基本不等式的证明
不等式证明的基本方法

4. 放缩法是在证明不等式或变形中, 将条件或结论或变换中的 式子放大或缩小进行求证的方法.放缩时要看准目标,做到 有的放矢, 注意放缩适度. 放缩法是证明不等式的常用技巧, 有些不等式若恰当地运用放缩法可以很快得证,要控制难 度.
比较法
(2010 年高考江苏卷试题)设 a、b 是非负实数,求证:a3 +b3≥ ab(a2+b2). 【思路分析】 先作差,再用不等式的基本性质解答.
不等式证明的基本方法
1.比较法是证明不等式最常用最基本的方法,有两种: (1)求差法:a>b⇔a-b>0; a (2)求商法:a>b>0⇔b>1,(b>0).
2.分析法、综合法是证明数学问题的两大最基本的方法. 综合法是以已知的定义、公理、定理为依据,逐步下推,直 到推出问题的结论为止,简而言之,就是“由因导果”. 分析法是从问题的结论出发,追溯导致结论成立的条件,逐 步上溯,直到使结论成立的条件与已知条件或已知事实吻合 为止,简而言之,就是“执果索因”.
分析法与综合法
如果 a>0,b>0,求证:a3+b3≥a2b+ab2. 【证法一】 (用分析法) 要证 a3+b3≥a2b+ab2, 只需证(a+b)(a2-ab+b2)≥ab(a+b) ∵a>0,b>0,有 a+b>0,故只需证 a2-ab+b2≥ab, 只需证(a-b)2≥0 显然(a-b)2≥0 成立,以上各步均可逆, ∴a3+b3≥a2b+ab2
1.设 a>0,a≠1,0<x<1.求证:|loga(1-x)|>|loga(1+x)|.
证明:方法一:(平方后作差)
2 log2 (1 - x ) - log a a(1+x)
=[loga(1-x)+loga(1+x)]· [loga(1-x)-loga(1+x)]= 1-x loga(1-x )· loga . 1+x
基本不等式知识点

基本不等式知识点基本不等式知识点探究导语:基本不等式作为数学中的一个重要知识点,广泛应用于数学中的各个领域。
掌握基本不等式的性质和运用方法,对于学生提高数学素养具有重要意义。
本文将就基本不等式的定义、证明、应用以及一些特殊情况进行介绍,帮助读者更好地理解和掌握这一知识点。
一. 基本不等式的定义基本不等式是指对于一般的实数x和y,有以下不等式成立:1. 数字不等式:若x > y,则有 x+a > y+a,其中a为任意实数。
2. 绝对值不等式:若x > a,则有 |x| > |a|,其中a为任意实数。
二. 基本不等式的证明基本不等式的证明可通过数学归纳法进行。
以数字不等式为例,我们可以将其分为两个步骤进行证明:1. 首先证明当a > 0时,x > y推出x+a > y+a。
根据a > 0,可知存在实数b,使得a = b^2。
将x、y分别加上b^2,得到 (x + b^2) - (y +b^2) > 0,即(x - y) + b^2 > 0。
由于b^2 > 0,因此(x - y) + b^2 > 0,即x + b^2 > y + b^2,即x+a > y+a。
2. 其次证明当a < 0时,x > y推出x+a > y+a。
与前一步骤相似,我们令a = -b^2,b为任意实数。
同样可以得到 (x - y) + (-b^2) > 0,即 (x + (-b^2)) - (y + (-b^2)) > 0,即x + (- b^2) > y + (- b^2),即x+a > y+a。
三. 基本不等式的应用基本不等式在数学中有广泛的应用,尤其在代数和不等式解题中常被使用。
以下列举几个典型的应用情况:1. 求绝对值不等式的解集:通过运用绝对值不等式可以求解关于绝对值的不等式,例如 |2x + 1| > 3,可以转化为2x + 1 > 3或2x + 1 < -3的形式,然后求出解集即可。
证明基本不等式的方法

证明基本不等式的方法基本不等式是解决数学不等式问题中常用的方法,其核心思想是将一个不等式转化为另一个更简单的不等式,从而得到所需的解集。
在证明基本不等式的方法上,可以分为以下几种常见的方式:1.数学归纳法:数学归纳法是证明基本不等式的一种常用方法。
首先,我们需要证明当不等式成立时,对于一些特定的值$n$,不等式也成立。
接着,我们假设当$n=k$时不等式成立,可以通过这个假设证明当$n=k+1$时不等式成立。
最后,根据归纳法的原理,我们可以得出不等式对于所有自然数$n$成立。
2.递推法:递推法是证明基本不等式的另一种常用方法。
我们首先找到一个较小的数$k$,证明不等式对于这个特定的数成立。
然后,我们假设当$n=k$时不等式成立,接着通过这个假设证明当$n=k+1$时不等式也成立。
最后,根据递推法的原理,我们可以得出不等式对于所有自然数$n$成立。
3.反证法:反证法是证明基本不等式的另一种有效方法。
我们首先假设不等式不成立,即假设存在一些数使得不等式不成立。
接着,我们通过一系列的推导和推理,得出矛盾的结论。
这表明我们的假设是错误的,即不等式是成立的。
4.变量替换法:变量替换法是证明基本不等式的一种常用方法。
我们首先对不等式进行变量替换,将其转化为一个使用其他变量的等价不等式。
然后,通过对这个等价不等式进行一系列的变换和推导,我们可以得出所需的结论。
5.辅助不等式法:辅助不等式法是证明基本不等式的一种有效方法。
我们首先找到一个与原不等式相关的不等式,这个不等式往往更容易证明。
然后,我们通过对这个辅助不等式的推导和推理,结合原不等式的特点,得出所需的结论。
无论采用哪种方法,证明基本不等式的关键在于用恰当的方法将其转化为另一个更简单或更容易证明的不等式。
此外,在证明过程中需要注意推导的合理性和严密性,关注每一步的符号变化和不等式的严格性,避免出现错误的结论。
在证明过程中,也可以适当地运用数学知识和技巧,如代数运算、函数性质和数列性质等,使证明更加简洁和高效。
基本不等式证明

所以,ab a b 成立 2
当且仅当a b时取“”
分析法——执果索因
证法3:
对于正数 a,b,有
( a b)2 0 a b 2 ab 0
a b 2 ab
a b ab 2
综合法——由因索果
如果 a,b 是正数,那么 ab a b
2
当且仅当a b时取" " 号
问题 3、当a 0, b 0时 ,这个不等式仍然成立吗?
把不等式 ab a b (a 0,b 0) 称为基本不等式。 2
注意 (1)不等式成立条件(2)等号成立条件
问题4: 你能给出基本不等式几何解释吗?
ab
a
b
“半径不小于半弦”
回顾反思
1、今天这节课学了哪些主要知识? 2、在解决问题时用了哪些方法?
问题1、如何合理的表示物体的质量?Βιβλιοθήκη b两个正数a、b ,我们把
称为a、b
2
的算术平均数, ab 称为几何平均数。
问题2、两个正数a、b的算术平均数与几何平均数 之间具有怎样的大小关系呢?
猜想:ab a b(a 0,b 0) 2
问题3:如何证明 ab a b(a 0,b 0) 2
不等式证明的基本方法 比较法(作差、作商法)
基本不等式的证明(一)
一、创设问题情景:
❖ 把一个物体放在天平的一个盘子上,在另一个盘子 上放砝码使天平平衡,称得物体的质量为a。如果 天平制造得不精确,天平的两臂长略有不同(其他 因素不计),那么a并非物体的实际质量。不过, 我们可以作第二次测量:把物体调换到天平的另一 个盘上,此时称得物体的质量为b。
拓展延伸
这个基本不等式可否推广到“n个非负数”的情 形,有兴趣的同学可作进一步的研究,也可 查阅有关资料。
不等式的常见证明方法

不等式常见的三种证明方法渠县中学 刘业毅一用基本不等式证明设c b a ,,都是正数。
求证:.c b a cab b ac a bc ++≥++ 证明:.22c bac a bc b ac a bc =•≥+ .22b cab a bc c ab a bc =•≥+ .22a cab b ac c ab b ac =•≥+ ).(2)(2c b a cab b ac a bc ++≥++ .c b a cab b ac a bc ++≥++ 点评:可用综合法分析乘积形式运用不等式可以转化为所求。
思维训练:设c b a ,,都是正数。
求证:.222c b a c b a a c b ++≥++ 二 放缩法证明不等式已知,对于任意的n 为正整数,求证: 1+221+321+ +n 21<47 分析:通过变形将数列{n 21}放缩为可求数列。
解: n 21=n n •1<)1(1-n n =11-n —n1(n ≥2) ∴1+221+321+ +n 21<1+221+231⨯+341⨯+ +)1(1-n n =1+41+(21—31+31—41+ +11-n —n1) =45+21—n1 =47—n 1 点评:放缩为可求和数列或公式是高考重要思想方法。
思维训练:设c b a ,,都是正数,a+b>c,求证:a a +1+b b +1>cc +1三 构造函数法证明 证明不等式3ln 3121112ln <+++++<nn n (n 为正整数) 分析:显然要构造一个含n 的不等式,然后用叠加法证明。
我们构造一个函数,1)(',ln 1)(2xx x f x x x x f -=+-=可得这个函数在x=1时取得最小值0.及对x>0有不等式x x 11ln -≥,如果令x=k k 1+,则有111ln +>+k k k ,如果令x=1+k k ,则kk k ->+11ln ,即kk k k 1ln )1ln(11<-+<+,然后叠加不等式即可。
证明不等式的基本方法

证明不等式的基本方法证明不等式是数学中一个相当有趣又有点小挑战的事儿呢。
比较法是很常用的一种。
差值比较法呢,就是把要证明的不等式两边相减,然后判断差的正负性。
比如说要证明a > b,那就计算a - b,如果结果大于0,那可不就证明出来了嘛。
这就好比两个人比身高,直接站一块儿量一下差值就知道谁高谁低啦。
在这个过程中呢,计算差值的时候要特别细心哦,可别在计算上出岔子,那可就像爬山爬到一半摔一跤,太可惜啦。
它的安全性就在于只要计算正确,结果就很可靠,稳定性呢,就是不管这个不等式看起来多复杂,只要能算出差值就有希望判断。
它的应用场景可广啦,像一些简单的代数式大小比较就特别好用。
例如比较x²+ 1和2x的大小,计算(x²+ 1 - 2x)=(x - 1)²,因为任何数的平方都大于等于0,所以很容易就证明出x²+ 1≥2x啦,多棒呀!综合法也很厉害。
它是从已知条件出发,利用一些定理、性质等,逐步推导出要证明的不等式。
这就像是盖房子,一块砖一块砖地往上垒。
不过这就要求我们对那些定理、性质得特别熟悉才行呀,要是不知道有哪些“建筑材料”,那房子可就盖不起来喽。
它的安全性取决于我们对基础知识的掌握程度,如果基础知识很扎实,那推导出来的结果就很靠谱。
稳定性呢,只要每一步推导都是正确的,就不会出问题。
比如说已知a > 0,b > 0,要证明(a + b)/2≥√ab。
我们可以根据完全平方公式(a - b)²≥0展开得到a²- 2ab + b²≥0,移项得到a²+ 2ab + b²≥4ab,也就是(a + b)²≥4ab,再两边同时开方除以2就得到(a + b)/2≥√ab啦。
多神奇呀!这种方法在解决一些和几何、函数相关的不等式证明中特别有用,因为在这些领域有很多已知的定理可以用来推导。
分析法呢,和综合法有点相反。
证明不等式的基本方法
x2
例7(1)设
y2
1, 求x
y的最大值,
16 9
并求此时的x, y值。 三角换元
(2)设 x, y R,且 x2 y 2 1,
求证:| x2 2xy y 2 | 2 ;
(1)设 x r sin, y r cos,且 | r | 1
证明:∵ a, b 是正数,且 a b , ∴要证 aabb abba ,只要证 lg (aabb ) lg(abba ) ,
只要证 a lg a b lgb b lg a a lgb .
(a lg a b lg b) (b lg a a lg b) = (a b)(lg a lg b)
= (a2 b2 )(a b) = (a b)(a b)2
∵ a,b 是正数,且 a b ,∴ a b 0, (a b)2 >0
∴ (a3 b3 ) (a2b ab2 ) >0,∴ a3 b3 a2b ab2
注:比较法是证明不等式的基本方法,也是 最重要的方法,另外,有时还可作商比较.
当且仅当(a b)(b c)≥0 时,等号成立.
四.反证法:
假设命题结论的反面成立,经过正确的推理, 引出矛盾,因此说明假设错误,从而证明原命题 成立,这样的证明方法叫反证法.(正难则反)
例、已知 f (x) x2 px q,求证:
1
| f (1) |,| f (2) |,| f (3) |中至少有一个不小于2 。
求证:已知a, b, c R+,求证 :书P25页2(2)
基本不等式的20种证明方法
基本不等式的20种证明方法
基本不等式“基本”在哪里?你认为怎样得引入最能体现他的本质?
(1)做差证明
(2)分析法证明
(3)综合法证明
(4)排序不等式
根据排序不等式所说的逆序和小于等于顺序和,便能得到
化简得
(5)函数证明
我们对原函数求导,并令导数等于零。
求的最小值
得出
(5)指数证明
首先这里要用到两个梯形的面积公式。
一个是大家小学都学过的
易得
进而有
进一步有
指取对有
(6)琴生不等式证明
取 y=lnx
由琴生不等式得到
进而有
(7)无字证明(Charles D. Gallant)
(8)无字证明(Doris Schattschneider)
(9)无字证明(Roland H. Eddy)
(10)无字证明(Ayoub B. Ayoub)
(11)无字证明(Sidney H. Kung)
(12)无字证明(Michael K. Brozinsky)
(13)无字证明(Edwin Beckenbach & RichardBellman)
(14)无字证明
(15)无字证明(RBN)
(16)无字证明
进而有
(17)无字证明
进而有
(18)无字证明
有
(19)构造函数证明
由
得
(20)构造期望方差证明
由
得
另外还有向量法,复数法,积分法等,均值定理在数学内外有广泛得运用,不仅可以推广,还可以联系多个领域,一个简单结论证明的背后往往可展示引人人胜的各种思路!。
不等式证明的基本方法
绝对值的三角不等式;不等式证明的基本方法一、教学目的1、掌握绝对值的三角不等式;2、掌握不等式证明的基本方法二、知识分析定理1 若a,b为实数,则,当且仅当ab≥0时,等号成立;几何说明:1当ab>0时,它们落在原点的同一边,此时a与-b的距离等于它们到原点距离之和;2如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释;|a-b|表示a-b与原点的距离,也表示a到b之间的距离;定理2 设a,b,c为实数,则,等号成立,即b落在a,c之间;推论1推论2不等式证明的基本方法1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的;比较法有差值、比值两种形式,但比值法必须考虑正负;比较法证不等式有作差商、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述;如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证;2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用;所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述;综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用;3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法;4、放缩法:欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量,使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法;典型例题例1、已知函数,设a、b∈R,且a≠b,求证:思路:本题证法较多,下面用分析法和放缩法给出两个证明:证明:证法一:①当ab≤-1时,式①显然成立;当ab>-1时,式①②∵a≠b,∴式②成立;故原不等式成立;证法二:当a=-b时,原不等式显然成立;当a≠-b时,∴原不等式成立;点评:此题还可以用三角代换法,复数代换法、数形结合等证明,留给读者去思考;例2、设m等于|a|、|b|和1中最大的一个,当|x|>m时,求证:;思路:本题的关键是对题设条件的理解和运用,|a|、|b|和1这三个数中哪一个最大如果两两比较大小,将十分复杂,但我们可以得到一个重要的信息:m≥|a|、m≥|b|、m≥1;证明:故原不等式成立;点评:将题设条件中的文字语言“m等于|a|、|b|、1中最大的一个”转化为符号的语言“m≥|a|、m≥|b|、m≥1”是证明本题的关键;例3、函数的定义域为0,1且;当∈0,1,时都有,求证:;证明:不妨设,以下分两种情形讨论;若则,若则综上所述点评:对于绝对值符号内的式子,采用加减某个式子后,重新组合,运用绝对值不等式的性质变形,是证明绝对值不等式的典型方法;例4、已知a>0,b>0,求证:;思路:如果用差值比较法,下一步将是变形,显然需要通分,是统一通分,还是局部通分从题目结构特点看,应采取局部通分的方法;证明:①②∴原不等式成立;点评:在上面得到①式后,其分子的符号可由题设条件作出判断,但它没有②明显,所以,变形越彻底,越有利于最后的判断,本题还可以用比值比较法证明,留给读者去完成;例5、设x>0,y>0,且x≠y,求证:思路:注意到x、y的对称性,可能会想到重要不等式,但后续思路不好展开,故我们可采用分析法,从消去分数指数幂入手;证明:∵x>0,y>0,且x≠y,点评:在不便运用比较法或综合法时,应考虑用分析法;应注意分析法表述方法,其中寻求充分条件的语句常用符号“”表述;本题应用了分析法,既找到了解题思路,又使问题完满地得到了解决,可谓一举两得;例6、已知a、b、c∈R+,求证:;思路:因不等式的左边的两个因式都可以进行因式分解;结合a、b、c∈R+的条件,运用重要不等式,采用综合法进行证明;解析:即点评:用重要不等式证明不等式,一要注意重要不等式适用的条件,二要为运用重要不等式创造条件;另外,同向不等式相加或相乘,在综合法中常用到;例7、证明:对于任意实数x、y,有思路:采取分析法和比较法二者并用的方法来处理;证明:用分析法不等式②显然成立,下面证明不等式①同号,即点评:上述证明中,前半部分用的是分析法,后半部分用的是比较法,两种方法结合使用,使问题较容易解决,这一点应加以注意;例8、1用反证法证明以下不等式:已知,求证p+q≤2;2试证:n≥2;思路:运用放缩法进行证明;证明:1设p+q>2,则p>2-q,这与=2矛盾,2,又;将上述各式两边分别相加得点评:用放缩法证明不等式过程中,往往采用添项或减项的“添舍”放缩,拆项对比的分项放缩,函数的单调性放缩,重要不等式放缩等;放缩时要注意适度,否则不能同向传递;模拟试题1、设a、b是满足ab<0的实数,那么A、B、C、D、2、设ab>0,下面四个不等式①|a+b|>|a|;②|a+b|<|b|;③|a+b|<|a-b|;④|a+b|>|a|-|b|中,正确的是A、①和②B、①和③C、①和④D、②和④3、下面四个式子①;②;③;④中,成立的有A、1个B、2个C、3个D、4个4、若a、b、c∈R,且,则下列不等式成立的是A、B、C、D、5、设a、b、c∈R,且a、b、c不全相等,则不等式成立的一个充要条件是A、a、b、c全为正数B、a、b、c全为非负实数C、D、6、已知a<0,-1<b<0则A、B、C、D、7、设实数x、y满足,若对满足条件的x、y,x+y+c≥0恒成立,c 的取值范围是A、B、C、D、8、对于任意的实数x,不等式恒成立,则实数a的取值范围是_________;9、若a>c>b>0,则的值的符号为__________;10、设a、b、c∈R+,若,则__________;11、已知x,y∈R,且,则z的取值范围是__________;12、设,求证:;13、已知a、b是不等正数,且,求证:;14、已知,求证:中至少有一个不小于;15、设a、b为正数,求证:不等式①成立的充要条件是:对于任意实数x>1,有②试题答案1、B2、C3、C4、B5、C6、D7、A8、-∞,39、负10、911、12、证明:13、证明:a、b是不等正数,且而一定成立,故成立;14、证明:用反证法;假设都小于,则,而,相互矛盾,中至少有一个不小于;15、证明:设,那么不等式②对恒成立的充要条件是函数的最小值大于b;当且仅当,时,上式等号成立;故的最小值是;因此,不等式②对x>1恒成立的充要条件是>b;。
证明不等式的基本方法
恒成立,求实数a的取值范围”提出各自的解题思路.
甲说:“只须不等式左边的最小值不小于右边的最大值”; 乙说:“把不等式变形为左边含变量x的函数,右边仅含常 数,求函数的最值”; 丙说:“把不等式两边看成关于x的函数,作出函数图象”;
参考上述解题思路,你认为他们所讨论的问题的正确结论,
即a的取值范围是________. [答案] a≤10
[点评与警示] 论证过程中,执果索因与由因导果总是不
断变化,交替出现.尤其综合题推理较盲目时,利用分析法从
要证的问题入手,逐步推求,再用综合法逐步完善,最后找到 起始条件为止.
(人教版选修 4—5 第 30 页第 1 题)已知 a, b, c∈(0,1), 1 求证:(1-a)b,(1-b)c,(1-c)a 不同时大于4.
[证明]
(反证法)假设(1-a)b,(1-b)c,(1-c)a 都大于 ①
1 1 (1-b)c· (1-c)a>64 4,则(1-a)b· 1 即[a(1-a)· b(1-b)· c(1-c)]>64
a+1-a 2 1 而 0<a(1-a)≤[ ]= , 2 4
1 1 0<b(1-b)≤ ,0<c(1-c)≤ 4 4 1 ∴[a(1-a)][b(1-b)][c(1-c)]≤ 与①矛盾 64 1 ∴(1-a)b,(1-b)c,(1-c)a 不同时大于 . 4
) B.a2>b2 1a 1b D.(2) <(2)
1 2 .若 a > b > 1 , P = lga· lgb , Q = (lga + lgb) , R = 2 a+b lg( ),则( 2 A.R<P<Q C.Q<P<R
[解析]
) B.P<Q<R
D.P<R<Q 1 ∵lga>lgb>0,∴ (lga+lgb)> lga· lgb,即 Q 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本不等式的证明
1.代数法
定理1:如果,a b R ∈,那么222a b ab +≥,当且仅当a b =时,等号成立。
证明: ()2
222a b ab a b +-=- 当a b ≠时()2a b ->0当a b =时()2
a b -=0,所以 ()2
a b -≥0,
即 22a b +≥2ab.
定理2:如果,0a b >,那么
2a b +≥a b =时,等号成立。
证明: 22+≥
∴ a b +≥
即
2
a b +≥
显然,当且仅当a b =时,
2a b +
这里,a b 均为正数,我们就称2
a b +为,a b ,a b 的几何平均数,因而,这一定理又可叙述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数。
2.几何面积法
如图,在正方形中有四个全等的直角三角形。
设直角三角形的两条直角边长为、,那么正方形的边长为。
这样,4个直角三角形的面积的和是
,正方形的面积为。
由于4个直角三角形的面积小于正方形的面积,所以:。
当直角三角形变为等腰直角三角形,即时,正方形缩为一个点,这时有。
得到结论:如果,那么(当且仅当a b =时,等号成立) 特别的,如果,,我们用、分别代替、,可得: 如果,,则,(当且仅当a b =时,等号成立).
通常我们把上式写作:如果,,,(当且仅当a b =时,等号成立)
最值定理:当两个正数的和一定时,其乘积有最大值;当两个正数的乘积一定时。
其和有最 小值。
现给出这一定理的一种几何解释(图1).
以a b +长的线段为直径作圆,在直径AB 上取点C ,使AC=a ,CB=b .过点C 作
垂直于直径AB 的弦'DD ,连接AD 、DB ,易证
,那么
即
CD =这个圆的半径为
2
a b +,显然,它大于或等于CD ,即 2
a b +
≥ 其中当且仅当点C 与圆心重合,即a b =时,等号成立. 如果把2a b +看作是正数,a b
,a b 的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项.
例1. 如果,a b R +
∈,试比较2a b +
211a b +的大小 解: ,a b R +∈, ∴b a 11+≥ab 12即211a b
+
≤又22⎪⎭
⎫ ⎝⎛+b a =4222ab b a ++≤42222b a b a +++=222b a + ∴2a b +
≤a b =时,等号成立
而由定理2≤2
a b +
≥2a b +≥≥211a b
+(当且仅当a b =时,等号成立)。