)设P(x,y),则∵点A(﹣1,2),B(0,1),动点P满足,∴,∴化简(x﹣1)2+y2=4;(Ⅱ)由题意,|QM|最小时,|CQ|最小,当且仅当圆心C到直线的距离最小,此时d==3,∴由勾股定理可得|QM|的最小值为=.22.解:(1)若,则=2cosα﹣2sinα=0,∴tanα=1.再由0<α<π<β<2π,可得α=.(2)由题意可得=(sinβ+cosβ,2cosβ﹣2sinβ),∴===,∴sinβcosβ=.结合0<α<π<β<2π,可得β为第三象限角,故sinβ+cosβ<0.∴sinβ+cosβ=﹣=﹣=﹣.(3)若tanαtanβ=4,则有,∴sinαsinβ=4cosαcosβ,∴,故与的坐标对应成比例,故.2017—2018学年人教版高一数学第二学期期中考试卷(五)(考试时间120分钟满分150分)一、单项选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若sinα>0,且tanα<0,则角α的终边位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.﹣300°化为弧度是()A.B.﹣C.﹣D.﹣3.若=(2,4),=(1,3),则=()A.(1,1)B.(﹣1,﹣1)C.(3,7)D.(﹣3,﹣7)4.若tanα=2,则等于()A.﹣3 B. C.D.35.若||=1,||=,(﹣)⊥,则与的夹角为()A.30°B.45°C.60°D.75°6.要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位7.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则A=()A.30°B.60°C.120°D.150°8.如图,在三棱锥S﹣ABC中,E为棱SC的中点,若AC=2,SA=SB=AB=BC=SC=2,则异面直线AC与BE所成的角为()A.30°B.45°C.60°D.90°9.在△ABC中,角A、B、C所对的边分别为a、b、c,若a?cosA=bcosB,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形10.已知向量,,且=+2,=﹣5+6,=7﹣2,则一定共线的()A.A,B,D B.A,B,C C.B,C,D D.A,C,D11.函数y=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f (2 012)的值等于()A.B.2+2C. +2 D.﹣212.在△ABC中,M为边BC上任意一点,N为AM中点,,则λ+μ的值为()A.B.C.D.1二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置. 13.函数y=tan(x+)的单调区间为______.14.已知向量是两个不共线的向量,若向量与向量共线,则实数λ=______.15.函数f(x)=2sinxcos(x﹣),x∈[0,]的最小值为______.16.把函数的图象向左平移m(m>0)个单位,所得的图象关于y轴对称,则m的最小值是______.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知α的终边经过点(﹣4,3),求下列各式的值:(1);(2)sinα?cosα.18.已知平面向量=(1,x),=(2x+3,﹣x)(x∈R).(1)若⊥,求x的值;(2)若∥,求|﹣|.19.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(1)求角A的大小;(2)若a=4,b+c=8,求△ABC的面积.20.如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DBA=30°,∠DAB=60°,AD=1,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角P﹣AB﹣D余弦值.21.已知,且,(1)求cosα的值;(2)若,,求cosβ的值.22.已知向量=(1+cosωx,1),=(1,a+sinωx)(ω为常数且ω>0),函数f(x)=在R上的最大值为2.(Ⅰ)求实数a的值;(Ⅱ)把函数y=f(x)的图象向右平移个单位,可得函数y=g(x)的图象,若y=g(x)在[0,]上为增函数,求ω取最大值时的单调增区间.参考答案一、单项选择题:1.B.2.B.3.B.4.D.5.B.6.B.7.A.8.C.9.C.10.A.11.B.12.A.二、填空题:13.答案为:递增区间为(kπ﹣,kπ+),k∈Z14.答案为:﹣15.答案为:0.16.答案为:π.三、解答题:17.解:∵α的终边经过点P(﹣4,3),∴|PO|=r=因此,,,…(1)根据诱导公式,得sin(±α)=cosα,cos(π+α)=﹣cosα,sin(π﹣α)=sinα∴…(2)sinα?cosα=﹣×=…18.解:(1)∵⊥,∴?=(1,x)?(2x+3,﹣x)=2x+3﹣x2=0整理得:x2﹣2x﹣3=0解得:x=﹣1,或x=3(2)∵∥∴1×(﹣x)﹣x(2x+3)=0即x(2x+4)=0解得x=﹣2,或x=0当x=﹣2时,=(1,﹣2),=(﹣1,2)﹣=(2,﹣4)∴|﹣|=2当x=0时,=(1,0),=(3,0)﹣=(﹣2,0)∴|﹣|=2故|﹣|的值为2或2.19.解:(1)∵△ABC中,,∴根据正弦定理,得,∵锐角△ABC中,sinB>0,∴等式两边约去sinB,得sinA=∵A是锐角△ABC的内角,∴A=;(2)∵a=4,A=,∴由余弦定理a2=b2+c2﹣2bccosA,得16=b2+c2﹣2bccos,化简得b2+c2﹣bc=16,∵b+c=8,平方得b2+c2+2bc=64,∴两式相减,得3bc=48,可得bc=16.因此,△ABC的面积S=bcsinA=×16×sin=4.20.(本小题满分12分)解:(Ⅰ)∵∠DBA=30°,∠DAB=60°,∴∠ADB=90°,∴BD⊥AD,又PD⊥底面ABCD,∴BD⊥PD,∴BD⊥面PAD,∴PA⊥BD.(Ⅱ)过D作DO⊥AB交AB于O,连接PO,∵PD⊥底面ABCD,∴∠POD为二面角P﹣AB﹣D的平面角.在Rt△ABD中,∵AD=1,∠ABD=30°,∴,∴,而PD=AD=1,在Rt△PDO中,,∴,∴.∴二面角P﹣AB﹣D余弦值为.21.解:(1)由,平方可得1+sinα=,解得sinα=.再由已知,可得α=,∴cosα=﹣.(2)∵,,∴﹣<α﹣β<,cos(α﹣β)=.∴cosβ=cos(﹣β)=cos[(α﹣β)﹣α]=cos(α﹣β)cosα+sin(α﹣β)sinα=+=﹣.22.解:(Ⅰ)函数f(x)==1+cosωx+a+sinx=2sin(ωx+)+a+1,…∵函数f(x)在R上的最大值为2,∴3+a=2故a=﹣1…(Ⅱ)由(Ⅰ)知:f(x)=2sin(ωx+),把函数f(x)=2sin(ωx+)的图象向右平移个单位,可得函数y=g(x)=2sinωx…又∵y=g(x)在[0,]上为增函数,∴g(x)的周期T=≥π即ω≤2.∴ω的最大值为2…此时单调增区间为…2017—2018学年人教版高一数学第二学期期中考试卷(六)(考试时间120分钟满分150分)一、单项选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项是符合题目要求的.1.已知集合M={x|y=lnx},N={x|2x≤8},则M∩N=()A.?B.{x|0<x≤3}C.{x|x≤3}D.{x|x<3}2.sin(﹣)的值等于()A.B.﹣C.D.﹣3.在单位圆中,面积为1的扇形所对的圆心角为()弧度A.1 B.2 C.3 D.44.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是()A.2B.2C.2D.45.函数f(x)=ln(x+1)﹣的零点所在的大致区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)6.已知某产品的广告费用x万元与销售额y万元的统计数据如表所示:x(万元)0 1 3 4y(万元) 2.2 4.3 4.8 6.7从散点图分析,y与x线性相关,且=0.95x+,则据此模型预报广告费用为6万元时销售额为()A.2.6万元B.8.3万元C.7.3万元D.9.3万元7.已知函数f(x)=ka x﹣a﹣x(a>0且a≠1)在R上是奇函数,且是增函数,则函数g(x)=log a(x﹣k)的大致图象是()A.B.C.D.8.给出下列结论:①若=,则ABCD是平行四边形;②cosπ<sinπ<tanπ;③若∥,∥,则∥;④若=,则=.则以上正确结论的个数为()A.0个B.1个C.2个D.3个9.把函数y=sin(2x+)的图象向右平移φ(φ>0)个单位长度,所得的图象关于y轴对称,则φ的最小值为()A.B.C.D.10.直线xsinα+y+2=0的倾斜角的取值范围是()A.[0,π)B.[0,]∪[,π)C.[0,]D.[0,]∪(,π)11.如图是由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若直角三角形中较小的内角为θ,大正方形的面积是1,小正方形的面积是,则tanθ的值是()A.B.C.D.12.已知正方体ABCD﹣A1B1C1D1的一个面A1B1C1D1在半径为的半球底面上,A、B、C、D四个顶点都在此半球面上,则正方体ABCD﹣A1B1C1D1的体积为()A.B.C.2D.1二、填空题:本题共4小题,共20分.13.已知,则=.14.一个总体分为A、B两层,用分层抽样法从总体中抽取容量为10的样本,已知B层中个体甲被抽到的概率是,则总体中的个体数是.15.在区间[﹣2,4]上随机地取一个数x,若x满足|x|≤m的概率为,则m=.16.已知圆C:x2+y2﹣2ax﹣2(a﹣1)y﹣1+2a=0(a≠1)对所有的a∈R且a≠1总存在直线l与圆C相切,则直线l的方程为.三、解答题:本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤.17.已知角θ的终边经过点P(a,﹣2),且cosθ=﹣.(1)求sinθ,tanθ的值;(2)求的值.18.某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[90,100),[100,110),…,[140,150)后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(I)求分数在[120,130]内的频率,并补全这个频率分布直方图;(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(Ⅲ)用分层抽样的方法在分段[110,130]的学生中抽取一个容量为6的样本,将样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130]内的概率.19.已知函数f(x)=Asin(2ωx+?)+k(A>0,ω>0,?∈[﹣])的最小正周期为,函数的值域为[﹣],且当x=时,函数f(x)取得最大值.(1)求f(x)的表达式,并写出函数f(x)的单调递增区间;(2)求函数f(x)在区间[0,]上的取值范围.20.如图,△ABC中,O是BC的中点,AB=AC,AO=2OC=2.将△BAO沿AO折起,使B点与图中B'点重合.(1)求证:AO⊥平面B'OC;(2)当三棱锥B'﹣AOC的体积取最大时,求二面角A﹣B'C﹣O的余弦值;(3)在(2)的条件下,试问在线段B'A上是否存在一点P,使CP与平面B'OA所成的角的正弦值为?证明你的结论,并求AP的长.21.已知函数f(x)=ax+.(1)从区间(﹣2,2)内任取一个实数a,设事件A={函数y=f(x)﹣2在区间(0,+∞)上有两个不同的零点},求事件A发生的概率;(2)当a>0,x>0时,f(x)=ax+.若连续掷两次骰子(骰子六个面上标注的点数分别为1,2,3,4,5,6)得到的点数分别为a和b,记事件B={f(x)>b2在x∈(0,+∞)恒成立},求事件B发生的概率.22.已知f(x)=asin(x+)+1﹣a(x∈R).(1)当x∈[0,]时,恒有|f(x)|≤2,求实数a的取值范围;(2)若f(x)=0在[0,]上有两个不同的零点,求实数a的取值范围.参考答案一、单项选择题:1.B.2.C.3. B 4.C.5.B.6.B.7.A8.B.9.D.10. B 11.A.12.A.二、填空题:13.解:由题意分式的分子与分母都除以cosα可得又∴==故答案为14.解:∵用分层抽样方法从总体中抽取一个容量为10的样本.由B层中每个个体被抽到的概率都为,知道在抽样过程中每个个体被抽到的概率是,∴总体中的个体数为10÷=100.故答案为:10015.解:如图区间长度是6,区间[﹣2,4]上随机地取一个数x,若x满足|x|≤m的概率为,所以m=3.故答案为:3.16.解:圆的圆心坐标为(a,1﹣a),半径为: |a﹣1|显然,满足题意切线一定存在斜率,∴可设所求切线方程为:y=kx+b,即kx﹣y+b=0,则圆心到直线的距离应等于圆的半径,即=|a﹣1|恒成立,即2(1+k2)a2﹣4(1+k2)a+2(1+k2)=(1+k)2a2+2(b﹣1)(k+1)a+(b﹣1)2恒成立,比较系数得,解之得k=﹣1,b=1,所以所求的直线方程为y=﹣x+1.故答案为:y=﹣x+1.三、解答题:17.解:(1)∵,且过P(a,﹣2),∴θ为第三象限的角…∴……(2)…18.解(I)分数在[120,130)内的频率为:1﹣(0.1+0.15+0.15+0.25+0.05)=1﹣0.7=0.3…,补全后的直方图如右(II)平均分为:125×0.3+135×0.25+145×0.05=121(III)由题意,[110,120)分数段的人数为:60×0.15=9人[120,130)分数段的人数为:60×0.3=18人∵用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本∴需在[110,120)分数段内抽取2人,并分别记为m,n;在[120,130)分数段内抽取4人,分别记为a,b,c,d设“从样本中任取2人,至多有1人在分数段[120,130)内”为事件A,则基本事件共有:(m,n),(m,a),…,(m,d),(n,a),…,(n,d),(a,b),…,(c,d)共15种…则事件A包含的基本事件有:(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d)共9种∴19.解:(1)∵函数函数f(x)=Asin(2ωx+?)+k的值域为,A>0,∴,∴.又,∴ω=2,∵当时,函数f(x)取得最大值.∴,又,∴,∴.令2kπ﹣≤4x﹣≤2kπ+,解得≤x≤+(k∈Z),所以f(x)的增区间为(k∈Z).(2)因为x∈,所以4x﹣∈,所以sin∈,所以f(x)∈,故f(x)在区间上的取值范围是.20.解:(1)证明:∵AB=AC且O是BC中点,∴AO⊥BC即AO⊥OB',AO⊥OC,又∵OB'∩OC=O,∴AO⊥平面B'OC;…(2)在平面B'OC内,作B'D⊥OC于点D,则由(Ⅰ)可知B'D⊥OA又OC∩OA=O,∴B'D⊥平面OAC,即B'D是三棱锥B'﹣AOC的高,又B'D≤B'O,所以当D与O重合时,三棱锥B'﹣AOC的体积最大,过O点作OH⊥B'C于点H,连AH,由(Ⅰ)知AO⊥平面B'OC,又B'C?平面B'OC,∴B'C⊥AO∵AO∩OH=O,∴B'C⊥平面AOH,∴B'C⊥AH∴∠AHO即为二面角A﹣B'C﹣O的平面角.在,∴,∴,故二面角A﹣B1C﹣O的余弦值为…(3)连接OP,在(2)的条件下,易证OC⊥平面B'OA,∴CP与平面B'OA所成的角为∠CPO,∴∴又在△ACB′中,,∴CP⊥AB′,∴,∴…。
2017-2018学年下学期高一期中考试数学试卷(含答案)

2017-2018学年下学期高一期中考试数学试卷分值:150分 考试时间:120分钟第I 卷(选择题)一、选择题:(本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在试卷的答题卡中.) 1.8弧度的角的终边所在的象限为 ( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 2.已知向量)2,(),1,3(-=-=x b a ,且b a ⊥,则x 等于( )A.32 B. 32- C. 6- D. 6 3. 如果点P ()sin cos ,2cos θθθ位于第三象限,那么角θ所在的象限是 ( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.已知扇形OAB 的圆.心.角.为4rad ,其面积是4cm 2,则该扇形的弧长..是( )cm.A. 8B. 4C. 5.设0a <,角α的终边经过点()3,4P a a -,那么sin 2cos αα+=( ) A.25 B. 23- C. 23 D. 25- 6.若54)6cos(=+πα,则=-)3sin(πα( ) A.54 B. 53 C. 53- D. 54- 7.已知()()sin 3cos sin 2πθθπθ⎛⎫++-=- ⎪⎝⎭,则2sin cos cos θθθ+=( ) A.15 B. 25 C. 35 D. 458.已知函数()()()cos 0f x x θθπ=+<<在3x π=时取得最小值,则()f x 在[]0,π上的单调递增区间是( )A. ,3ππ⎡⎤⎢⎥⎣⎦ B. 2,33ππ⎡⎤⎢⎥⎣⎦ C. 20,3π⎡⎤⎢⎥⎣⎦ D. 2,3ππ⎡⎤⎢⎥⎣⎦9.函数)22,0(),sin(2)(πϕπωϕω<<->+=x x f 的部分图象如图所示,则ϕω,的值分别是( )A. 3,2π-B. 6,2π-C. 6,4π-D. 3,4π10.将函数sin3y x =的图象向左平移(0)ϕϕ>个单位,得到的图象恰好关于直线4x π=对称,则ϕ的最小值是( )A.12π B. 6π C. 4π D. 3π11.如图,四边形ABCD 是边长为2的菱形,∠BAD=600,E,F 分别为BC,CD 的中点,则=∙( )A.21 B. 23- C. 23 D. 21- 12.已知函数()cos 24f x x π⎛⎫=-⎪⎝⎭,下面结论正确的是( ) A. 函数()f x 的最小正周期为2π B. 函数()f x 在区间04π⎡⎤⎢⎥⎣⎦, 上是增函数C. 函数()f x 的图象关于直线8x π= 对称D. 函数()f x 的图象关于点08π⎛⎫⎪⎝⎭,对称第II 卷(非选择题)二、填空题:(本大题共4小题,每小题5分,共20分).14.与02002-终边相同的最小正角是_______________.15.已知)2,3(),2,1(-==b a ,当 k=______时,b a k +与b a 3-平行。
江西省抚州市崇仁县高一数学下学期期中试题
江西省抚州市崇仁县2016-2017学年高一数学下学期期中试题第Ⅰ卷(选择题 共60分)一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求.1.已知集合{|1},A x x =>-2{|230},B x x x =+-<则A B ⋂=( )A .(1,3)-B .(1,1)-C .(1,)-+∞D .(3,1)- 2.若a b >,则下列结论一定正确的是 ( ) A .11a b > B .11a b< C .33a b > D .22a b >3. 已知直线m 20y +-=,则直线m 的倾斜角为( )A .060 B .0120 C .0135 D .0150 4.已知等比数列{}n a 的首项为1,且132,,a a a 成等差数列,则6a 等于( ) A .132-B .116C .132-或 1D .1325.已知ABC ∆的三边长分别为5AB =,7BC =,8CA =,则sin B 的值为( )A B .17 C . 67D .1 6.已知从点22M (,)射出一条光线,经x 轴反射后过点(8,3)N -,则反射光线所在的直线方程是( )A .260x y --=B .+2+60x y =C .2+20x y -=D .+2+20x y = 7.已知数列{}n a 的首项为1-,122n n a a +=+,则数列{}n a 的通项公式为( )A .122n -- B .22n - C .212n n -- D .12n --8.已知关于x 的方程2(3)10()mx m x m R +-+=∈有两个不相等的正实数根,则m 的取值范围是( )A .(0,1)B .(0,1]C .(0,3)D .(0,1)(9,)⋃+∞9.在ABC ∆中,30,2A AB =︒=,且ABC ∆ABC ∆外接圆的半径为( )A BC .2D .410.在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯 三百八十一,请问尖头几盏灯”.这首古诗描述的这个宝塔其古称浮屠,本题说它一共有7层.每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?你算出顶层有( )盏灯. A .6 B .5 C .4 D .311.已知动直线:20l ax by c ++-=(0,0)a c >>恒过点(1,)P m ,且(4,0)Q 到动直线l 的最大距离为3,则42c aac +的最小值为( ) A .92 B .94C .1D .912.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18km ,速度为1000km/h ,飞行员先看到山顶的俯角为030,经过1min 后又看到山顶的俯角为075,则山顶的海拔高度为(精确到0.1km )( )km 1.73≈≈). A .6.5 B .6.8 C .6.7 D .6.6第Ⅱ卷(非选择题 共90分)二.填空题:(本大题共4小题,每小题5分,满分20分).13.已知点(2,1),(,3)A B a -,且||5AB =,则实数a 的值为_________________.14.求经过原点,圆心在x 轴的正半轴上,半径为2的圆的方程是______________________. 15.若直线20ax by -+=(0a >,0b >)经过圆22:(1)(2)4C x y ++-=的圆心,则11a b+的 最小值为___________.16.将全体正奇数排成一个三角形数阵:1 3 5 7 9 11 13 15 17 19 . . . . .按照以上排列的规律,则第n 行(2n ≥)从左向右的第2个数为 .三.解答题:(本大题共6题,共70分,每题应写出文字说明,证明过程或演算步骤). 17.(本小题满分10分)已知直线:2(1)20m x a y +++=与直线:330n ax y +-=, (1)若m n ⊥,求实数a 的值; (2)若//m n ,求实数a 的值.18.(本小题满分12分)(1)已知实数,x y 均为正数,求证:49()()25x y x y++≥; (2)解关于x 的不等式22210x ax a -+-<()a R ∈.19.(本小题满分12分)在ABC ∆中,角A B C 、、所对的边分别为a b c 、、,已知34b c =,2B C =. (1)求sin B 的值;(2)若4b =,求ABC ∆的面积.P CBA20. (本小题满分12分)数列{}n a 的前n 项和n S 满足12n n S a a =-,且123,1,a a a +成等差数列.(1)求数列{}n a 的通项公式;(2)设11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .21.(本小题满分12分)如图, 在ABC ∆中, 点P 在BC 边上, 60,2,4PAC PC AP AC ︒∠==+=. (1) 求ACP ∠; (2) 若APB ∆的面积是2, 求sin ∠BAP .22.(本小题满分12分)已知递增数列{}n a ,12a =,其前n 项和为n S ,且满足2123()(2)n n n a S S n -+=+≥.(1)求2a 的值;(2)求数列{}n a 的通项公式; (3)若数列{}n b 满足2log nnb n a =,求其前n 项和n T .崇仁二中2016-2017学年高一下学期期中考试数学试卷答案一.选择题:BCCBAD AACDBD二.填空题:13. 51-或 14. 22(2)4x y -+= 15.32+ 16. 23()n n n N +-+∈三.解答题:17.解:(1)依题意得,23(1)0a a ++=,…………3分 ∴35a =-…………5分 另解:当1a =-时,显然不成立;…………1分当1a ≠-时,122,,13ak k a =-=-+ …………2分 又因为m n ⊥, 所以122()()113a k k a =--=-+,…………4分 ,即35a =-…………5分(2)依题意得,6(1)a a =+,∴2a =或3a =-,…………7分当2a =时,直线:2320m x y ++=,直线:2330n x y +-=,显然成立。
江西省2017—2018学年高一数学下学期期中考试试卷(共八套)
江西省2017—2018学年高一数学下学期期中考试试卷(共八套)江西省2017—2018学年高一数学下学期期中考试试卷(一)(考试时间120分钟满分150分)一.单项选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.过两点A(1,),B(4,2)的直线的倾斜角为()A.30°B.60°C.120°D.150°2.将长方体截去一个四棱锥后,得到的几何体的直观图如图所示,则该几何体的俯视图为()A.B.C.D.3.设α,β是两个不同的平面,l是一条直线,以下命题正确的是()A.若β⊥α,l⊥α,则l∥βB.若l∥β,l∥α,则α∥βC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β4.若圆锥的轴截面是等边三角形,则它的侧面展开图扇形的圆心角为()A.90°B.180°C.45°D.60°5.如果AC<0且BC<0,那么直线Ax+By﹣C=0不通过()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.一个多面体的三视图如图所示,其中主视图是正方形,左视图是等腰三角形,则该几何体的侧面积为()A.64 B.98 C.108 D.1587.若直线ax+by﹣3=0和圆x2+y2+4x﹣1=0切于点P(﹣1,2),则ab的值为()A.﹣3 B.﹣2 C.2 D.38.已知圆(x﹣1)2+(y﹣a)2=4(a>0)被直线x﹣y﹣l=0截得的弦长为2,则a的值为()A.B.C.﹣l D.﹣l9.如图所示是一个几何体的三视图,则该几何体的体积为()A.1 B.C.D.10.直线L1:ax+(1﹣a)y=3,L2:(a﹣1)x+(2a+3)y=2互相垂直,则a的值是()A.0或﹣B.1或﹣3 C.﹣3 D.111.如图,在正方体ABCD﹣A1B1C1D1中,M,N,P,Q分别是AA1,A1D1,CC1,BC 的中点,给出以下四个结论:①A1C⊥MN;②A1C∥平面MNPQ;③A1C与PM相交;④NC与PM异面.其中不正确的结论是()A.①B.②C.③D.④12.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A﹣BCD.则在三棱锥A﹣BCD中,下列命题正确的是()A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABC二.填空题.(本大题共4小题,每小题5分,共20分)13.一个三角形的直观图是腰长为4的等腰直角三角形,则它的原面积是.14.甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测,若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为件.15.经过两圆x2+y2+6x﹣4=0和x2+y2+6y﹣28=0的交点,并且圆心在直线x﹣y﹣4=0上的圆的方程.16.已知H是球O的直径AB上一点,AH:HB=1:2,AB⊥平面α,H为垂足,α截球O 所得截面的面积为π,则球O的表面积为.三.解答题.(本大题共6个大题,共70分)17.已知直线l的方程为2x﹣y+1=0(Ⅰ)求过点A(3,2),且与直线l垂直的直线l1方程;(Ⅱ)求与直线l平行,且到点P(3,0)的距离为的直线l2的方程.18.如图,在底面是矩形的四棱锥P﹣ABCD中,PA⊥平面ABCD,PA=AB,E是PD的中点.(1)求证:PB∥平面EAC;(2)求证:平面PDC⊥平面PAD.19.已知圆C:x2+y2+2x﹣4y+3=0.(1)若不经过坐标原点的直线l与圆C相切,且直线l在两坐标轴上的截距相等,求直线l 的方程;(2)设点P在圆C上,求点P到直线x﹣y﹣5=0距离的最大值与最小值.20.如图,在直四棱柱ABCD﹣A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(1)求证:D1C⊥AC1;(2)设E是DC上一点,试确定E的位置,使D1E∥平面A1BD,并说明理由.21.已知以点C为圆心的圆经过点A(0,﹣1)和B(4,3),且圆心在直线3x+y﹣15=0上.(Ⅰ)求圆C的方程;(Ⅱ)设点P在圆C上,求△PAB的面积的最大值.22.已知直角梯形ABCD的下底与等腰直角三角形ABE的斜边重合,AB⊥BC,且AB=2CD=2BC(如图1),将此图形沿AB折叠成直二面角,连接EC、ED,得到四棱锥E ﹣ABCD(如图2).(1)求证:在四棱锥E﹣ABCD中,AB⊥DE.(2)设BC=1,求点C到平面EBD的距离.参考答案一.单项选择题1.A.2.C.3.C.4.B 5.A.6.A.7.C 8.A.9.B 10.B.11.B.12.D.二.填空题13.答案为:16.14.答案为:1800.15.答案为:x2+y2﹣x+7y﹣32=0.16.答案为:.三.解答题17.解:(Ⅰ)设与直线l:2x﹣y+1=0垂直的直线l1的方程为:x+2y+m=0,把点A(3,2)代入可得,3+2×2+m=0,解得m=﹣7.∴过点A(3,2),且与直线l垂直的直线l1方程为:x+2y﹣7=0;(Ⅱ)设与直线l:2x﹣y+1=0平行的直线l2的方程为:2x﹣y+c=0,∵点P(3,0)到直线l2的距离为.∴=,解得c=﹣1或﹣11.∴直线l2方程为:2x﹣y﹣1=0或2x﹣y﹣11=0.18.证明:(1)连结BD交AC于O,连结EO,则EO是△PBD的中位线,∴EO∥PB,又PB⊄平面EAC,EO⊂平面EAC,∴PB∥平面EAC;(2)∵PA⊥平面ABCD,CD⊂平面ABC,∴PA⊥CD.∵ABCD是矩形,∴AD⊥CD.而PA∩AD=A,∴CD⊥平面PAD,又CD⊂平面PDC,∴平面PDC⊥平面PAD.19.解:(1)圆C的方程可化为(x+1)2+(y﹣2)2=2,即圆心的坐标为(﹣1,2),半径为,因为直线l在两坐标轴上的截距相等且不经过坐标原点,所以可设直线l的方程为x+y+m=0,于是有,得m=1或m=﹣3,因此直线l的方程为x+y+1=0或x+y﹣3=0;(2)因为圆心(﹣1,2)到直线x﹣y﹣5=0的距离为,所以点P到直线x﹣y﹣5=0距离的最大值与最小值依次分别为和.20.解:(1)证明:在直四棱柱ABCD﹣A1B1C1D1中,连接C1D,∵DC=DD1,∴四边形DCC1D1是正方形.∴DC1⊥D1C.又AD⊥DC,AD⊥DD1,DC⊥DD1=D,∴AD⊥平面DCC1D1,D1C⊂平面DCC1D1,∴AD⊥D1C.∵AD,DC1⊂平面ADC1,且AD⊥DC=D,∴D1C⊥平面ADC1,又AC1⊂平面ADC1,∴D1C⊥AC1.(2)连接AD1,连接AE,设AD1∩A1D=M,BD∩AE=N,连接MN,∵平面AD1E∩平面A1BD=MN,要使D1E∥平面A1BD,须使MN∥D1E,又M是AD1的中点.∴N是AE的中点.又易知△ABN≌△EDN,∴AB=DE.即E是DC的中点.综上所述,当E是DC的中点时,可使D1E∥平面A1BD.21.解:(Ⅰ)设所求圆的方程为x2+y2+Dx+Ey+F=0 …依题意得…解得D=﹣12,E=6,F=5 …∴所求圆的方程是x2+y2﹣12x+6y+5=0 …(Ⅱ)|AB|==4,…由已知知直线AB的方程为x﹣y﹣1=0 …所以圆心C(6,﹣3)到AB的距离为d=4…P到AB距离的最大值为d+r=4+2…所以△PAB面积的最大值为=16+8…22.解:(1)作AB的中点F,连结EF,DF,∵AB=2CD,∴BE=CD=BC,∵BE∥CD,∴四边形BCDE为正方形,∴DF⊥AB,∵BE=AE,F为AB的中点,∴EF ⊥AB ,∴AB ⊥平面DEF , ∵DE ⊂平面DEF , ∴AB ⊥DE . (2)∵BC=1,∴AB=2BC=2,BE==,BD=BC=,FE=BF=1,DF=BC=1∴DE=EF=,∴△BDE 为等边三角形,边长为,∴S △BDE =××=.∵EF ⊥AB ,平面EAB ⊥平面ABCD ,∴EF ⊥面ABCD ,即EF 为点E 到平面ABCD 的距离,∴S E ﹣BCD =•EF •S △BCD =×1×=, 设点C 到平面EBD 的距离为d ,则S E ﹣BCD =•d •S △BDE =•d •=,∴d=,即点C 到平面EBD 的距离为.江西省2017—2018学年高一数学下学期期中考试试卷(二)(考试时间120分钟 满分150分)一、单项选择题(共12小题,每小题5分,共60分) 1.下列角中终边与330°相同的角是( ) A .30° B .﹣30° C .630° D .﹣630°2.如果点P (sin θcos θ,2cos θ)位于第三象限,那么角θ所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.下列命题中正确的是( )A .若两个向量相等,则它们的起点和终点分别重合B .模相等的两个平行向量是相等向量C .若和都是单位向量,则D .两个相等向量的模相等4.下列关系式正确的是( )A . +=0B . •是一个向量C .﹣=D .0•=5.已知扇形的半径是2,面积为8,则此扇形的圆心角的弧度数是( ) A .4 B .2 C .8 D .16.要得到函数y=sin (2x ﹣)的图象,应该把函数y=sin2x 的图象( )A .向左平移B .向右平移C .向左平移D .向右平移7.已知,且x 在第三象限,则cosx=( )A .B .C .D .8.如图所示的是函数y=2sin (ωx +φ)(|φ|<)的部分图象,那么( )A .ω=,φ=B .ω=,φ=﹣C .ω=2,φ=D .ω=2,φ=﹣9.余弦函数y=cos (x +)在下列( )区间为减函数.A .[﹣π,] B .[﹣π,0] C .[﹣,π] D .[﹣,]10.已知=(3,1),=(x ,﹣1),且∥,则x 等于( )A .B .﹣C .3D .﹣311.已知||=,||=2,.=﹣3,则与的夹角是( ) A .150° B .120° C .60° D .30°12.已知△ABC 的三个顶点A 、B 、C 及平面内一点P ,若++=,则点P 与△ABC的位置关系是( )A .P 在AC 边上B .P 在AB 边上或其延长线上C .P 在△ABC 外部D .P 在△ABC 内部二、填空题(共4小题,每小题5分,共20分)13.已知sin α=,α是第一象限角,则cos (π﹣α)的值为______.14.已知=(﹣1,3),=(1,t ),若(﹣2)⊥,则||=______.15.如图,平行四边形ABCD 中,E 是边BC 上一点,G 为AC 与DE 的交点,且,若=,,则用,表示=______.16.已知函数y=3cosx (0≤x≤2π)的图象和直线y=3围成一个封闭的平面图形,则其面积为______..三、解答题(本大题共6小题,共70分)17.如图所示,A,B是单位圆O上的点,且B在第二象限,C是圆与x轴正半轴的交点,A点的坐标为(,),且A与B关于y轴对称.(1)求sin∠COA;(2)求cos∠COB.18.设f(θ)=.(1)化简f(θ)(2)求f()的值.19.已知函数f(x)=sin(﹣).(1)请用“五点法”画出函数f(x)在长度为一个周期的闭区间上的简图(先在所给的表格20.已知向量.(1)若向量与向量平行,求实数m的值;(2)若向量与向量垂直,求实数m的值;(3)若,且存在不等于零的实数k,t使得,试求的最小值.21.已知函数y=3sin(2x+﹣2.(Ⅰ)求f(x)最小正周期,对称轴及对称中心;(Ⅱ)求f(x)在区间[0,π]上的单调性.22.如图,在扇形OAB中,∠AOB=60°,C为上的一个动点.若=x+y,求x+3y 的取值范围.参考答案一、单项选择题1. B .2. B 3. D .4. D .5. A .6. D .7. D .8. A .9. C .10. D . 11. B 12. A .二、填空题13.答案为:.14.答案为:.15.答案为:. 16.答案为:6π.三、解答题17.解:(1)∵A 点的坐标为(,),∴sin ∠COA=;(2)cos ∠COB=cos (π﹣∠COA )=﹣cos ∠COA=﹣.18.解:(1)===;(2).19.解:(1)令,则.填表:……(2)因为x∈[0,2],所以,…所以当,即x=0时,取得最小值;…当,即时,取得最大值1 …20.解:(1)∵,且∴,解得;(2)∵,且∴,解得;(3)由(2)可知,时,m=,∴=(﹣,1),=(,)又∵,∴,∴+t(t2﹣3)+(t﹣kt2+3k)=0,代入数据可得:﹣4k+t(t2﹣3)=0∴,∴,由二次函数的知识可知,当t=﹣2时,的最小值为.21.解:函数y=3sin(2x+)﹣2;(Ⅰ)函数f(x)的最小正周期是T==π,令2x+=+kπ,k∈Z,解得x=+,k∈Z,∴函数f(x)的对称轴是x=+,k∈Z;令2x+=kπ,k∈Z,解得x=﹣+,k∈Z,∴函数f(x)的对称中心是(﹣+,﹣2);(Ⅱ)令﹣+2kπ≤2x+≤+2kπ,k∈Z,解得﹣+kπ≤x≤+kπ,k∈Z,∴函数f(x)的单调增区间为[﹣+kπ, +kπ],k∈Z;同理函数f(x)的单调减区间为[+kπ, +kπ],k∈Z;∴函数f(x)在区间[0,π]上的单调性是:单调增区间为[0,]和[,π],单调减区间为[,].22.解:设扇形的半径为r;考虑到C为弧AB上的一个动点,=x+y.显然x,y∈[0,1];两边平方:=;所以:y2+x•y+x2﹣1=0,显然△=4﹣3x2>0;∵y>0,∴解得:,故;不妨令,x∈[0,1];∴;∴f(x)在x∈[0,1]上单调递减,f(0)=3,f(1)=1,∴f(x)∈[1,3];即x+3y的取值范围为[1,3].江西省2017—2018学年高一数学下学期期中考试试卷(三)(考试时间120分钟满分150分)一、单项选择题(本大题共12小题,每小题5分,共60分.)1.下列说法中正确的是()A.单位向量的长度为1B.长度相等的向量叫做相等向量C.共线向量的夹角为0°D.共面向量就是向量所在的直线在同一平面内2.将300°化为弧度为()A. B. C. D.3.向量(+)+(+)+化简后等于()A.B.C.D.4.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.若直线ax+2y+1=0与直线x﹣y﹣2=0互相垂直,那么a的值等于()A.﹣B.2 C.﹣D.﹣26.四边形ABCD中,若向量=,则四边形ABCD()A.是平行四边形或梯形B.是梯形C.不是平行四边形,也不是梯形D.是平行四边形7.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1 C.φ=D.B=48.函数y=3sin(2x+)的单调增区间()A.[kπ﹣,kπ+](k∈Z)B.[kπ+,kπ+](k∈Z)C.[kπ﹣,kπ+](k∈Z)D.[kπ+,kπ+](k∈Z)9.要得到函数y=3cos(2x﹣)的图象,可以将函数y=3sin2x的图象()A.沿x轴向左平移单位B.沿x轴向右平移单位C.沿x轴向左平移单位D.沿x轴向右平移单位10.在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是,则cos2θ﹣sinθ2+2=()A.B.C.﹣D.﹣11.已知函数f(x)=(sinx+cosx)﹣|sinx﹣cosx|+1,则f(x)的值域是()A.[0,2]B.[1﹣,2]C.[0,1﹣]D.[0,1+]12.给出下列说法:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限或x轴负半轴的角.其中错误说法的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共4小题,每小题5分,共20分.)13.已知=,=,=,=,=,则+++=.14.圆x2+y2=4上的点到直线3x+4y﹣25=0的距离最小值为.15.已知tan()=,tan()=﹣,则tan()=.16.关于函数f(x)=6sin(2x+)(x∈R),有下列命题:①由f(x1)=f(x2)=0可得x1﹣x2必是π的整数倍;②y=f(x)的表达式可改写为f(x)=6cos(2x﹣);③y=f(x)的图象关于点(﹣,0)对称;④y=f(x)的图象关于直线x=对称.以上命题成立的序号是.三、.解答题(本大题共6小题,17题10分其余每题12分共70分)17.已知角α的终边经过一点P(4a,﹣3a)(a>0),求2sinα+cosα+tanα的值.18.设,是二个不共线向量,知=2﹣8,=+3,=2﹣.(1)证明:A、B、D三点共线;(2)若=4﹣k,且B、D、F三点线,求k的值.19.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tanα+tan2α的值;(2)求β.20.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,(Ⅰ)把y=f(x)纵坐标不变,横坐标向右平移,得到y=g(x),求y=g(x)的解析式;(Ⅱ)求y=g(x)的单调递增区间.21.已知sinα+sinβ=,求y=sinα﹣cos2β+1的最值.22.已知函数f(x)=2sin2(+x)+cos2x+1.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若关于x的方程f(x)﹣m=2在x∈[0,]上有两个不同的解,求实数m的取值范围.参考答案一、单项选择题1. A .2. C .3. D .4. D .5. B .6. D .7. C .8. C .9. A .10. A . 11. D .12. C .二、填空题13.答案为:. 14.答案为:3. 15.答案为116.答案为:②③④.三、.解答题17.解:∵角α的终边经过一点P (4a ,﹣3a )(a >0),∴r==5a ,∴sin α==﹣,cos α==,tan α==﹣,∴则2sin α+cos α+tan α=﹣.…18.(1)证明:==2﹣﹣(+3)=﹣4,∴,B 为公共点, ∴A 、B 、D 三点共线.(2)∵B 、D 、F 三点共线,∴存在实数λ,使,∴4﹣k =λ,∴=(k ﹣4λ),∵,是两个不共线向量, ∴4﹣λ=k ﹣4λ=0, 解得k=16.19.解:(1)由cos α=,0<α<,得sin α===,∴tan α===4,于是tan2α===﹣,tan α+tan2α=﹣.…(2)由0<β<α<,得0<α﹣β<,又∵cos(α﹣β)=,∴sin(α﹣β)===,由β=α﹣(α﹣β)得:cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)=+=,所以.…20.解:(Ⅰ)由图象可知A=2,,∴ω=2;∴f(x)=2sin(2x+φ),又图象的一个最高点为(﹣,2),∴φ=(k∈Z),解得φ=(k∈Z),又|φ|<π,∴φ=.∴f(x)=2sin(2x+).∴;(Ⅱ)由,得,k∈Z.∴g(x)的单调增区间为[](k∈Z).21.解:∵sinα+sinβ=,∴sinα=﹣sinβ代入y中,得:y=sinβ﹣(1﹣sin2β)+1=sin2β﹣sinβ+=(sinβ﹣)2+,…∵﹣1≤sinα≤1,∴﹣≤sinα≤,又sinβ=﹣sinα,且﹣1≤sinβ≤1,﹣≤sinβ≤1,…∴y min=,y max=,…22.解:(I)∵由f(x)=2sin2(+x)+cos2x+1=2sin(2x+)+2,…∴由2kπ﹣≤2x+≤2kπ+,解得:kπ﹣≤x≤kπ+,k∈Z,∴函数的单调递增区间为[kπ﹣,kπ+],k∈Z;…(II)由f(x)﹣m=2,∴f(x)=m+2,当x∈[0,]时,2x+∈[,],由图象得f(0)=2+2sin=2+,函数f(x)的最大值为4,…∴要使方程f(x)﹣m=2在x∈[0,]上有两个不同的解,则f(x)=m+2在x∈[0,]上有两个不同的解,即函数f(x)和y=m+2在x∈[0,]上有两个不同的交点,即2≤2+m<4,∴≤m<2.…江西省2017—2018学年高一数学下学期期中考试试卷(四)(考试时间120分钟 满分150分)一、单项选择题(共12小题,每小题5分,满分60分) 1.下列说法中正确的是( ) A .共线向量的夹角为0°或180° B .长度相等的向量叫做相等向量C .共线向量就是向量所在的直线在同一直线上D .零向量没有方向2.下列函数中为奇函数的是( )A .y=sin |x |B .y=sin2xC .y=﹣sinx +2D .y=sinx +1 3.已知角的终边经过点(4,﹣3),则tan α=( )A .B .﹣C .D .﹣4.函数y=cos (4x ﹣π)的最小正周期是( )A .4πB .2πC .πD .5.在直角坐标系中,直线3x +y ﹣3=0的倾斜角是( )A .B .C .D .6.函数的单调递减区间( )A .(k ∈Z )B .(k ∈Z )C .(k ∈Z )D .(k ∈Z )7.函数y=3sin (2x +)+2图象的一条对称轴方程是( )A .x=﹣B .x=0C .x=πD .8.下列选项中叙述正确的是( )A .终边不同的角同一三角函数值可以相等B .三角形的内角是第一象限角或第二象限角C .第一象限是锐角D .第二象限的角比第一象限的角大9.如果点P (sin θcos θ,2cos θ)位于第二象限,那么角θ所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限10.向量+++化简后等于( )A .B .C .D .11.已知函数y=Asin (ωx +φ)+B 的一部分图象如图所示,如果A >0,ω>0,|φ|<,则( )A.A=4 B.ω=1 C.φ=D.B=412.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sinA=sinB,则有A=B;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共4小题,每小题5分,共20分.)13.以点(0,2)和(4,0)为端点的线段的中垂线的方程是.14.圆x2+y2=4上的点到直线3x+4y﹣25=0的距离最小值为.15.已知=,=,=,=,=,则+++﹣=.16.已知tan()=,tan()=﹣,则tan()=.三、解答题(本大题共6小题,17题10分其余每题12分共70分)17.已知角α的终边经过一点P(5a,﹣12a)(a>0),求2sinα+cosα的值.18.已知△ABC的三个顶点A(0,4),B(﹣2,6),C(8,2);(1)求AB边的中线所在直线方程.(2)求AC的中垂线方程.19.若圆经过点A(2,0),B(4,0),C(1,2),求这个圆的方程.20.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求cosβ的值.21.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,(Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.22.已知函数f(x)=sin2ωx+sinωx•cosωx﹣1(ω>0)的周期为π.(1)当x∈[0,]时,求f(x)的取值范围;(2)求函数f(x)的单调递增区间.参考答案一、单项选择题1.A.2.B.3.B.4.D.5.D.6.D.7.C.8.A.9.D.10.D.11.C.12.C.二、填空题13.答案为:2x﹣y﹣3=0.14.答案为:3.15.答案为:.16.答案为1三、解答题17.解:由已知r==13a…∴sinα=﹣,cosα=,…∴2sinα+cosα=﹣…18.解:(1)∵线段AB的中点为(﹣1,5),∴AB边的中线所在直线方程是=,即x+3y﹣14=0.(2)AC的中点为(4.3)∵K AC==﹣,∴y﹣3=4(x﹣4)即y=4x﹣13,∴AC的中垂线方程为y=4x﹣13.19.解:设圆的方程为x2+y2+Dx+Ey+F=0,则,解得.∴圆的方程为:.20.解:(1)∵由cosα=,0<α<,得sinα===,∴得tan=∴于是tan2α==﹣.…(2)由0<β<α<,得0<α﹣β<,又∵cos(α﹣β)=,∴sin(α﹣β)==,由β=α﹣(α﹣β)得:cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)==.…21.解:(Ⅰ)由函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象,可得A=2,==+,∴ω=2.再根据五点法作图可得2•(﹣)+φ=,∴φ=,函数f(x)=2sin(2x+).(Ⅱ)由2x+=kπ+,求得x=﹣,可得函数的图象的对称轴方程为x=﹣,k∈Z.令2x+=kπ,求得x=﹣,可得函数的图象的对称轴中心为(﹣,0),k ∈Z.22.解:(1)f(x)=sin2ωx+sinωx•cosωx﹣1==.∵ω>0,∴T=,则ω=1.∴函数f(x)=sin(2x﹣)﹣.由0,得,∴,∴.∴f(x)的取值范围[﹣1,];(2)令,得:,(k∈Z),∴f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z).江西省2017—2018学年高一数学下学期期中考试试卷(五)(考试时间120分钟满分150分)一、单项选择题(共12小题,每小题5分,满分60分)1.计算:cos210°=()A.B.C.D.2.如图,四边形ABCD中,=,则相等的向量是()A.与B.与C.与D.与3.已知角α的终边经过点P(﹣b,4)且cosα=﹣,则b的值等于()A.3 B.﹣3 C.±3 D.54.扇形的半径是6cm,圆心角为15°,则扇形面积是()A.B.3πcm2C.πcm2 D.5.在△ABC中,点P为BC边上一点,且=2,,则λ=()A.B. C.D.6.若函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.7.如图是函数y=Asin(ωx+φ)的图象的一段,它的解析式为()A.B.C.D.8.△ABC的外接圆的圆心为O,半径为2,且,则向量在方向上的投影为()A.B.3 C.D.﹣39.把函数f(x)=cos(2x+)的图象沿x轴向左平移m个单位(m>0),所得函数为奇函数,则m的最小值是()A.B. C.D.10.如图,已知△ABC中,AB=AC=4,∠BAC=,点D是BC的中点,若向量=+m,且点M在△ACD的内部(不含边界),则的取值范围是()A.(﹣2,4)B.(﹣2,6)C.(0,4)D.(0,6)11.如图,设点A是单位圆上的一定点,动点P由点A出发在圆上按逆时针方向旋转一周,点P旋转过的弧为l,弦AP为d则函数d=f(l)的图象是()A.B.C.D.12.设向量与的夹角为θ,定义与的“向量积”:是一个向量,它的模,若,则=()A.B.2 C. D.4二、填空题:本大题共4小题,每小题5分,共20分.13.已知,且,则tanφ=______.14.设向量,是夹角为的单位向量,若=+2,则||=______.15.已知f(x)=sin(ω>0),f()=f(),且f(x)在区间上有最小值,无最大值,则ω=______.16.函数f(x)=3sin(2x﹣)的图象为C,则以下结论中正确的是______.(写出所有正确结论的编号).①图象C关于直线x=对称;②图象C关于点对称;③函数f(x)在区间(﹣,)内是增函数;④由y=3sin2x的图象向右平移个单位长度可以得到图象C.三、解答题:本大题共6小题,共70分.17.已知向量.(1)若,求k的值;(2)若,求m的值.18.已知f(α)=(1)化简f(α);(2)若f(α)=,且0<α<,求sinα+cosα的值.19.已知向量=(cosα,sinα),=(cosβ,sinβ),=(﹣1,0)(1)求向量的长度的最大值;(2)设α=,β∈(0,π),且⊥(+),求β的值.20.已知函数f(x)=sin(2x﹣)(1)画出函数f(x)在区间[0,π]的简图(要求列表);(2)求函数f(x)的单调递减区间.21.已知函数f(x)=sin(2ωx﹣)+b,且函数的对称中心到对称轴的最小距离为,当x∈[0,]时,f(x)的最大值为1(1)求函数f(x)的解析式(2)若f(x)﹣3≤m≤f(x)+3在x∈[0,]上恒成立,求m的取值范围.22.已知平面向量=(﹣,1),=(,),=﹣+m,=cos2x+sinx,f(x)=•,x∈R.(1)当m=2时,求y=f(x)的取值范围;(2)设g(x)=f(x)﹣m2+2m+5,是否存在实数m,使得y=g(x)有最大值2,若存在,求出所有满足条件的m值,若不存在,说明理由.参考答案一、单项选择题1.B 2.D.3.A 4.D.5.D.6.A.7.D.8.A 9.D.10.B.11.C.12.B.二、填空题13.答案为:﹣.14.答案为.15.答案为:16.答案为:②③.三、解答题17.解:(1)∵,∴3,.∵,∴﹣9(1+2k)=﹣2+3k,∴k=﹣.(2)∵m,由,得1×(m﹣2)﹣2×(﹣2m﹣3)=0,∴m=﹣.18.解:(1)f(α)==﹣=sinαcosα.(2)f(α)=,且0<α<,sinα>0,cosα>0,sinα+cosα>0.可得:sinαcosα=,2sinαcosα=.1+2sinαcosα=.∴sinα+cosα=.19.解:(1)=(cosβ﹣1,sinβ),∴丨丨===,∴当cosβ=﹣1,丨丨取最大值,最大值为2,向量的长度的最大值2;(2)α=,⊥(+),∴•+•=0,cosαcosβ﹣sinαsinβ﹣cosα=0,(cosβ+sinβ)=,sinβ+cosβ=1,∵sin2β+cos2β=1,解得:cosβ=0或1,∵β∈(0,π),β=.20.解:(1)对于函数f(x)=sin(2x﹣),∵x∈[0,π],可得2x﹣∈[﹣,],列表如下:(2)令2kπ+≤2x﹣≤2kπ+,求得kπ+≤x≤kπ+,可得函数f(x)的单调递减区间为[kπ+,kπ+],k∈Z.21.解:(1)∵函数的对称中心到对称轴的最小距离为,∴=,即周期T=π,即||=π,解得ω=1或ω=﹣1,若ω=1,则f (x )=sin (2x ﹣)+b ,当x ∈[0,]时,2x ﹣∈[﹣,],∴当2x ﹣=,时,函数f (x )取得最大值为f (x )=+b=+b=+b=1,即b=﹣,此时;若ω=﹣1,则f (x )=sin (﹣2x ﹣)+b ,当x ∈[0,]时,﹣2x ﹣∈[﹣π,﹣],∴当﹣2x ﹣=0时,函数f (x )取得最大值为f (x )=0+b=1,即b=1,此时,综上或.(2)若,由(1)知,函数f (x )的最大值为1,最小值为f (x )=﹣+1=﹣﹣=﹣﹣=﹣2,即﹣2≤f (x )≤1,则﹣5≤f (x )﹣3≤﹣2,1≤f (x )+3≤4, ∵f (x )﹣3≤m ≤f (x )+3在x ∈[0,]上恒成立,∴﹣2≤m ≤1;若.由(1)知,函数f (x )的最大值为1,最小值为f (x )=(﹣1)+1=1﹣,即1﹣≤f (x )≤1,则﹣2﹣≤f (x )﹣3≤﹣2,4﹣≤f (x )+3≤4, ∵f (x )﹣3≤m ≤f (x )+3在x ∈[0,]上恒成立,∴﹣2≤m ≤4﹣.22.解:(1)当m=2时,=﹣+2=(﹣+1, +),=cos2x+sinx=(sinx﹣cos2x,sinx+cos2x ),函数y=f(x)=•=(﹣+1)•(sinx﹣cos2x )+(+)•(sinx+cos2x )=cos2x+2sinx=1﹣sin2x+2sinx=2﹣(sinx﹣1)2,故当sinx=1时,函数y取得最大值为2,当sinx=﹣1时,函数y取得最小值为﹣2,故函数的值域为[﹣2,2].(2)∵=﹣+m=(﹣+, +),=cos2x+sinx=(sinx﹣cos2x,sinx+cos2x ),函数y=f(x)=•=(﹣+)•(sinx﹣cos2x )+(+)•(sinx+cos2x )=cos2x+msinx,∴g(x)=f(x)﹣m2+2m+5=cos2x+msinx﹣m2+2m+5=1﹣sin2x+msinx﹣m2+2m+5=﹣sin2x+msinx﹣m2+2m+6.令sinx=t,则﹣1≤t≤1,g(x)=h(t)=﹣t2+mt﹣m2+2m+6,函数h(t)的对称轴为t=,当<0时,h(t)的最大值为h(1)=﹣1+m﹣m2+2m+6=2,求得m=.当m≥0时,h(t)的最大值为h(﹣1)=﹣1﹣m﹣m2+2m+6=2,求得m=.综上可得,存在实数m=或m=,使得y=g(x)有最大值2.江西省2017—2018学年高一数学下学期期中考试试卷(六)(理科)(考试时间120分钟满分150分)一、单项选择题(本大题共12个小题,每小题5分,共60分,在每小题所给出的四个选项中,只有一项是符合题目要求的).1.在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58 B.88 C.143 D.1762.已知=(1,2),=(0,1),=(k,﹣2),若(+2)⊥,则k=()A.2 B.﹣2 C.8 D.﹣83.在△ABC中,已知a2+b2=c2+,则∠C=()A.30°B.45°C.150°D.135°4.已知a>b>0,那么下列不等式成立的是()A .﹣a >﹣bB .a +c <b +cC .(﹣a )2>(﹣b )2D .5.在△ABC 中,角A 、B 、C 所对的边为a ,b ,c ,若a ,b ,c 成等差数列,则角B 的范围是( )A .B .C .D .6.不等式x +>2的解集是( )A .(﹣1,0)∪(1,+∞)B .(﹣∞,﹣1)∪(0,1)C .(﹣1,0)∪(0,1)D .(﹣∞,﹣1)∪(1,+∞)7.有两个等差数列{a n },{b n },其前n 项和分别为S n 和T n ,若,则=( )A .B .C .D .8.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 满足A=,>0,a=,则b +c 的取值范围是( )A .(1,)B .(,]C .(,)D .(,)9.已知a >0,b >0,若不等式恒成立,则m 的最大值等于( )A .10B .9C .8D .710.已知点A ,B ,C 是不在同一直线上的三个点,O 是平面ABC 内一定点,P 是△ABC内的一动点,若,λ∈[0,+∞),则点P 的轨迹一定过△ABC 的( )A .外心B .内心C .重心D .垂心11.等比数列{a n }共有奇数项,所有奇数项和S 奇=255,所有偶数项和S 偶=﹣126,末项是192,则首项a 1=( ) A .1 B .2 C .3 D .412.已知数列{a n }:, +, ++,…, +++…+,…,那么数列b n =的前n 项和S n 为( )A .B .C .D .二、填空题:(本大题共4小题,每小题5分,共20分.)13.若{a n }是等差数列,首项a 1>0,a 2015+a 2016>0,a 2015•a 2016<0,则使前n 项和S n >0成立的最大正整数n 是______.14.已知a、b为正实数,且=2,若a+b﹣c≥0对于满足条件的a,b恒成立,则c的取值范围为______.15.在锐角三角形A BC中,tanA=,D为边BC上的点,△A BD与△ACD的面积分别为2和4.过D作D E⊥A B于E,DF⊥AC于F,则•=______.16.给出下面六个命题,不正确的是:______①若向量、满足||=2||=4,且与的夹角为120°,则在上的投影等于﹣1;②若B=60°,a=10,b=7,则该三角形有且只有两解③常数列既是等差数列,又是等比数列;④若向量与共线,则存在唯一实数λ,使得=λ成立;⑤在正项等比数列{a n}中,若a5a6=9,则log3a1+log3a2+…+log3a10=10;⑥若△ABC为锐角三角形,且三边长分别为2,3,x.则x的取值范围是<x<.三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程.)17.已知,与的夹角为120°.(Ⅰ)求的值;(Ⅱ)当实数x为何值时,与垂直?18.已知递增等比数列{a n}的第三项、第五项、第七项的积为512,且这三项分别减去1,3,9后成等差数列.(1)求{a n}的首项和公比;(2)设S n=a12+a22+…+a n2,求S n.19.设△ABC的内角A、B、C所对的边分别为a、b、c,已知.(1)求△ABC的周长和面积;(2)求cos(A+C)的值.20.已知f(x)=x2﹣abx+2a2.(Ⅰ)当b=3时,(ⅰ)若不等式f(x)≤0的解集为[1,2]时,求实数a的值;(ⅱ)求不等式f(x)<0的解集;(Ⅱ)若f(2)>0在a∈[1,2]上恒成立,求实数b的取值范围.21.已知点A,B分别在射线CM,CN(不含端点C)上运动,∠MCN=,在△ABC中,角A,B,C所对的边分别是a,b,c(1)若a,b,c依次成等差数列,且公差为2,求c的值:(2)若c=,∠ABC=θ,试用θ表示△ABC的周长,并求周长的最大值.22.设数列{a n }的各项均为正数,它的前n 项的和为S n ,点(a n ,S n )在函数y=x 2+x +的图象上;数列{b n }满足b 1=a 1,b n +1(a n +1﹣a n )=b n .其中n ∈N *. (Ⅰ)求数列{a n }和{b n }的通项公式;(Ⅱ)设c n =,求证:数列{c n }的前n 项的和T n >(n ∈N *).参考答案一、单项选择题1.B.2.C 3.B.4.C.5.B 6.A.7.D.8.D.9.B.10.C 11.C.12.A.二、填空题13.答案为:4030.14.答案为:.15.答案为:.16.答案为:②③④.三、解答题17.解:(Ⅰ),,,∴.(Ⅱ)∵()⊥(),∴=0,即4x﹣3(3x﹣1)﹣27=0,解得.18.解:(1)根据等比数列的性质,可得a3•a5•a7=a53=512,解之得a5=8.设数列{a n}的公比为q,则a3=,a7=8q2,由题设可得(﹣1)+(8q2﹣9)=2(8﹣3)=10解之得q2=2或.∵{a n}是递增数列,可得q>1,∴q2=2,得q=.因此a5=a1q4=4a1=8,解得a1=2;(2)由(1)得{a n}的通项公式为a n=a1•q n﹣1=2×=,∴a n2=[]2=2n+1,可得{a n2}是以4为首项,公比等于2的等比数列.因此S n=a12+a22+…+a n2==2n+2﹣4.19.解:(1)在△ABC中,由余弦定理,解得c=2,∴△ABC的周长为a+b+c=1+2+2=5.又∵,∴,则=.(2)由正弦定理知∴,∵a<c,∴A<C,故A为锐角,∴,∴cos(A+C)=cosAcosC﹣sinAsinC=.20.解:(Ⅰ)当b=3时,f(x)=x2﹣abx+2a2=x2﹣3ax+2a2,(ⅰ)∵不等式f(x)≤0的解集为[1,2]时,∴1,2是方程x2﹣3ax+2a2=0的两根.∴,解得a=1.(ⅱ)∵x2﹣3ax+2a2<0,∴(x﹣a)(x﹣2a)<0,∴若a>0时,此不等式解集为(a,2a),若a=0时,此不等式解集为空集,若a<0时,此不等式解集为(2a,a).(Ⅲ)f(2)=4﹣2ab+2a2>0在a∈[1,2]上恒成立即b<a+在a∈[1,2]上恒成立;又∵a+,当且仅当a=,即a=时上式取等号.∴b,实数b的取值范围是(﹣∞,)21.解:(1)∵a,b,c依次成等差数列,且公差为2∴a=c﹣4,b=c﹣2,在△ABC中,∵,由余弦定理可得cos∠MCN==﹣,代值并整理可得c2﹣9c+14=0,解得c=2或c=7,∵a=c﹣4>0,∴c>4,∴c=7;(2)由题意可得周长y=2sinθ+2sin(﹣θ)+=2sin(+θ)+,∴当+θ=即θ=时,周长取最大值2+.22.解:(1)∵点(a n,S n)在函数y=x2+x+的图象上,∴,①当n≥2时,,②①﹣②得:,即,∵数列{a n}的各项均为正数,∴a n﹣a n﹣1=4(n≥2),又a1=2,∴a n=4n﹣2;∵b1=a1,b n+1(a n+1﹣a n)=b n,∴,∴;(2)∵,∴,4T n=4+3•42+5•43+…+(2n﹣3)•4n﹣1+(2n﹣1)•4n,两式相减得,∴.江西省2017—2018学年高一数学下学期期中考试试卷(七)(考试时间120分钟满分150分)一、单项选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要的)1.已知,则等于()A.B.7 C. D.﹣72.在四边形ABCD中,=(1,2),=(﹣4,2),则该四边形的面积为()A.B. C.5 D.103.等比数列{a n}的前n项和为S n,已知S3=a2+5a1,a7=2,则a5=()A.B.﹣C.2 D.﹣24.设•不共线,则下列四组向量中不能作为基底的是()A. +与﹣B.3﹣2与4﹣6C. +2与+2D.和+5.若f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0)的最小正周期为π,f(0)=,则()A.f(x)在单调递增B.f(x)在单调递减C.f(x)在单调递增D.f(x)在单调递减6.若x,y满足约束条件,且向量=(3,2),=(x,y),则•的取值范围()A.[,5]B.[,5]C.[,4]D.[,4]7.函数与的图象关于直线x=a对称,则a可能是()A.B.C.D.8.若0<α<,﹣<β<0,cos(+α)=,cos(﹣)=,则cos(α+)=()A.B.﹣C.D.﹣9.在等比数列{a n}中,若,,则=()A.B.C. D.10.设二元一次不等式组所表示的平面区域为M,使函数y=ax2的图象过区域M的a的取值范围是()A.B. C.(﹣∞,9)D.11.设等差数列{a n}的前n项和是S n,若﹣a m<a1<﹣a m+1(m∈N*,且m≥2),则必定有()A.S m>0,且S m+1<0 B.S m<0,且S m+1>0C.S m>0,且S m+1>0 D.S m<0,且S m+1<012.已知数列{a n}满足:a n=log(n+2)定义使a1•a2•…•a k为整数的数k(k∈N*)叫做(n+1)希望数,则区间[1,2012]内所有希望数的和M=()A.2026 B.2036 C.2046 D.2048二、填空题(本题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.已知向量=(1,),=(3,y),若向量,的夹角为,则在方向上的投影是______.14.(几何证明选讲选做题)如图,在矩形ABCD中,,BC=3,BE⊥AC,垂足为E,则ED=______.15.函数y=log a(x+3)﹣1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则+的最小值为______.16.设数列{a n},(n≥1,n∈N)满足a1=2,a2=6,且(a n+2﹣a n+1)﹣(a n+1﹣a n)=2,若[x]表示不超过x的最大整数,则[++…+]=______.三、解答题(本大题共6小题,共70分,解答写出必要的文字说明、演算过程及步骤)17.设函数f(α)=sinα+cosα,其中,角α的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤α≤π.(1)若P点的坐标为(,1),求f(α)的值;(2)若点P(x,y)为平面区域上的一个动点,试确定角α的取值范围,并求函数f(α)的最小值和最大值.18.在△ABC中,角A,B,C的对边分别为a,b,c,C=,且a2﹣(b﹣c)2=(2﹣)bc.(Ⅰ)求角B的大小;(Ⅱ)若等差数列{a n}的公差不为零,且a1•cos2B=1,且a2,a4,a8成等比数列,求{}的前n项和S n.19.如图,D是直角△ABC斜边BC上一点,AC=DC.(I)若∠DAC=30°,求角B的大小;(Ⅱ)若BD=2DC,且AD=2,求DC的长.20.数列{a n}前n项和为S n,a1=4,a n+1=2S n﹣2n+4.(1)求证:数列{a n﹣1}为等比数列;(2)设,数列{b n}前n项和为T n,求证:8T n<1.21.某个公园有个池塘,其形状为直角△ABC,∠C=90°,AB=2百米,BC=1百米,现在准备养一批供游客观赏的鱼,分别在AB,BC,CA上取点D,E,F,如图,使得EF∥AB,EF⊥ED,在△DEF喂食,求S的最大值.△DEF22.在平面直角坐标系中,已知O为坐标原点,点A的坐标为(a,b),点B的坐标为(cosωx,sinωx),其中ω>0.设f(x)=•.(1)记函数y=f(x)的正的零点从小到大构成数列{a n}(n∈N*),当a=,b=1,ω=2时,求{a n}的通项公式与前n项和S n;(2)令ω=1,a=t2,b=(1﹣t)2,若不等式f(θ)﹣>0对任意的t∈[0,1]恒成立,求θ的取值范围.参考答案一、单项选择题1.A.2.C.3.A.4.B.5.D.6.A.7.A.8.C 9.C10.D.11.A 12.A二、填空题13.答案为:3.14.答案为:15.答案为:8.16.答案为:2015.三、解答题17.解:(1)∵P点的坐标为(,1),可得r=|OP|==2,∴由三角函数的定义,得sinα=,cosα=,故f(α)=sinα+cosα=+×=2.(2)作出不等式组表示的平面区域,得到如图所示的△ABC及其内部区域,其中A(0,1)、B(0.5,0.5),C(1,1),∵P为区域内一个动点,且P为角α终边上的一点,∴运动点P,可得当P与A点重合时,α=达到最大值;当P与线段BC上一点重合时,α=达到最小值.由此可得α∈[,].∵f(α)=sinα+cosα=2sin(α+),∴由α∈[,],可得α+∈[,],当α+=即α=时,f(α)有最小值2sin=1;当α+=即α=时,f(α)有最大值2sin=.综上所述函数f(α)的最小值为1,最大值为.18.解:(Ⅰ)由,得,∴,A∈(0,π),∴,由,得.(Ⅱ)设{a n}的公差为d,由(I)得,且,∴,又d≠0,∴d=2,∴a n=2n,∴=,∴.19.解:(Ⅰ)在△ABC中,根据正弦定理,有.因为,所以.又∠ADC=∠B+∠BAD=∠B+60°>60°,所以∠ADC=120°.…于是∠C=180°﹣120°﹣30°=30°,所以∠B=60°.…(Ⅱ)设DC=x,则BD=2x,BC=3x,.于是,,.…在△ABD中,由余弦定理,得AD2=AB2+BD2﹣2AB•BDcosB,即,得x=2.故DC=2.…20.证明:(1)∵a n+1=2S n﹣2n+4,∴n≥2时,a n=2S n﹣2(n﹣1)+4﹣1∴n≥2时,a n+1=3a n﹣2又a2=2S1﹣2+4=10,∴n≥1时a n+1=3a n﹣2∵a1﹣1=3≠0,∴a n﹣1≠0,∴,∴数列{a n﹣1}为等比数列(2)由(1),∴,∴∴=∴,∴8T n<121.解:Rt△ABC中,∠C=90°,AB=2百米,BC=1百米.∴cosB=,可得B=60°,∵EF∥AB,∴∠CEF=∠B=60°设=λ(0<λ<1),则CE=λCB=λ百米,Rt△CEF中,EF=2CE=2λ百米,C到FE的距离d=CE=λ百米,∵C到AB的距离为BC=百米,∴点D到EF的距离为h=﹣λ=(1﹣λ)百米=EF•h=λ(1﹣λ)百米2可得S△DEF∵λ(1﹣λ)≤ [λ+(1﹣λ)]2=,当且仅当λ=时等号成立的最大值为百米2.∴当λ=时,即E为AB中点时,S△DEF22.解:(1)f(x)=•=acosωx+bsinωx=cos2x+sin2x=2(sin2x+cos2x)=2sin(2x+).由2sin(2x+)=0,可得2x+=kπ,即x k=﹣+,k∈Z,当k=1时,x1=>0,且x k+1﹣x k=(常数),∴{a n}为首项是a1=,公差为的等差数列.∴a n=﹣+,n∈N*.∴S n===n2+n,n∈N*.(2)由题意可得f(θ)﹣=t2cosθ+(1﹣t)2sinθ﹣t(1﹣t)=(1+sinθ+cosθ)t2﹣(2sinθ+1)t+sinθ.∴题意等价于(1+sinθ+cosθ)t2﹣(2sinθ+1)t+sinθ>0对任意的t∈[0,1]恒成立.令t=0,t=1,得sinθ>0,cosθ>0.由1+2sinθ<2+2sinθ+2cosθ,∴对称轴t=<1恒成立.∴对称轴落在区间(0,1)内.∴题意等价于,得,即有可得+2k3π<θ<+2k3π,k3∈Z.∴θ的取值范围是[+2kπ, +2kπ],k∈Z.江西省2017—2018学年高一数学下学期期中考试试卷(八)(考试时间120分钟满分150分)一、单项选择题(本大题共12小题,每小题5分,共60分,每小题只有一个正确选项)1.经过1小时,时针旋转的角是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角2.已知,,则sin(α+π)等于()A.B. C.D.3.一段圆弧的长度等于其圆内接正方形的边长,则其圆心角的弧度数为()A.B.C.D.4.已知数列,…则是它的第()项.A.21 B.22 C.23 D.245.在四边形ABCD中,=(1,2),=(﹣4,2),则该四边形的面积为()A.B. C.5 D.106.在△ABC中,若(tanB+tanC)=tanBtanC﹣1,则sin2A=()A.﹣B.C.﹣D.7.已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π),且函数的图象如图所示,则点(ω,φ)的坐标是()A.B.C.D.8.函数y=的定义域是()A.B.C.D.9.记a=sin(cos2016°),b=sin(sin2016°),c=cos(sin2016°),d=cos(cos2016°),则()A.d>c>b>a B.d>c>a>b C.c>d>b>a D.a>b>d>c10.化简=()A.1 B.C.D.211.已知函数f(x)=cosωx(sinωx+cosωx)(ω>0),如果存在实数x0,使得对任意的实数x,都有f(x0)≤f(x)≤f(x0+2016π)成立,则ω的最小值为()。
2017-2018学年高一下学期期中统一考试数学试题Word版含答案
2017-2018学年高一下学期期中统一考试数学试题一、选择题(本大题共12小题,每小题5分,共60分,每小题只有一个正确选项) 1、经过1小时,时针旋转的角是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角 2、已知,2παπ⎛⎫∈⎪⎝⎭,3tan 4α=-,则sin()απ+=( )A .35- B .35 C .45- D .45 3、一段圆弧的长度等于其圆内接正方形的边长,则其圆心角的弧度数为( )A .2π B .3πC4 )项. A.21 B.22 C.23 D.245、在四边形ABCD 中,)2,1(=,)2,4(-=,则该四边形的面积为( ) A.5 B.52 C.5 D.106、在ABC ∆中1tan tan )tan (tan 3-=+C B C B ,则A 2sin =( )A .23-B .23C .2D .217、已知函数200f x sin x ωϕωϕπ=+()()(>,<<),且函数 的图象如图所示,则点(ωϕ, )的坐标是( )A .B .C .D .8、函数y = ) A .[2,2]()33k k k Z ππππ-+∈ B .[2,2]()66k k k Z ππππ-+∈C .2[2,2]()33k k k Z ππππ++∈ D .22[2,2]()33k k k Z ππππ-+∈9、记0sin(cos 2016)a =,0sin(sin 2016)b =,0cos(sin 2016)c =,cos(cos 2016)d =︒,则( ) A .d c b a >>> B .c d b a >>> C .d c a b >>> D .a b d c >>> 10、40sin 125cos 40cos -=( )A. 1B.3C.2D.211、已知函数)0)(cos 3(sin cos )(>+=ωωωωx x x x f ,如果存在实数0x ,使得对任意的实数x ,都有)2016()()(00π+≤≤x f x f x f 成立,则ω的最小值为( )A .40321 B .π40321 C .20161 D .π2016112、已知点O 是锐角ABC ∆的外心,3,12,8π===A AC AB .若y x +=,则=+y x 96( )A.6B.5C.4D.3 二、填空题(本大题共4小题,每小题5分,共20分)13、已知角)(παπα<≤-的终边过点)32cos ,32(sinππP ,则=α .14、已知向量,a b 满足2,3a b == ,且2a b -=a 在向量b 方向上的投影为 .15、已知x ,y 均为正数,0,4πθ⎛⎫∈ ⎪⎝⎭,且满足sin cos x y θθ=,()222222cos sin 174x y x y θθ+=+,则x y 的值为 .16、给出下列五个命题:①函数2sin(2)3y x π=-的一条对称轴是512x π=;②函数tan y x =的图象关于点(2π,0)对称; ③正弦函数在第一象限为增函数;④若12sin(2)sin(2)44x x ππ-=-,则12x x k π-=,其中k ∈Z ;⑤函数()sin 2sin [2]0f x x x x π=+∈,,的图像与直线y k =有且仅有两个不同的交点,则k 的取值范围为()1,3.其中正确命题的序号为 .三、解答题(本大题共6题,共70分,17题10分,其余5题各12分.解答应写出文字说明,证明过程或演算步骤) 17、已知4π<α<4π3,0<β<4π,cos (4π+α)=-53,sin (4π3+β)=135,求sin (α+β)的值.18.已知12,e e 是平面内两个不共线的非零向量,122AB e e =+ ,12BE e e λ=-+ ,122EC e e =-+,且,,A E C 三点共线.(1)求实数λ的值;(2)已知12(2,1),(2,2)e e ==-,点(3,5)D ,若,,,A B C D 四点按逆时针顺序构成平行四边形,求点A 的坐标.19、已知]43,4[,2)26sin(2)(πππ∈++-=x b a x a x f . (1)若Q b Q a ∈∈,,)(x f 的值域为}133|{-≤≤-y y ,求出a 、b 的值 (2)在(1)的条件下,求函数)(x f 的单调区间.20、已知向量)cos 2cos ,sin 2(sin ),sin ,(cos ),sin ,(cos αααα++===x x x x ,其中0πx α<<<. (1)若π4α=,求函数x f ∙=)(的最小值及相应x 的值; (2)若a 与b 的夹角为π3,且a c ⊥ ,求tan2α的值.21、已知函数)22,0()sin()(πϕπωϕω<<->++=b x x f 相邻两对称轴间的距离为2π,若将)(x f 的图像先向左平移12π个单位,再向下平移1个单位,所得的函数)(x g 为奇函数。
2017-2018学年高一下学期期中考试数学试题 word版
2017—2018学年度第二学期期中高 一 数 学 试 题(答卷时间:120分钟.试卷分值:150分、共4页 )选择题:(每题5分,满分60分)1..已知角θ的终边过点(4,-3),则cos(π-θ)=( ) A. 45 B .-45 C. 35 D .-352.如果 ,42ππ<θ<那么下列各式中正确的是( )A. co s tan sin θ<θ<θB. sin co s tan θ<θ<θC. tan sin co s θ<θ<θD. co s sin tan θ<θ<θ3. 600sin 的值为( )A . 21B . 21-C . 23D . 23-4.设向量a =(1,cos θ)与b =(-1,2cos θ)垂直,则cos 2θ等于( ) A. 22 B. 12 C .0 D .-15.已知523cos sin =+x x ,则sin 2x =( )A .1825B .725C .725- D .1625-6.要得到函数c o s 23y x π=+()的图像,只需将函数c o s 2y x =的图像() A .向左平行移动3π个单位长度 B .向右平行移动3π个单位长度C .向左平行移动6π个单位长度D .向右平行移动6π个单位长度7.下列向量的运算中,正确的是 ( )A .AB BC A C -= B .A B B C C A +=C .A B A C C B -= D .A B A D D C B C --=8.下列函数中,周期为π,且在[π4,π2]上为减函数的是 ( ) A .y =sin(2x +π2) B .y =cos(2x +π2) C .y =sin(x +π2) D .y =cos(x +π2)9.已知=-=+=-<<<αβαβαπαβπ2sin ,53)sin(,1312)cos(,432则 ( ) A .6556 B .-6556 C .5665 D .-566510、函数f(x)=2sin(ωx +φ) 0,22ππωϕ⎛⎫>-<< ⎪⎝⎭的部分图象如图所示,则ω,φ的值A .2,-3π 2,-6π C .4,-6π D .4,3π11.平面向量a 与b 的夹角为60°,|a|=2,b =13,22⎛⎫ ⎪ ⎪⎝⎭,则|a +2b|=( ) A.3 B .23 C .4 D .1212.在△ABC 中,AB =4,∠ABC =30°,D 是边BC 上的一点,且AD ·AB =AD ·AC ,则AD ·AB 的值等于 ( )A .4B .0C .-4D .8二、填空题(本大题共4小题,每题5分,共20分,把答案填在题中横线上)13.在平行四边形A B C D 中,若B C B A B CA B +=+,则四边形A B C D 是________.14.设扇形的周长为8cm ,面积为4cm2,则扇形的圆心角的弧度数的绝对值是 .15.cos 43°cos 77°+sin 43°cos 167°的值是 .16、.给出下列命题①存在实数α,使sinαcosα=1;②存在实数α,使sinα+cosα=23;③y=sin(x 225-π)是偶函数;④x=8π是函数y=sin(2x+45π)的一条对称轴方程;其中正确命题的序号是_________.三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或推演步骤)17(10分)化简:s in +c o s 22c o s (+)ππααπα⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭+()s in c o s 2s in (+)ππααπα⎛⎫-+ ⎪⎝⎭.18.(12分)已知锐角αβ、满足5310s in ,c o s 510αβ==,求αβ+的值19.(本小题满分12分)已知向量3(sin ,)2ax =,(c o s ,1)bx =-.当a ∥b 时,求22co s sin 2x x -的值;20.(本小题满分12分)已知向量a = e1-e2,b= 4 e1+3 e2,其中e1=(1,0),e2=(0,1).(1)试计算a·b 及|a + b|的值;(2)求向量a 与b 的夹角的大小.21、(12分)已知函数f(x)=cos22x -sin 2x cos 2x -12.(1)求函数f(x)的最小正周期和值域 (2)求函数单调递减区间(3)若f(α)=3210,求sin 2α的值.22.(本小题满分12分)已知(c o s ,s in )a αα=,(c o s ,s in )b ββ=,其中0αβπ<<<.(1)求证:a b + 与a b -互相垂直;[(2)若k a →+→b 与a k →-→b 的长度相等,求βα-的值(k 为非零的常数).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西省崇仁县2017-2018学年高一下学期期中考试数学试题时量:120分钟 满分:150分一.选择题(共12小题,每题5分)1.设a 、b 、c ∈R ,且a >b ,则( )A .ac >bcB . 1a <1bC .a 2>b 2D .a 3>b 3 2.在△ABC 中,a =3,b =1,c =2,则A 等于( )A .30°B .45°C .60°D .75°3.在等差数列{}n a 中,284a a +=,则 其前9项的和S 9等于( )A .18B . 27C . 36D .94.若a <0,则关于x 的不等式x 2-4ax -5a 2>0的解是( )A .x >5a 或x <-aB .x >-a 或x <5aC .5a <x <-aD .-a <x <5a5.数列{a n }的通项公式为a nm 项和S m =9,则m 为( ) A . 99 B .98 C .10 D .96.在△ABC 中,∠ABC =π4,AB =2,BC =3,则sin ∠BAC =( ) A .1010 B .105 C .31010 D .557.等差数列{a n } 的前m 项和为30,前2m 项和为100,则它的前3m 项和为( )A .130B .170C .210D .1608.等比数列{a n }中,a 6+a 2=34,a 6﹣a 2=30,那么a 4等于( )A . 8B . 16C . ±8D . ±169.已知两单位向量a ,b 的夹角为60°,则向量p =2a +b 与q =-3a +2b 的夹角为( )A .60°B .120°C .30°D .150°10.等比数列{a n }各项均为正数且a 4a 7+a 5a 6=16,log 2a 1+log 2a 2+…+log 2a 10=( )A . 15B . 10C . 12D . 4+log 2511.在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知a 、b 、c 成等比数列,且a +c =3,tan B =73,则△ABC 的面积为( )A .52B .54C ..72D . 74 12.在△ABC 中,∠A =60°,∠A 的平分线AD 交边BC 于D ,已知AB =3,且AD →=13AC →+λAB →(λ∈R),则AD 的长为( )A .1B . 3C .3D .2 3二.填空题(共4小题,每题5分)13..已知a <0,-1<b <0,那么a ,ab ,ab 2的大小关系是___________________.14.若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =________.15.设e 1,e 2为单位向量,且e 1,e 2的夹角为π3,若a =e 1+3e 2,b =2e 1,则向量a 在b 方向上的射影为________. 16.已知数列{a n }中,a 1=2,a n +1=a n +n ,则a n=______________________.三.解答题(共6大题,合计70分)17.(10分)解下列不等式(1)(x -1)(3-x)<5-2x (2) 2x 2-5x -1x 2-3x +2>118.(12分)已知|a |=4,|b |=8,a 与b 的夹角是120°.(1)计算|a +b |,|4a -2b |;(2)当k 为何值时,(a +2b )⊥(ka -b )?19.(12分)设数列{a n }的前n 项和为S n =2n 2,{b n }为等比数列,且a 1=b 1,b 2(a 2-a 1)=b 1.(l)求数列{a n }和{b n }的通项公式;(2)求数列{nn b a 2+}的前n 项和n T .20.(12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2b -c )cos A -a cos C =0.(1)求角的A 的大小; (2)若a =3,S △ABC =334,求边b ,c 的长.21.(12分)已知各项均为正数的数列{}n a 满足1111,0n n n n a a a a a ++=+⋅-=. (1)求证:数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭前n 项和n S .22.(12分)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m/min.在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130m/min ,山路AC 长为1260m ,经测量,cos A =1213,cos C =35. (1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?江西省崇仁县2017-2018学年高一下学期期中考试数学试题答案一.选择题1-5 D C A B A 6-10 C C A B A 11-12 D D二.填空题13. 2a ab ab << 14. 11,22- 15. 52 16. 242n n n a -+= 三.解答题17.解:(1)原不等式等价变形为2680x x -+>,…………………2分所以原不等式的解集为{x|x <2或x >4}…………………………5分(2)原不等式等价变形为x 2-2x -3x 2-3x +2>0, 等价变形为(x 2-2x -3)(x 2-3x +2)>0,…………………………7分即(x +1)(x -1)(x -2)(x -3)>0……………………………8分由穿根法可得所求不等式解集为{x |x <-1或1<x <2或x >3}.……10分18. 解:由已知,a ²b =4³8³⎝ ⎛⎭⎪⎫-12=-16. (1)∵|a +b |2=a 2+2a ²b +b 2=16+2³(-16)+64=48,∴|a +b |=43……………………………………………3分∵|4a -2b |2=16a 2-16a ²b +4b 2 =16³16-16³(-16)+4³64=3³162,∴|4a -2b |=163……6分(2)若(a +2b )⊥(ka -b ),则(a +2b )²(ka -b )=0,∴ka 2+(2k -1)a ²b -2b 2=0,即16k -16(2k -1)-2³64=0,∴k =-7………………….12分19.解:当2n ≥时,212(1)n s n -=-,22122(1)42n n n s s a n n n --==--=-,……2分经检验n=1时12a =满足42n a n =-, 所以42n a n =-………………3分 由题意1212,2b b ==,所以112()4n n b -==124n -…………………6分 (2)12424n n na nb -+=-+,………………………………8分 所以(242)14214n n n n T +--=+-……………………………………10分 =24123n n -+…………………………………………………12分 20. 解:(1)由(2b -c )cos A -a cos C =0,及正弦定理,得(2sin B -sin C )cos A -sin A cos C =0,……………… 2分∴2sin B cos A -sin(A +C )=0,sin B (2cos A -1)=0.∵0<B <π,∴sin B ≠0,∴cos A =12……………………4分 ∵0<A <π,∴A =π3……………………………………………6分 (2)∵S △ABC =12bc sin A =334, 即12bc sin π3=334,∴bc =3,①………………………8分 ∵a 2=b 2+c 2-2bc cos A ,a =3,A =π3, ∴b 2+c 2=6,②…………………………………………10分 由①②得b =c =3………………………………………12分21.解:(1)因为11n n n n a a a a +++-,所以1110n n n n n n a a a a a a ++++-=, 即11110n n a a ++-=,所以1111n n a a +-=,……………………2分所以1{}na 是等差数列,公差为1,首项为111a =,………………3分 所以1n a =1(1)n n +-=,所以1n a n =…………………….6分(2)22nn nn a =⋅,……………………………….7分 所以1231222322nn s n =⋅+⋅+⋅+⋅⋅⋅+⋅……………8分23412122232(1)22n n n s n n +=⋅+⋅+⋅+⋅⋅⋅+-⋅+⋅…….9分所以23122222n n ns n +-=+++⋅⋅⋅+-⋅ =12(12)212n n n +--⋅-=1(1)22n n +--………10分 所以1(1)22n nS n +=-+……………………12分 22. 解:(1)在△ABC 中,因为cos A =1213,cos C =35, 所以sin A =513,sin C =45……………………………………2分 从而sin B =sin =sin(A +C )=sin A cos C +cos A sin C=513³35+1213³45=6365…………………………………………3分 由正弦定理ABsin C =AC sin B ,得AB =AC sin B ³sin C =12606365³45=1040(m). 所以索道AB 的长为1040m……………………………………6分(2)假设乙出发t min 后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m , 所以由余弦定理得d 2=(100+50t )2+(130t )2-2³130t ³(100+50t )³1213=200(37t 2-70t +50),………………………………9分因0≤t ≤1040130,即0≤t ≤8,故当t =3537(min)时,甲、乙两游客距离最短. (12)分。