人教版七年级数学下册《5.1.2第2课时垂线段》同步练习(含答案)

合集下载

【人教版】七年级数学下册《5.1.2 垂 线》习题课件(附答案)

【人教版】七年级数学下册《5.1.2  垂  线》习题课件(附答案)

∠AOC=30°,所以∠AOD=
90°-∠AOC=60°.所以 ∠BOD=180°-∠AOD=120°.
射线OC,OD的位置有两种情况:位于直线AB 的同侧和位于直线AB的异侧,易错之处在于考 虑不周,忽略其中一种情况.
13.如图,直线AB与CD交于点O,OE⊥AB于点O,∠EOD∶
∠DOB=3∶1,求∠COE的度数. 解: 因为OE⊥AB, 所以∠EOB=∠EOA=90°. 因为∠EOD∶∠DOB=3∶1, 1 所以∠DOB=90°× =22.5°. 4 所以∠AOC=∠DOB=22.5°,
所以∠COE=∠EOA+∠AOC=90°+22.5°=112.5°.
14.已知OA⊥OB,OC⊥OD. (1)如图①,若∠BOC=50°,求∠AOD的度数; (2)如图②,若∠BOC=60°,求∠AOD的度数; (3)根据(1)(2)的结果猜想∠AOD与∠BOC有怎样的关 系?并根据图①说明理由; (4)如图②,若∠BOC∶∠AOD=7∶29,求∠BOC和 ∠AOD的度数.
所以∠AOD=360°-∠AOB-∠BOC-∠COD=
360°-90°-60°-90°=120°.
(3)∠AOD与∠BOC互补.理由如下:
因为OA⊥OB,所以∠AOB=90°, 所以∠AOC=∠AOB-∠BOC=90°-∠BOC.
因为OC⊥OD,所以∠COD=90°,所以∠AOD=∠AOC
+∠COD=90°-∠BOC+90°=180°-∠BOC,所以 ∠AOD+∠BOC=180°,即∠AOD与∠BOC互补. (4)由(3)知∠BOC+∠AOD=180°, 又因为∠BOC∶∠AOD=7∶29, 7 所以∠BOC= ×180°=35°, 29+7 29 ∠AOD= ×180°=145°. 29+7

人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)

人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)

5.1.2 垂线学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.到直线L 的距离等于2cm 的点有( )A .0个B .2个C .3个D .无数个2.如图,能表示点到直线的距离的线段共有( )A .2条B .3条C .4条D .5条3.点P 是直线l 外一点,A 、B 、C 为直线l 上的三点,4PA cm =,5PB cm =,2PC cm =,则点P 到直线l 的距离( )A .小于2cmB .等于2cmC .不大于2cmD .等于4cm4.如图,有三条公路,其中AC 与AB 垂直,小明和小亮分别沿AC 、BC 同时从A 、B 出发骑车到C 城,若他们同时到达,则下列判断中正确的是( )A .小明骑车的速度快B .小亮骑车的速度快C .两人一样快D .因为不知道公路的长度,所以无法判断他们速度的快慢5.如图所示,已知AC⊥BC,CD⊥AB,垂足分别是C ,D ,那么以下线段大小的比较必定成立的是( )A .CD AD >B .AC BC < C .BC BD > D .CD BD <6.与一条已知直线垂直的直线有( )A .1条B .2条C .3条D .无数条7.如图,直线AB ,CD 相交于点O ,OE⊥CD 于点O ,∠AOC=36°,则∠BOE=( )A .36°B .64°C .144°D .54°8.下面说法正确的是( )A .过一点有且只有一条直线与已知直线平行B .两直线成直角,则这两直线一定垂直C .没有交点的两条直线一定平行D .过直线外一点,有且只有一条直线与已知直线垂直9.如图,OA⊥OB,∠1=35°,则∠2的度数是( )A .35°B .45°C .55°D .70°二、填空题1.如图所示,A ,B ,C 是直线l 上的三点,P 为直线l 外一点,已知PC⊥l,PA =4厘米,PB =5厘米,PC =3厘米,则点P 到直线l 的距离为__________.2.如图,115∠=︒,CO OA ⊥,点B ,O ,D 在同一直线上,则∠2的度数为________.3.如图,直线AB ,CD ,EF 相交于点O ,且AB⊥CD,∠1=30°,则∠2=______.4.如图,直线AB ,CD 相交于点O ,如果∠EOD=40°,∠BOC=130°,那么∠BOE 的度数是________.5.如图,直线AB,CD交于点O,OE⊥AB,OD平分∠BOE,则∠AOC=________.三、解答题1.数学是从实际生活中来的,又应用于生活.请将下列事件与对应的数学原理连接起来.事件数学原理教室的门要用两扇合页才能自由开关直线外一点与直线上各点连线的所有线段中,垂线段最短飞机从萧山飞往北京,它的航行路线是直的经过两点有且只有一条直线测量运动员的跳远成绩时,皮尺与起跳线保持垂直两点之间线段最短2.如图,M,N为坐落于公路两旁的村庄,如果一辆施工的机动车由A向B行驶,产生的噪音会对两个村庄造成影响.(1)当施工车行驶到何处时,产生的噪音分别对两个村庄影响最大?在图中标出来.(2)当施工车从A向B行驶时,产生的噪音对M,N两个村庄的影响情况如何?3.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.4.把图中的互相平行的线写出来,互相垂直的线写出来:5.如图,已知直线AB和CD相交于点O,射线OE⊥AB于点O,射线OF⊥CD于点O,且∠AOF =25°.求∠BOC与∠EOF的度数.参考答案一、单选题1.D解析:根据点到直线的距离和直线与直线之间的距离进行分析.详解:当两条平行线互相平行时,且其中一条直线上的一点到另一条直线的距离为2时,则这条直线上所有的点到另一条直线的距离都为2,所以有无数个.故选D.点睛:考查了点到直线的距离和直线与直线之间的距离,解题关键理解点到直线的距离和两条平行线间的距离之间的联系.2.D解析:根据点到直线的距离定义,可判断:AB表示点A到直线BC的距离;AD表示点A到直线BD的距离;BD表示点B到直线AC的距离;CB表示点C到直线AB的距离;CD表示点C到直线BD的距离.共5条.故选D.3.C解析:根据点到直线的距离是点到直线的垂线段的长度以及垂线段最短即可得答案.详解:解:点P为直线l外一点,当P点直线l上的三点A、B、C的距离分别为PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离为不大于2cm,故选:C.点睛:本题考查了点到直线的距离,点到直线的距离是点到直线的垂线段的长度,利用垂线段最短是解题关键.4.B分析:根据垂线的性质:从直线外一点到这条直线上各点所连的线段中,垂线段最短,可知BC>AC,然后根据速度公式即可判断.详解:∵AC与AB垂直,∴BC>AC,若他们同时到达,根据速度公式可得,小亮骑车的速度快,小明骑车的速度慢.故选B5.C解析:A选项,CD与AD互相垂直,没有明确的大小关系,错误;B选项,AC与BC互相垂直,没有明确的大小关系,错误;C选项,BD是从直线CD外一点B所作的垂线段,根据垂线段最短定理,BC>BD,正确;D选项,CD与BD互相垂直,没有明确的大小关系,错误,故选C.6.D解析:根据垂线的性质:过直线外一点作已知直线的垂线,能作且只能作1条;而直线外有无数个点,因此与一条已知直线垂直的直线有无数条.详解:解:与一条已知直线垂直的直线有无数条,故选D.点睛:本题主要考查了垂线的性质,准确理解性质是解题的关键.7.D解析:由垂直的定义可知∠DOE=90°;直线AB,CD相交于点O,对顶角相等,然后根据角的差计算即可详解:∵OE⊥CD∴∠DOE=90°∵直线AB,CD相交于点O,∠AOC=36°∴∠DOB=36°∴∠BOE=∠DOE−∠BOD=90°−36°=54°故本题答案应为:D点睛:垂直的定义、对顶角相等的性质是本题的考点,找出角之间的关系是解题的关键.8.B解析:根据平行公理,垂线的定义,平行线的定义和以及垂线的性质对各选项分析判断即可求解.解:A.应为过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B.两直线成直角,则这两直线一定垂直正确,故本选项正确;C.应为在同一平面内,没有交点的两条直线一定平行,故本选项错误;D.应为在同一平面内,过直线外一点,有且只有一条直线与已知直线垂直,故本选项错误. 故选B.9.C解析:试题分析:∵OA⊥OB,∴∠AOB=90°,所以∠2+∠1=90°,∵∠1=35°,∴∠2=55°,故选C .考点:1.余角和补角;2.垂线.二、填空题1.3厘米解析:分析:点P 到直线l 的距离为点P 到直线l 的垂线段,结合已知,因此点P 到直线l 的距离为PC 的长.详解:∵根据点到直线的距离为点到直线的垂线段(垂线段最短)的长度,PC⊥l,PA =4厘米,PB =5厘米,PC =3厘米,∴点P 到直线l 的距离为3厘米,故答案为:3厘米.点睛:本题考查了垂线段最短,关键是要明确点P 到直线l 的距离为点P 到直线l 的垂线段的长度.2.105°分析:根据垂直的定义及平角的定义计算即可.详解:解:∵CO OA ⊥,115∠=︒,∴∠COB=90°-15°=75°,∵点B ,O ,D 在同一直线上,∴∠2=180°-∠COB =180°-75°=105°.故答案为:105°.点睛:本题考查垂直定义与平角定义.熟练掌握垂直的定义是解题的关键.3.60°分析:根据题意由对顶角相等先求出∠ FOD,然后根据AB⊥CD,∠2与∠ FOD互为余角,求出即可详解:∵CD、EF相交于点O∴∠FOD=∠1=30°∵AB⊥CD∴∠2=90°−∠FOD=90°−30°=60°故本题答案应为:60°点睛:对顶角相等和垂线的定义及性质是本题的考点,熟练掌握基础知识是解题的关键.4.90°解析:观察图形,可猜想OE⊥AB,根据已知条件,证明∠AOE是直角即可.详解:∵∠BOC=130°,∴∠AOD=∠BOC=130°,∴∠AOE=∠AOD-∠EOD=130°-40°=90°.∴OE⊥AB.故答案为互相垂直.点睛:考查了对顶角、邻补角,利用垂直的定义除了由垂直得直角外,还能由直角判定垂直,判断两直线的夹角是否为90°是判断两直线是否垂直的基本方法.5.45分析:根据垂直定义得BOE=∠90〬,由角平分线定义得∠BOD=12∠BOE=45〬,由对顶角相等得∠AOC=∠BOD=45〬详解:因为,直线AB,CD交于点O,OE⊥AB,所以,BOE=∠90〬,因为,OD平分∠BOE,所以,∠BOD=12∠BOE=45〬,所以,∠AOC=∠BOD=45〬故答案为45点睛:本题考核知识点:垂直定义、角平分线、对顶角. 解题关键点:理解垂直定义、角平分线、对顶角性质.三、解答题1.见解析分析:两个合页所在的位置可看成的两个点,目的是为了让门与门框在一条直线上,应用的是两点确定一条直线;两个城市可看做两个点,两个城市之间,航行路线是直的,应用的是两点之间,线段最短.跳远成绩可将踏板看作直线,脚后跟看作一点,应用的是垂线段最短.详解:点睛:本题考查了生活中的数学知识、直线公理、线段公理、垂线段最短.注意一些物体或地方可看做一个点.2.见解析解析:试题分析:(1)过点M,N分别作AB的垂线,垂足分别为P,Q,根据垂线段最短可得汽车行驶到何处时,分别对两所学校影响最大;(2)此题说明时要分3段A到P;由P向Q,由Q 向B分别说明对两学校的影响情况.试题解:(1)如图所示,过点M,N分别作AB的垂线,垂足分别为P,Q,则当施工车行驶到点P,Q处时产生的噪音分别对M,N两个村庄影响最大.(2)由A至P时,产生的噪音对两个村庄的影响越来越大,到P处时,对M村庄的影响最大;由P至Q时,对M村庄的影响越来越小,对N村庄的影响越来越大,到Q处时,对N村庄的影响最大;由Q至B时,对M,N两个村庄的影响越来越小.点睛:此题主要考查了应用与设计作图,以及垂线段的性质,关键是正确画出图形.3.(1)见解析;(2)见解析.解析:本题考查了线段和垂线的性质在实际生活中的运用(1)由两点之间线段最短可知,连接AD、BC交于H,则H为蓄水池位置;(2)根据垂线段最短可知,要做一个垂直EF的线段.⑴连结AD,BC,交于点H,则H为所求的蓄水池点.⑵过H作HK EF于K,沿HK开挖,可使开挖的渠最短,依据是:“点与直线的连线中,垂线段最短”.(如图)4.AB∥CD,MN∥OP,EF∥GH;AB⊥GH,AB⊥EF,CD⊥EF,CD⊥GH.解析:试题分析:根据平行的含义,在同一平面内不相交的两条线叫做平行线,在图中所给的6条线段中找出互相平行的线,写出即可;根据垂直的含义,在同一平面内两条直线相交成直角时这两条直线互相垂直,在图中所给的6条线段中找出互相垂直的线,写出即可。

人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)(7)

人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)(7)

5.1.2 垂线学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.如图,以A为公共端点的两条线段AB、AC互相垂直,点B、D、C在同一条直线上,AD⊥BC,则图形中能表示点到直线的距离的线段有( )条.A.6 B.5 C.4 D.32.到直线a的距离等于2㎝的点有()个A.0个B.1个C.无数个D.无法确定3.如图所示,AB⊥AC,AD⊥BC,垂足分别为A,D,下列说法不正确的是()A.点A到BC的垂线段为AD B.点C到AD的垂线段为CDC.点B到AC的垂线段为AB D.点D到AB的垂线段为BD4.下列语句叙述正确的有( )①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角;②如果两个角相等,那么这两个角是对顶角;③连接两点的线段长度叫做两点间的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.A.0个 B.1个 C.2个 D.3个5.如图所示,点P到直线l的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度6.下列说法中正确的是()A.有且只有一条直线与已知直线垂直;B.从直线外一点到这条直线的垂线段,叫做这点到这条直线距离;C.互相垂直的两条线段一定相交;D.直线l外一点A与直线l上各点连接而成的所有线段中,最短线段的长度是3cm,则点A 到直线l的距离是3cm.7.如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A处垂直拉至起跳线l的点B处,然后记录AB的长度,这样做的理由是()A.两点之间,线段最短B.过两点有且只有一条直线C.垂线段最短D.过一点可以作无数条直线8.如图,OA⊥OB,若∠1=55°,则∠2的度数是( )A.35° B.40° C.45° D.60°9.如图,已知ON丄a,OM丄a,所以OM与ON重合的理由是().A.两点确定一条直线B.经过一点有且只有一条线段垂直于己知直线C.过一点只能作一条垂线D.垂线段最短二、填空题1.如图,BC⊥AC,CB=8 cm,AC=6 cm,点C到AB的距离是4.8 cm,那么点B到AC的距离是____ cm,点A到BC的距离是____ cm,A,B两点间的距离是____ cm.2.如图,AB⊥l 1,AC⊥l 2,垂足分别为B ,A ,则A 点到直线l 1的距离是线段__的长度.3.如图,直线AB CD ,相交于点,O EO AB ⊥.重足为35,O EOC ∠=︒,则AOD ∠的度数为__________度4.已知OA⊥OC 于O ,∠AOB∶∠AOC=2∶3,则∠BOC 的度数为____________度.5.如图,直线a 与b 相交于点O ,直线c⊥b,且垂足为O ,若∠1=35°,则∠2=_____.三、解答题1.如图,已知直线a ,b ,点P 在直线a 外,在直线b 上,过点P 分别画直线a ,b 的垂线.2.如图,按要求画图并回答相关问题:(1)过点A 画线段BC 的垂线,垂足为D ;(2)过点D 画线段..DE∥AB,交AC 的延长线于点E ;(3)指出∠E 的同位角和内错角.3.如图所示,点P 是∠ABC 内一点.(1)画图:①过点P画BC的垂线,垂足为D;②过点P画BC的平行线交AB于点E,过点P画AB的平行线交BC于点F.(2)∠EPF等于∠B吗?为什么?4.如图,是一条河,C是河边AB外一点:(1)过点C要修一条与河平行的绿化带,请作出正确的示意图.(2)现欲用水管从河边AB,将水引到C处,请在图上测量并计算出水管至少要多少?(本图比例尺为1:2000)⊥于点O.5.如图,己知90∠=,过点O作直线CD,作OE CDAOB()1图中除了直角相等外,再找出一对相等的角,并证明它们相等;()2若70∠的度数;∠=,求BOCAOD()3将直线CD绕点O旋转,若在旋转过程中,OB所在的直线平分DOE∠的∠,求此时AOD度数.参考答案一、单选题1.B分析:根据点到直线距离的定义进行解答即可.详解:解:∵AB、AC互相垂直,AD⊥BC,∴线段AB的长度是点B到直线AC的距离;线段AC的长度是点C到直线AB的距离;线段AD的长度是点A到直线BC的距离;线段CD的长度是点C到直线AD的距离;线段BD的长度是点B到直线AD的距离.∴图形中能表示点到直线的距离的线段有5条.故选:B.点睛:本题考查了点到直线的距离的定义,即直线外一点到直线的垂线段的长度,叫做点到直线的距离,熟知概念是关键.2.C解析:详解:解:到直线a的距离等于2的点的轨迹是与a平行,且到a的距离等于2的两条直线,直线是由无数个点组成.故选C.3.D解析:A. 点A到BC的垂线段为AD,正确; B. 点C到AD的垂线段为CD,正确;C. 点B到AC的垂线段为AB,正确;D. 点B到AD的垂线段为BD.故选D.4.B解析:试题①如果两个角有公共顶点且它们的两边互为反向延长线,那么这两个角是对顶角;故错误.②如果两个角相等,那么这两个角是对顶角;错误.③连接两点的线段长度叫做两点间的距离;正确.④直线外一点到这条直线的垂线段的长度叫做这点到直线的距离.错误.故选B.5.B解析:由点到直线的距离定义,即垂线段的长度可得结果,点P到直线l的距离是线段PB 的长度,故选B.6.D解析:对照垂线的两条性质逐一判断.①从直线外一点引这条直线的垂线,垂线段最短;②过一点有且只有一条直线与已知直线垂直.详解:解:A、和一条直线垂直的直线有无数条,故A错误;B、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度,故B错误;C、互相垂直的两条线段不一定相交,线段有长度限制,故C错误;D、直线l外一点A与直线l上各点连接而成的所有线段中最短线段就是垂线段,可表示点A 到直线l的距离,故D正确.故选:D.点睛:本题考查的是垂线的相关定义及性质,只要记住并理解即可正确答题.7.C分析:根据“垂线段的性质:垂线段最短”解答即可.详解:这样做的理由是垂线段最短.故选C.点睛:本题考查了垂线段最短.垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.8.A解析:试题分析:∵OA⊥OB,∴∠AO∠=90°,即∠2+∠1=90°.∵∠1=55°,∴∠2=35°.故选A.考点:1.垂直的性质;2.数形结合思想的应用.9.B解析:利用OM⊥NP,ON⊥NP,所以直线ON与OM重合,其理由是:同一平面内,经过一点有且只有一条直线与已知直线垂直.故选B.二、填空题1.6 10解析:∵BC⊥AC,CB=8cm, AC=6cm,∴点B到AC的距离是8cm,点A到BC的距离是6cm,故答案为8,6,10.2.AB详解:解:根据点到直线的距离的定义,易得A点到直线l的距离是线段AB的长度.1故答案为:AB.3.125分析:根据垂直的定义及角的加法,求出∠BOC的度数,根据对顶角相等求解即可.详解:⊥∵EO AB∴∠EOB=90°∵∠EOC=35°∴∠BOC=∠EOB+∠EOC=125°∴∠AOD=∠BOC =125°故答案为:125点睛:本题考查的是垂直的定义及角的加减,掌握垂直的定义及能从图形中确定角之间的关系是关键.4.30°或150°分析:根据垂直关系知∠AOC=90°,由∠AOB:∠AOC=2:3,可求∠AOB,根据∠AOB与∠AOC的位置关系,分类求解.详解:∵OA⊥OC,∴∠AOC=90°,∵∠AOB:∠AOC=3:2,∴∠AOB=60°.因为∠AOB的位置有两种:一种是在∠AOC内,一种是在∠AOC外.如图,①当在∠AOC内时,∠BOC=90°-60°=30°;②当在∠AOC外时,∠BOC=90°+60°=150°.故答案为30°或150°.点睛:此题主要考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直.同时做这类题时一定要结合图形.5.55°解析:如下图,∵直线a、b、c相交于点O,且c⊥b,∴∠1+∠2+3∠=180°,∠3=90°,又∵∠1=35°,∴∠2=180°-35°-90°=55°.故答案为55°.三、解答题1.图形见解析.分析:根据过直线外一点作已知直线的垂线和过直线上一点作已知直线的垂线分别画出即可详解:解:如答图所示,PA为直线a的垂线,PB为直线b的垂线.点睛:垂线的作法是本题的考点,熟练掌握作图方法是解题的关键.2.(1)见解析(2)见解析(3)∠E的同位角是∠ACD,∠E的内错角是∠BAE和∠BCE.解析:(1)如图,过A点作AD⊥BD与BC的延长线交于D点即可;(2)如图,过D点作DE∥AB与AC的延长线交于E点即可;(3)根据同位角与内错角的定义进行解答即可.详解:(1)(2)如图所示.(3)∠E的同位角是∠ACD,∠E的内错角是∠BAE和∠BCE.点睛:本题主要考查基础作图,同位角与内错角的定义,熟练掌握其知识点是解此题的关键.3.(1)图形见解析(2)∠EPF=∠B解析:试题分析:(1)①过点P作BC的垂线,D是垂足;②过点P作BC的平行线交AB于E ,过点P 作AB 的平行线交BC 于F ;(2)根据平行线的性质可得∠AEP=∠B,∠EPF=∠AEP 然后利用等量代换得到结论即可. 解:如图所示,(1)①直线PD 即为所求;②直线PE 、PF 即为所求.(2)∠EPF=∠B,理由:因为PE∥BC(已知),所以∠AEP=∠B(两直线平行,同位角相等).又因为PF∥AB(已知),所以∠EPF=∠AEP(两直线平行,内错角相等),∠EPF=∠B(等量代换).点睛:本题考查了平行线和垂线的画法及平行线的性质,熟练掌握两直线平行同位角相等,两直线平行内错角相等是解答本题的关键.4.详见解析.解析:试题分析:(1)过点C 作AB 的平行线.(2)过点C 作CD 垂直于AB 交AB 于点D .根据垂线段最短,可得CD 长度最小,量出CD 的长度,然后按比例尺求出实际的距离. 试题如图:(1)过点C 画一平行线平行于AB .(2)过点C 作CD 垂直于AB 交AB 于点D .然后用尺子量CD 的长度,再按1:2000的比例求得实际距离即可.经测量0.9,CD cm =0.92000180018.cm m ⨯==5.(1)AOD BOE ∠=∠;(2)160BOC ∠=;(3)45AOD ∠=.解析:(1)根据垂直定义可得∠DOB+∠BOE=90°,再根据同角的余角相等可得∠AOD=∠BOE;(2)根据余角定义可得∠BOD=20°,再根据邻补角互补可得∠BOC 的度数;(3)根据角平分线性质可得∠DOB=12∠DOE=45°,再根据角的和差关系可得答案.详解:解:()1AOD BOE∠=∠,∵OE CD⊥于点O,∴90DOB BOE∠+∠=,∵90AOB∠=,∴90AOD DOB∠+∠=,∴AOD BOE∠=∠;()2∵70AOD∠=,90AOB∠=,∴20BOD∠=,∴18020160BOC∠=-=;()3∵OB所在的直线平分DOE∠,∴1452DOB DOE∠=∠=,∵90AOB∠=,∴904545AOD∠=-=.点睛:此题主要考查了垂线,以及余角,补角,关键是掌握两角之和为90°时,这两个角互余,两角之和为180°时,这两个角互补.。

5.1.2第2课时 垂线(1)

5.1.2第2课时  垂线(1)

5.1.2第2课时 垂线(1)一、选择题1. 下列判断错误的是 ( )A .相交两直线四个交角如果都相等,那么这两直线互相垂直B .相交两直线四个交角中如果相邻两角相等,那么这两直线互相垂直C .两条直线相交四个交角中如果有两个角相等,那么这两直线互相垂直D .两条直线相交四个交角中如果有一个角是直角,那么这两直线互相垂直2. 下列说法正确的是 ( )A .两条直线相交,交点叫垂足B .过一点有且只有一条直线与已知直线垂直C .一条直线有且只有一条垂线D .过一点不可能向一条射线或线段所在的直线作垂线3. 如图,直线AB ,CD 相交于点O ,OE ⊥AB ,垂足是O ,∠DOE =55°,则∠BOC 的度数为 ( )A .40°B .45°C .30°D .35°4. 如图,OC ⊥OA ,OD ⊥OB ,则∠AOD 等于 ( )A .90°+∠BOCB .90°+2∠BOCC .180°-∠BOCD .180°-2∠BOC二、填空题5. 如图,直线EF ⊥AB 于点E , CD 是过点E 的直线,且∠AEC =120°,则∠DEF = °.6. 如图,∠ABD =90°.(1)点B 在直线 上,点D 在直线 外; (2)直线 与直线 相交于点A ,点D 是直线 与直线 的交点,也是直线 与直线 的交点,又是直线 与直线 的交点; (3)直线 ⊥ ,垂足为点 ; (4)过点D 有且只有 条直线与直线AC 垂直.(第5题) A B F E D C (第6题) A B C DC O A BDE (第3题) BA C D O (第4题)三、解答题7. 如图,点P 在∠AOB 的内部,点M 在∠AOB 的外部,点Q 在射线OA 上,利用三角板按以下要求画图: (1)过点P 画OA 的垂线,再画OB 的垂线; (2)过点Q 画OB 的垂线;(3)过点M 画OA 的垂线.8. 如图,直线AB ,CD ,EF 相交于点O ,且AB ⊥CD ,∠1=30°,求∠2、∠COF 、∠4、∠5的度数.9. 如图,AO ⊥OC ,DO ⊥OB ,且∠AOB ∶∠BOC =32∶13,试求∠COD 的度数.10.直线AB ,CD 相交于点O ,OE ⊥AB 于点O ,∠COE =40°,求∠BOD 的度数.B ACD O (第9题) ·Q A BO (第7题) ·M ·P (第8题) A B D CO E F 1 2 3 4 5。

5.1.2 垂线(解析版)

5.1.2 垂线(解析版)

5.1.2 垂线七年级【下】人教版同步练习【解析版】一、单选题1.已知60BOC ︒∠=,OF 平分BOC ∠.若AO BO ⊥,OE 平分AOC ∠,则EOF ∠的度数是()A .45︒B .15︒C .30︒或60︒D .45︒或15︒【答案】A 【详解】解:①当OA 和OB 在OC 的同一侧时,如图:∵60BOC ︒∠=,OF 平分BOC ∠∴1302COF BOC ∠=∠=︒ ∵AO BO ⊥ ∴90AOB ∠=︒∴150AOC AOB BOC ∠=∠+∠=︒ ∵OE 平分AOC ∠∴1752COE AOC ∠=∠=︒ ∴45EOF COE COF ∠=∠-∠=︒; ②当OA 和OB 在OC 的两侧时,如图:∵60BOC ︒∠=,OF 平分BOC ∠∴1302COF BOC ∠=∠=︒ ∵AO BO ⊥∴90AOB ∠=︒∴30AOC AOB BOC ∠=∠-∠=︒ ∵OE 平分AOC ∠ ∴1152COE AOC ∠=∠=︒ ∴45EOF COE COF ∠=∠+∠=︒.∴综上所述,EOF ∠的度数是45︒. 故选:A2.如图,AC ⊥BC ,直线EF 经过点C ,若∠1=35°,则∠2的大小为( )A .65°B .55°C .45°D .35°【答案】B 解:∵AC ∵BC , ∵∵ACB =90°,∵∵1+∵ACB +∵2=180°, ∵∵2=180°﹣90°﹣35°=55°, 故选:B .3.如图,把水渠中的水引到水池C ,先过 C 点向渠岸 AB 画垂线,垂足为 D ,再沿垂线 CD?开沟才能使沟最短,其依据是( )A .垂线段最短B .过一点确定一条直线与已知直线垂直C .垂线最短D .以上说法都不对【答案】A4.如图,在ABC 中,90ACB ∠=︒,CD AB ⊥于点D ,则图中能表示点B 到直线AC 的距离的是( )A .CD 的长度B .BC 的长度 C .BD 的长度 D .AD 的长度【答案】B5.如图,立定跳远比赛时,小明从点A 起跳落在沙坑内P 处.若AP =2.3米,则这次小明跳远成绩A .小于2.3米B .等于2.3米C .大于2.3米D .不能确定【答案】A6.如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是( )A .两点之间,线段最短B .两点之间线段的长度,叫做这两点之间的距离 C .垂线段最短 D .两点确定一条直线【答案】D7.点P 是直线l 外一点,A 为垂足,PA l ⊥,且5cm PA =,则点P 到直线l 的距离( )A .小于5cm PA =B .等于5cm PA =C .大于5cm PA =D .不确定【答案】B8.如图,∠1=20º,AO ⊥CO ,点B 、O 、D 在同一条直线上,则∠2的度数为( )A .70ºB .20ºC .110ºD .160º【答案】C9.在下列生活实例中,数学依据不正确的是( )A .在植树时,只要定出两个树坑的位置,就能使同一行树坑在一条直线上,依据的是两点确定一条直线;B .在正常情况下,射击时要保证瞄准的一只眼和两个准星在一条直线上,才能射中目标,依据的是两点之间线段最短;C .从甲地到乙地,原来是绕山而过,如今穿山修了一条笔直的隧道,大大节约了路程,依据的是两点之间线段最短;D .体育课上,体育老师测量跳远距离的时候,测的是落脚脚跟到起跳线的距离,依据的是垂线段最短. 【答案】B10.下列说法中错误的是( ) A .一个锐角的补角一定是钝角;B .同角或等角的余角相等;C .两点间的距离是连结这两点的线段的长度;D .过直线l 上的一点有且只有一条直线垂直于l 【答案】D 二、填空题11.如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,OF CD ⊥,BOE 36∠=,则AOF ∠=_______.【答案】18°12.如图,点O 在直线AB 上,且OC⊥OD ,若⊥COA =36°,则⊥DOB 大小为 ________°【答案】5413.如图,AD BC ⊥于点D ,DE AC ⊥于点E ,DF AB ⊥于点F ,则表示A 点到BC ,D 点到AB 、AC 的距离分别是________.【答案】线段AD 的长、线段DF 的长、线段DE 的长14.在平面内,若OA ⊥OC ,且∠AOC ∶∠AOB =2∶3,则∠BOC 的度数为_______________; 【答案】45°或135°15.如图所示,直线AB ,CD 相交于点O ,EO AB ⊥于点O ,若60EOD ∠=︒,则BOC ∠的度数是________.【答案】150°16.如图,直线AB,CD相交于点O,EO⊥AB,垂足为O,∠AOD=118°,则∠EOC 的度数为_________.【答案】28°三、解答题17.已知如图,直线AB、CD相交于点O,∠COE=90°.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,过点O作OF⊥AB,请直接写出∠EOF的度数.【答案】(1)∠BOE=54°;(2)∠AOE=120°;(3)∠EOF=30°或150°解:(1)∵∠AOC=36°,∠COE=90°,∴∠BOE=180°-∠AOC-∠COE=54°;(2)∵∠BOD:∠BOC=1:5,∴∠BOD=180°×11+5=30°,∴∠AOC=30°,又∵∠COE=90°,∴∠AOE=∠COE+∠AOC=90°+30°=120°;(3)由(2)∠AOE=120°如图1,OF⊥AB∴∠AOF=90°∴∠EOF=∠AOE -∠AOF=120°-90°=30°, 如图2,OF ⊥AB ∴∠AOF=90°∴∠EOF=360°-∠AOE -∠AOF=360°-120°-90°=150°.故∠EOF 的度数是30°或150°.18.如图,直线AB ,CD 相交于点O ,EO AB ⊥,垂足为O ,35EOC ∠=︒,求AOD ∠的度数.【答案】125°. 【详解】 ∵EO ⊥AB , ∴∠AOE=90°, 又∵∠EOC=35°,∴∠AOC=∠AOE -∠EOC=90°-35°= 55°, ∴∠AOD=180°-∠AOC=180°-55°=125°.19.如图,直线BC 、DE 相交于点O ,OA 、OF 为射线,OA OB ⊥,OF 平分BOE ∠,BOF COD ∠+∠=54.求AOE ∠的度数.【答案】126º 【详解】 设BOF ∠=x , ∵OF 平分∠BOE ,∴∠BOE =2BOF ∠=2x ,∴COD ∠=∠BOE =2x (对顶角相等), ∵BOF COD ∠+∠=54,∴2x x +=54, 解得x =18,∴∠BOE =218⨯=36, ∵OA OB ⊥,∴AOB ∠=90,∴AOE ∠=AOB BOE ∠+∠=9036+=126.20.如图,直线AB ,CD 相交于点O ,OE 平分∠BOC ,FO ⊥CD 于点O ,若∠BOD ∶∠EOB=2∶3,求∠AOF 的度数.【答案】45︒. 【详解】设2BOD x ∠=,则3EOB x ∠=, ∵OE 平分BOC ∠, ∴3EOC EOB x ∠=∠=,180BOD EOB EOC ∠+∠+∠=︒, 233180x x x ∴++=︒,解得22.5x =︒,45BOD ∴∠=︒, FO CD ⊥,90DOF ∴∠=︒,又180BOD DOF AOF ∠+∠+∠=︒,4590180AOF ∴︒+︒+∠=︒,解得45AOF ∠=︒.。

人教版七年级数学下册《5.1.2垂线》同步训练题-附答案

人教版七年级数学下册《5.1.2垂线》同步训练题-附答案

人教版七年级数学下册《5.1.2垂线》同步训练题-附答案 学校:___________班级:___________姓名:___________考号:___________一、单选题 1.如图,下列线段中,长度最短的是( )A .PDB .PC C .PBD .PA2.平面内过直线l 外一点O 作直线l 的垂线能作出( )A .0条B .1条C .2条D .无数条3.在同一平面内,经过一点(已知直线上或直线外),能画出已知直线的垂线数为( ) A .0条 B .1条 C .2条 D .无数条4.P 为直线m 外一点,A ,B ,C 为直线m 上三点4cm 5cm 6cm PA PB PC ===,,,则点P 到直线m 的距离( )A .等于5cmB .等于4cmC .小于4cmD .不大于4cm 5.如图,点D 在AB 上BE AC ⊥,垂足为E ,BE 交CD 于点F ,则下列说法错误的是( )A .线段AE 的长度是点A 到直线BE 的距离B .线段FD 的长度是点F 到直线AB 的距离C .线段FE 的长度是点F 到直线AC 的距离D .线段CE 的长度是点C 到直线BE 的距离 6.如图,直线AB ,CD 相交于点O ,射线OM 平分AOC ∠,ON OM ⊥若70AOC ∠=︒,则CON ∠的度数为( )A.35︒B.45︒C.55︒D.60︒,,点P在直线CD上,用三角尺过点P画直线AB的垂线l.下7.如图,已知直线AB CD列选项中,三角尺摆放位置正确的是()A.B.B.C.D.8.如图,已知OA⊥OB,直线CD经过顶点O,若⊥BOD⊥⊥AOC=5⊥2,则⊥BOC等于()A.6B.4.8C.2.4D.5二、填空题11.已知,.若OB 在内,则的度数为______. 12.如图所示的是小明同学在体育课上跳远后留下的脚印,体育老师测量小明同学的跳远成绩时,选取了线段DC 进行测量,其依据是 .13.如图,直线AB 、CD 相交于点O ,射线OF CD ⊥于点O ,36AOC ∠=︒则BOF ∠= 度.三、解答题14.如图,直线AB CD ⊥,垂足为O ,直线EF 经过点O ,∠2=55°,求∠1,∠3,∠BOE 的度数.15.如图,是某同学在学校运动会跳远比赛中留下的脚印,请测量他的成绩.(要求:画出图形,并进行简要说明,按照答题卡...测量距离,比例尺1:200计算)参考答案:1.C2.B3.B4.D5.B6.C7.C8.B9.110.12011.CD的长12.垂线段最短13.30°14.135∠=︒ 335∠=︒ 145BOE ∠=︒ 15.小明这次跳远的成绩是4.4m . 16.(1)ON CD ⊥ (2)60BOD ∠=︒。

人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)(4)

人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)(4)

5.1.2 垂线学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.如图,经过直线l外一点A作l的垂线,能画出()A.4条B.3条C.2条D.1条2.下列说法中正确的是()A.在同一平面内,两条直线的位置只有两种:相交和垂直B.有且只有一条直线垂直于已知直线C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离3.在下列语句中,正确的是().A.在平面上,一条直线只有一条垂线B.过直线上一点的直线只有一条;C.过直线上一点且垂直于这条直线的直线有且只有一条;D.垂线段就是点到直线的距离4.如图,在一张透明的纸上画一条直线l,在l外任取一点Q,并折出过点Q且与l垂直的直线,能折出这样的直线的条数为( )A.0条B.1条C.2条D.无数条5.体育课上,老师测量跳远成绩的依据是()A.两点确定一条直线B.两点之间,线段最短C.垂线段最短D.平行线间的距离相等6.体育课上,老师测量跳远成绩的依据是( )A.垂直的定义 B.两点之间线段最短C.垂线段最短 D.两点确定一条直线7.下列说法中,正确的是( )A.垂线最短 B.两点之间直线最短C.如果两个角互补,那么这两个角中一个是锐角,一个是钝角 D.同角的补角相等8.下列说法中正确的有()(1) 钝角的补角一定是锐角(2) 过己知直线外一点作这条直线的垂线有且只有一条(3) —个角的两个邻补角是对顶角(4) 等角的补角相等(5) 直线l外一点A与直线l上各点连接而成的所有线段中,最短线段的长是3cm,则点A到直线l的距离是3cm .A.2个B.3个C.4 个D.5 个9.下列说法中,正确的是( )A.过直线外一点可以画无数条直线与这条直线垂直B.过直线外一定点不可以画这条直线的垂线C.过直线外一点可以画这条直线的一条垂线D.如果两条直线不相交,那么这两条直线有可能互相垂直二、填空题1.如图,AH⊥BC,垂足为H,若AB=1.7cm,AC=2cm,AH=1.1cm,则点A到直线BC的距离是_____cm.2.点到直线的距离是指这点到这条直线的________.3.如图,跳远比赛时,小明从点A起跳落在沙坑内B处,跳远成绩是4.8米,则起跳点A与落脚点B之间的距离_____(填“大于”、“小于”或“等于”)4.8米.4.邻补角的两条平分线互相_________.5.如图,直线AB、CD相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE与直线AB的位置关系是___________三、解答题1.作图并写出结论:如图,点P 是∠AOB 的边OA 上一点,请过点P 画出OA ,OB 的垂线,分别交BO 的延长线于M 、N ,线段 的长表示点P 到直线BO 的距离;线段 的长表示点M 到直线AO 的距离; 线段ON 的长表示点O 到直线 的距离;点P 到直线OA 的距离为 .2.如图,直线AB 与CD 相交于点O ,OE⊥AB,OF⊥CD.(1)图中∠COE 的余角是 .(请符合条件的角都写出来);(2)图中除直角外,还有相等的角,请写出三对;① ;② ;③ .(3)若∠AOF=3∠COE,求∠COE 的度数(请写出解答过程).3.如图,直线AB 、CD 、MN 相交于点O ,FO⊥BO,OM 平分∠DOF(1)请直接写出图中所有与∠AON 互余的角:.(2)若∠AOC=52∠FOM,求∠MOD 与∠AON 的度数.4.如图,已知直线AB 和CD 相交于O 点,射线OE AB ⊥于O ,射线OF CD ⊥于O ,且BOF 25.∠=求:AOC ∠与EOD ∠的度数.5.如图,已知O为直线AB上的一点,CD⊥AB于点O,PO⊥OE于点O,OM平分∠COE,点F 在OE的反向延长线上.(1)当OP在∠BOC内,OE在∠BOD内时,如图①所示,直接写出∠POM和∠COF之间的数量关系;(2)当OP在∠AOC内且OE在∠BOC内时,如图②所示,试问(1)中∠POM和∠COF之间的数量关系是否发生变化?并说明理由.参考答案一、单选题1.D解析:平面内经过一点有且只有一条直线垂直于已知直线,据此可得.详解:经过直线l外一点画l的垂线,能画出1条垂线,故选D.点睛:本题主要考查垂线,解题的关键是掌握在平面内,过一点有且只有一条直线与已知直线垂直.2.C解析:同一平面内,两条直线可能相交或者平行,一条直线的垂线有很多条,根据平行公理的推论,两条直线都与第三条直线平行则这两条直线平行,点到直线的距离指的是线段的长度.详解:A、在同一平面内,两条直线的位置只有两种:相交和平行,垂直是相交的一种情况,故该选项错误;B、一条直线的垂线有无数条,故该选项错误;C、根据平行公理的推论,如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故该选项正确;D、点到直线的距离指的是垂线段的长度,而非垂线段,故该选项错误.故选C.点睛:本题考查了相交线的位置关系、垂线、点到直线距离的定义以及平行公理的推论,属于基础考题,比较简单.3.C解析:根据垂线的定义、直线的定义、垂线的性质、垂线段的定义逐一进行分析即可得.详解:A、在平面上,一条直线有无数条垂线,错误;B、过直线上一点的直线有无数条,错误;C、在同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条,正确;D、垂线段是线段,是图形,垂线段的长度是点到直线的距离,错误,故选C.点睛:本题考查了垂线、垂线段、垂线的性质等知识,熟练掌握相关的概念以及性质是解题的关键.4.B解析:试题根据垂线的性质,这样的直线只能作一条.故选B.点睛:根据垂线的基本性质:过直线上或直线外的一点,有且只有一条直线和已知直线垂直,容易判断.5.C解析:根据垂线段最短的性质解答.详解:老师测量跳远成绩的依据是:垂线段最短.故选C.点睛:本题考查了垂线段最短,掌握垂线段的性质是解题的关键.6.C解析:根据垂线段最短的性质解答.详解:老师测量跳远成绩的依据是:垂线段最短.故选:C.点睛:本题考查了垂线段最短在实际生活中的应用,是基础题.7.D解析:分析:根据线的性质,直线的性质,补角的性质解答即可.详解:A、垂线段最短,故选项错误;B、两点之间线段最短,故选项错误;C、可以为两个直角,故选项错误;D、同角的补角相等,故选项正确.故选D.点睛:本题考查了垂线的性质,直线的性质,补角的性质,是基础知识要熟练掌握图形的性质. 对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.8.D解析:①180°-钝角=锐角,钝角的补角一定是锐角,故①正确;②过已知直线外一点作已知直线的垂线有且只有一条,故②正确;③一个角的两个邻补角是对顶角,故③正确;④等角的补角相等,故④正确;⑤直线l外一点A与直线l上各点连接而成的所有线段中,最短线段的长是3cm,则点A到直线l的距离是3cm,故⑤正确;故选D.9.C解析:利用垂线的定义结合两直线的位置关系分别分析得出即可.详解:A、过直线外一点可以画一条直线与这条直线垂直,故此选项错误;B、过直线外一定点可以画一条直线的垂线,故此选项错误;C、过直线外一点可以画这条直线的一条垂线,故此选项正确;D、如果两条直线不相交,那么这两条直线有可能互相平行,故此选项错误;故选:C.点睛:此题主要考查了垂线的定义以及两直线的位置关系,正确把握相关定义是解题关键.二、填空题1.1解析:分析:根据点到直线的距离的定义回答即可.详解:点A到直线BC的距离是线段AH的长度,是1.1cm.故答案为:1.1.点睛:考查了点到直线的距离.点到直线的距离是指点到直线的垂线段的长度.根据定义回答即可.2.垂线段的长度解析:点到直线的距离是指这点到这条直线的垂线段的长度,故答案为垂线段的长度.3.大于解析:试题跳远成绩为距离起跳线最近的点到起跳线的距离,即垂线段的长.∵垂线段最短,小明的跳远成绩是4.8米,∴小明从起跳点到落脚点之间的距离大于4.8米.故答案为大于.4.垂直解析:利用邻补角的定义以及角平分线的性质得出即可.详解:邻补角的两条平分线互相垂直.故答案为垂直.点睛:此题主要考查了垂线的定义以及邻补角的定义,正确把握邻补角定义是解题关键.5.垂直详解:解:∵∠BOC=130°,∴∠AOD=∠BOC=130°,∴∠AOE=∠AOD-∠EOD=130°-40°=90°.∴OE⊥AB.故答案为:∴OE⊥AB.三、解答题1.PN,PM,PN,0分析:先根据题意画出图形,再根据点到直线的距离的定义得出即可.详解:如图所示:线段PN的长表示点P到直线BO的距离;线段PM的长表示点M到直线AO的距离;线段ON 的长表示点O到直线PN的距离;点P到直线OA的距离为0,故答案为PN,PM,PN,0.点睛:本题考查了点到直线的距离,能熟记点到直线的距离的定义是解此题的关键.2.(1)∠AOC,∠EOF,∠BOD;(2)∠AOC=∠EOF;∠AOC=∠BOD;∠EOF=∠BOD;(3)45°.分析:(1)根据余角的定义和余角的性质解答即可;(2)根据余角的性质和对顶角相等即可找出三对相等角;(3)根据∠AOF=3∠COE以及∠AOC=∠EOF,可知∠AOC=∠EOC=∠EOF,进一步即可求出结果.详解:解:(1)∵OE⊥AB,OF⊥CD,∠AOC=∠DOB,∴∠COE+∠AOC=90°,∠COE+∠EOF=90°,∠COE+∠BOD=90°;∴图中∠COE的余角是∠AOC,∠EOF,∠BOD;故答案为:∠AOC,∠EOF,∠BOD;(2)根据同角的余角相等可得:∠AOC=∠EOF;∠EOF=∠BOD;根据对顶角相等可得:∠AOC=∠BOD.∴相等的3对角是:①∠AOC=∠EOF;②∠AOC=∠BOD;③∠EOF=∠BOD.故答案为:∠AOC=∠EOF;∠AOC=∠BOD;∠EOF=∠BOD;(3)∵∠AOF=3∠COE,∠AOC=∠EOF,∴∠COE=∠AOC,∵OE⊥AB,∴∠COE+∠AOC=90°,∴∠COE=45°.故∠COE的度数是45°.点睛:本题考查了垂直的定义、对顶角相等、角度的计算和余角的定义及性质等知识,属于基本题型,熟练掌握基本知识是解题关键.3.(1)∠FOM,∠MOD,∠CON;(2)20°,70°分析:(1)根据垂直的定义可得∠BOF=∠AOF=90°,由角平分线的定义和对顶角相等可得与∠AON 互余的角有:∠FOM,∠MOD,∠CON;(2)设∠MOD的度数为x°,用含x的式子表示出∠FOD和∠AOC的度数,然后由∠AOC=∠BOD,得出∠FOD+∠AOC=90°,据此列方程求解,再由(1)中∠MOD与∠AON互余可得出∠AON的度数.详解:解:(1)∵FO⊥BO,∴∠BOF=∠AOF=90°,∴∠BOM+∠FOM=90°,又∠BOM=∠AON,∴∠AON+∠FOM=90°.∵OM平分∠DOF,∴∠DOM=∠FOM,又∵∠DOM=∠CON,∴与∠AON互余的角有:∠FOM,∠MOD,∠CON;(2)设∠MOD的度数为x°,∵OM平分∠FOD,∴∠MOD=∠FOM=x°,∴∠FOD=2x°,∠AOC=52∠FOM=5x2°,又∵FO⊥BO,∠AOC=∠BOD,∴∠FOD+∠AOC=90°,即2x+5x2=90,解得:x=20.即∠MOD=20°,由(1)可知∠MOD 与∠AON 互余,∴∠AON=90°-∠MOD=90°-20°=70°.故∠MOD 的度数为20°,∠AON 的度数为70°.点睛:本题考查了垂直的定义,角的平分线的定义,余角的定义与性质以及对顶角相等,正确理解相关概念是关键.4.∠AOC=115°, ∠EOD=25°.分析:根据垂线的性质和余角及补角的定义可求出∠ AOC,由垂线的性质和余角的定义可求出∠EOD 详解:解:∵OF⊥CD,∴∠COF=90°,∴∠BOC=90°-∠BOF=65°,∴∠AOC=180°-65°=115°.∵OE⊥AB,∴∠BOE=90°,∴∠EOF=90°-25°=65°,∵OF⊥CD∴∠DOF=90°∴∠EOD=∠DOF −∠EOF =90°-65°=25°.点睛:垂线的性质及补角和余角的定义都是本题的考点,正确找出角之间的关系是解题的关键.5.(1)∠POM=12∠COF,理由见解析;(2)∠POM=12∠COF,理由见解析解析:(1)利用垂直的定义,CD⊥AB,PO⊥EO,等量代换得∠COP=∠BOE,利用角平分线的性质,得∠POM=12∠POB=12(90°-∠POC),∠COF=90°-∠COP,得出结论;(2)利用垂直的定义,同角的余角相等可得∠COP=∠AOF,可推出∠COP+∠COB=∠AOF+∠AOC,即∠BOP=∠COF,由对顶角相等得∠AOF=∠BOE=∠COP,利用角平分线的性质,得∠COP+∠COM=∠BOE+∠MOE,即∠POM=12∠BOP,等量代换得出结论.详解:解:(1)∠POM=12∠CO F.证明:∵CD⊥AB,∴∠COP+∠BOP=90°,∵OP⊥OE,∴∠BOE+∠BOP=90°,∴∠COP=∠BOE,∵OM 平分∠COE,∴∠POM=∠MOB=12∠POB=12 (90°−∠POC),∵∠COF=90°−∠COP ,∴∠POM=12∠COF;(2)不发生变化.理由:∵CD⊥AB 于点O ,∴∠AOP+∠COP=90°.∵PO⊥OE 于点O ,∴∠AOP+∠AOF=90°,∴∠COP=∠AOF.又∵∠AOC=∠COB=90°,∴∠COP+∠COB=∠AOF+∠AOC,即∠BOP=∠COF.∵∠AOF=∠BOE,∴∠COP=∠BOE.∵OM 平分∠COE,∴∠COM=∠MOE,∴∠COP+∠COM=∠BOE+∠MOE,∴∠POM=12∠BOP,∴∠POM=12∠COF.故答案为:(1)∠POM=12∠COF,理由见解析;(2)∠POM=12∠COF,理由见解析. 点睛:本题考查垂线, 角平分线的定义,解题的关键是熟练掌握垂直的定义和角平分线的性质.。

2020春新人教版数学七下同步练习5.1.2 垂线 答案解析

2020春新人教版数学七下同步练习5.1.2  垂线 答案解析

2020春新人教版数学七下同步练习5.1.2 垂线答案解析一、填空题(共15小题)1.下面说法中错误的是()A.两条直线相交,有一个角是直角,则这两条直线互相垂直B.若两对顶角之和为1800,则两条直线互相垂直C.两条直线相交,所构成的四个角中,若有两个角相等,则两条直线互相垂直D.两条直线相交,所构成的四个角中,若有三个角相等,则两条直线互相垂直答案:C知识点:垂线对顶角邻补角解析:解答:垂线的概念是:当两条直线相交,有一个角是直角时,即两条直线互相平行.依据此概念,我们可以判断,选项A正确.选项B中,两对顶角之和为180°,则说明两对顶角均为90°,选项B也正确.在选项D中,两条直线相交,所构成的四个角中,若有三个角相等,根据对顶角的性质,说明四个角都相等,又因为四个角的度数和为360°,则说明四个角都是90°,选项D也正确.因为两条直线相交,形成两对对顶角,对顶角是相等的,但是不能说明该角一定是90°,所以选项C错误.分析:掌握相交线形成的对顶角知识,以及垂线的概念,就能轻松解答本题.本题考查垂线.2.如图所示,AB⊥CD,垂足为D,AC⊥BC,垂足为C,那么图中的直角一共有()A.2个B.3个C.4个D.1个答案:B知识点:垂线解析:解答:两条直线互相垂直,其所形成的夹角都是直角.根据题意,AB⊥CD,则∠ADC和∠BDC都是直角;同时,AC⊥BC,所以∠ACB也是直角.为此,图形中一共有3个直角.分析:掌握垂线的概念,就能轻松解答本题.本题考查垂线.3.如图所示,直线EO⊥CD,垂足为点O,AB平分∠EOD,则∠BOD的度数为()A.120° B.130° C.135° D.140°答案:C知识点:垂线 角平分线解析:解答:两条直线互相垂直,其所形成的夹角都是直角.根据题意,EO ⊥CD ,则∠EOD 和∠EOC 都是直角;又因为AB 平分∠EOD ,所以∠AOD 为45°.∠AOD 与∠COB 是对顶角,所以∠COB 也是45°.因为∠COB 与∠BOD 互补,所以∠BOD =180°-45°=135°.分析:掌握垂线的概念,以及角平分线和对顶角的性质,就能轻松解答本题.本题考查垂线.4.点P 为直线外一点,点A 、B 、C 为直线上三点,PA =4cm ,PB =5cm ,PC =2cm ,则点P 到直线的距离为( )A .4cmB .5cmC .小于2cmD .不大于2cm 答案:D知识点:点到直线的距离 垂线段最短解析:解答:点到直线的最短距离为过点作出的与已知直线的垂线段.在题干中,已知的最短距离为2cm ,则选项A 和选项B 都是不正确的.又因为题干中没有明确告诉PC 是否垂直于直线,当两线垂直时,则点P 到直线的距离为2cm ;若两直线不垂直,则点P 到直线的距离为小于2cm .所以,只能选D .分析:点到直线的最短距离为过点作出的与已知直线的垂线段,是解答本题的关键.本题考查点垂线段最短.l l l l l l5.如图所示,OA⊥OC,OB⊥OD,下面结论中,其中说法正确的是()①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD =∠BOC.A.①②③B.①②④C.①③④D.②③④答案:C知识点:垂线解析:解答:由题意可知,OA⊥OC,所以∠AOC=90°,即∠AOB+∠BOC=90°.同时,OB⊥OD,所以∠BOD=90°,即∠COD+∠BOC=90°.依次,可以判定∠AOB=∠COD,所以①正确.又因为不能推断出∠AOB与∠COD的具体角度,所以②不正确.∠AOD=∠AOB +∠BOC+∠COD,所以∠BOC+∠AOD=∠BOC+∠AOB+∠BOC+∠COD=90°+90°=180°.因为∠AOB=∠COD,所以∠AOC-∠COD=∠AOC-∠AOB=∠BOC,所以④正确.为此,选C.分析:在掌握两直线相互垂直,夹角为直角的基础上,学会角度转换,就能轻松找到正确答案.本题考查垂线.6.如图所示,直线AB⊥CD于点O,直线EF经过点O,若∠1=26°,则∠2的度数是( •).A.26° B.64° C.54° D.以上答案都不对答案:B知识点:垂线对顶角解析:解答:由题意可知,AB⊥CD于点O,所以∠BOC=∠AOD=90°,同时,∠1与∠DOF是对顶角,∠1=26°,所以∠DOF=26°.∠AOD=∠AOF+∠DOF,所以∠AOF=∠AOD-∠DOF=90°-26°=64°.所以选B.分析:在掌握两直线相互垂直,夹角为直角的基础上,学会角度转换,就能轻松找到正确答案.本题考查垂线.7.在下列语句中,正确的是().A.在平面上,一条直线只有一条垂线;B.过直线上一点的直线只有一条;C.过直线上一点且垂直于这条直线的直线有且只有一条;D.垂线段就是点到直线的距离答案:D知识点:垂线解析:解答:概念理解型题.垂直于一条直线的垂线有无数条,所以选项A错误.两点之间才只有一条直线,过一点的直线有无数条,所以选项B错误.选项C是最容易出现混淆的地方.在概念中,同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条;但是,在该选项中,没有注明同一平面,所以选项C错.点到直线的距离就是垂线段,所以选项D正确.分析:概念理解型题,在解答时要注意对概念的正确理解,尤其是像选项C这种属于特别容易混淆的题目.本题考查垂线.8.如图所示,∠BAC=90°,AD⊥BC于D,则下列结论中,正确的个数为().①AB⊥AC; ②AD与AC互相垂直; ③点C到AB的垂线段是线段AB; ④点D到BC的距离是线段AD的长度; ⑤线段AB的长度是点B到AC的距离; ⑥线段AB是点B到AC的距离;⑦AD>BD.A.2个 B.4个 C.7个 D.0个答案:B知识点:垂线点到直线的距离解析:解答:根据题意,∠BAC=90,所以AB⊥AC,①正确.AD⊥BC于D,所以AD与AC不垂直,②不正确.点到直线的距离为垂线段,所以点C到AB的垂线段是线段AB,③正确.点D到BC的距离应为过D点垂直于AC的垂线段,AD与AC不垂直,所以④错误.因为AB⊥AC,点B到AC的距离为AB,所以⑤⑥正确.AD与BD的具体长度无法推断,所以不能确定二者的大小关系,⑦错误.分析:概念理解型题,掌握垂直和点到直线的具体的概念,是解答本题的关键.本题考查垂线.9.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON 的度数为()A.35° B.45° C.55° D.65°答案:C知识点:垂线对顶角邻补角解析:解答:由射线OM平分∠AOC,∠AOM=35°,得出∠MOC=35°,由ON⊥OM,得出∠CON=∠MON﹣∠MOC得出答案.解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C.分析:本题主要考查了垂线和角平分线,解决本题的关键是找准角的关系.10.已知在正方形网格中,每个小方格都是边长为1的正方形,A和B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C•为顶点的三角形的面积为1个平方单位,则C点的个数为().A.3个 B.4个 C.5个 D.6个答案:B知识点:垂线解析:解答:已知每个小方格的边长为1,所以每个小方格的面积为1个平方单位.要使点C也在小方格的顶点上,且以A,B,C•为顶点的三角形的面积为1个平方单位,需要从两个方面来思考:一是以A为三角形的顶点,则A到BC是距离为1,BC的距离为2时才能使面积为1个平方单位,于是,这样的点有2个.同理,若以B为三角形的顶点,这样的点也同样有2个.所以,选B.分析:从点到直线的距离,以及三角形的面积计算方法入手,就能轻松解答.本题考查垂线.11.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是()A. B. C. D.答案:A知识点:垂线;平行线解析:解答:根据题意画出图形即可.故选:C.分析:此题主要考查了垂线,关键是掌握垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.12.下列语句正确的是()A.两条直线相交成四个角,如果有两个角相等,那么这两条直线互相垂直B.两条直线相交成四个角,如果有两对角相等,那么这两条直线互相垂直C.两条直线相交成四个角,如果有三个角相等,那么这两条直线互相垂直D.两条直线相交成四个角,如果有两个角互补,那么这两条直线互相垂直答案:C知识点:垂线解析:解答:概念理解型题.两条直线相交,其中有一个夹角是直角,说明这两条直线互相垂直.同时,两条直线相交,形成四个角,分为两对对顶角,对顶角是相等的.但是,两条直线垂直必须相交,两条直线相交未必垂直,所以,可以推断出选项A、选项B都错误.在选项D中,两条直线任意相交,都能满足有两个角互补,所以D错误.在选项C中,有三个角相等,可以推导出这四个角都相等,并且都是直角,所以选项C正确.分析:概念理解型题,掌握垂直的概念,是解答本题的关键.本题考查垂线.13.过线段外一点画这条线段的垂线,垂足一定在()A.线段上 B.线段的端点上C.线段的延长线上 D.以上情况都有可能答案:D知识点:垂线解析:解答:由于线段有两个端点,所线段的长度是固定的.由于点的位置不确定,所以过线段外一点画这条线段的垂线,垂足有可能在线段上、线段的端点上和线段的延长线上.这个知识点可以从三角形的高的画法上得到验证.所以,选D.分析:概念理解型题,掌握垂直的作法,是解答本题的关键.本题考查垂线.14.如图,直线AD⊥BD,垂足为D,则点B到线段AC的距离是()A.线段AC的长B.线段AD的长C.线段BC的长D.线段BD的长答案:D知识点:点到直线的距离解析:解答:点到直线的距离为垂线段,因为直线AD⊥BD,垂足为D,所以点B到线段AC的距离是线段BD的长,所以选D.分析:概念理解型题,掌握到直线的距离为垂线段,是解答本题的关键.本题考查点到直线的距离.15.如图,OM⊥NP,ON⊥NP,所以OM和ON重合,理由是()A.两点确定一条直线B.经过一点有且只有一条直线和已知直线垂直C.过一点只能作一条垂线D.垂线段最短答案:B知识点:垂线解析:解答:概念理解型题.经过一点有且只有一条直线与已知直线垂直.因为OM⊥NP,ON⊥NP,两条经过O点的直线都垂直于NP,所以选B.分析:概念理解型题,掌握经过一点有且只有一条直线与已知直线垂直,是解答本题的关键.本题考查垂线.二、填空题(共5小题)1.当两条直线相交所成的四个角中_________,叫做这两条直线互相垂直,其中的一条直线叫_________,它们的交点叫_________.答案:有一个直角另一条直线的垂线垂足知识点:垂线解析:解答:概念理解型题.两条直线相交,所形成的夹角中,有一个角为直角,说明这两条直线互相垂直.相互垂直的两条直线,其中一条直线叫另一条直线的垂线.两条直线互相垂直,它们的交点叫垂足.分析:概念理解型题,掌握垂线的概念,是解答本题的关键.本题考查垂线.2.过直线上或直线外一点,_________与已知直线垂直.答案:有且只有一条直线知识点:垂线解析:解答:概念理解型题.过直线外一点,有且只有一条直线与已知直线垂直.分析:概念理解型题,掌握垂线的概念,是解答本题的关键.本题考查垂线.3.如图所示,若AB⊥CD于O,则∠AOD=_______;若∠BOD=90°,则AB____CD.答案:90° ⊥知识点:垂线解答:概念理解型题.两条直线互相垂直,所形成的夹角为直角,也就是90°.如果两条直线相交,所形成的夹角中,有一个角为90°,则这两条直线互相垂直.分析:概念理解型题,掌握垂线的概念,是解答本题的关键.本题考查垂线.4.如图所示,已知AO⊥BC于O,那么∠1与∠2________.答案:互余知识点:垂线;余角解析:解答:概念理解型题.两条直线互相垂直,所形成的夹角为直角,也就是90°.因为AO⊥BC 于O,所以∠AOC=90°.因为∠1+∠2=∠AOC.所以,∠1与∠2互余.分析:概念理解型题,掌握垂线的概念,是解答本题的关键.本题考查垂线.5.如果CD⊥AB于D,自CD上任一点向AB作垂线,那么所画垂线均与CD重合,这是因为__________________________________.答案:在同一平面内,过一点有且只有一条直线与已知直线垂直知识点:垂线解答:概念理解型题.过直线外一点有且只有一条直线与已知直线垂直.因为CD⊥AB于D,所以自CD上任一点向AB作垂线,那么所画垂线均与CD重合.分析:概念理解型题,掌握垂线的概念,是解答本题的关键.本题考查垂线.三、解答题(共5小题)1.如图,已知A,O,E三点在一条直线上,OB平分∠AOC,∠AOB+∠DOE=90°,试问:∠COD与∠DOE之间有怎样的关系?说明理由.答案:相等理由:∠AOB+∠DOE=90°,且A、O、E三点共线,所以∠BOC+∠COD=90°.因为OB平分∠AOC,所以∠AOB=∠BOC,通过等量代换,可以得知∠COD与∠DOE 相等.知识点:垂线解析:解答:由题意可知,∠AOB+∠DOE=90°,且A、O、E三点共线,所以∠BOC+∠COD=90°.因为OB平分∠AOC,所以∠AOB=∠BOC,通过等量代换,可以得知∠COD与∠DOE 相等.分析:掌握相交线相关知识,是解答本题的关键.本题考查垂线.2.如图,∠1=30°,AB⊥CD,垂足为O,EF经过点O.求∠2、∠3的度数.答案:∠2=60°,∠3=30°知识点:垂线解析:解答:因为∠1与∠3是对顶角,所以∠1=∠3,因为∠1=30°,所以∠3=30°.因为AB⊥CD,所以∠BOD=90°,因为∠2+∠3=∠BOD,所以∠2=90°-∠3=60°.分析:掌握相交线相关知识,是解答本题的关键.本题考查垂线.3.如图,直线AB与CD相交于点O,OP是∠BOC的平分线,OE⊥AB,OF⊥CD,(1)图中除直角外,还有相等的角吗?请写出两对:①____________;②____________.(2)如果∠AOD=40°,则①∠BOC=_______;②OP是∠BOC的平分线,所以∠COP=______度;③求∠BOF的度数.答案:(1)∠AOD =∠BOC ∠BOP =∠COP(2)①40° ②20° ③50°知识点:垂线;相交线解析:解答:由题意可知,∠AOD 与∠BOC 是对顶角,所以二者相等.因为OP 是∠BOC 的角平分线,所以∠BOP =∠COP .由第一问得到的答案,)如果∠AOD =40°,所以∠BOC =40°.OP 是∠BOC 的平分线,所以∠COP =20°.因为OF ⊥CD ,所以∠COF =90°,所以∠BOF =90°-40°=50°.分析:掌握相交线相关知识,是解答本题的关键.本题考查垂线.4.如图,已知∠AOB , OE 平分∠AOC , OF 平分∠BOC.(1)若∠AOB 是直角,∠BOC =60°,求∠EOF 的度数;(2)猜想∠EOF 与∠AOB 的数量关系;(3)若∠AOB +∠EOF =156°,则∠EOF 是多少度?答案:(1)∠EOF =45°(2)∠EOF =21∠AOB FEO C BA(3)∠EOF =52°知识点:垂线解析:解答:(1)∵∠AOC =∠AOB +∠BOC ,∴∠AOC =90°+60°=150°.∵OE 平分∠AOC ,∴∠EOC =150°÷2=75°.∵OF 平分∠BOC ,∴∠COF =60°÷2=30°.∵∠EOC =∠EOF +∠COF,∴∠EOF =75°-30°=45°.(2)∵OE 平分∠AOC ,OF 平分∠BOC .∴∠COE =21∠AOC ,∠COF =21∠BOC ∵∠AOB =∠AOC -∠BOC ∴∠EOF =∠COE -∠COF =21∠AOC -21∠BOC =21(∠AOC -∠BOC )=21∠AOB (3)∵OE 平分∠AOC ,OF 平分∠BOC ,∴∠COE =21∠AOC ,∠COF =21∠BOC , ∴∠EOF =21∠AOC -21∠BOC =21(∠AOC -∠BOC )=21∠AOB .又∵∠AOB +∠EOF =156°,∴∠EOF =52°. 分析:此题难度较大,要通过角度转换.本题考查相交线所形成的角度.5.直线AB 、CD 相交于点O.(1)OE 、OF 分别是∠AOC 、∠BOD 的平分线.画出这个图形.(2)射线OE 、OF 在同一条直线上吗?(直接写出结论)(3)画∠AOD 的平分线OG .OE 与OG 有什么位置关系?并说明理由.答案:(1)如图中红线所示(2)射线OE 、OF 在同一条直线上(3)OE ⊥OG 理由:∵EF 平分∠AOC 和∠BOD ,并且∠AOC =∠BOD ,∴∠AOE =∠DOF .∵OG 平分∠AOD ,∴∠AOG =∠DOG .∵∠AOE +∠DOF +∠AOG +∠DOG =180°,∴∠DOF +∠DOG =180°÷2=90°,∴OE ⊥OG .知识点:垂线;角平分线解析:解答:(1)直接画图即可.(2)因为∠AOC 与∠BOD 是对顶角,所以两角的角平分线是在同一直线上.(3)∵EF 平分∠AOC 和∠BOD ,并且∠AOC =∠BOD ,∴∠AOE =∠DOF .∵OG 平分∠AOD ,∴∠AOG =∠DOG .∵∠AOE +∠DOF +∠AOG +∠DOG =180°,∴∠DOF +∠DOG =180°÷2=90°,∴OE ⊥OG .分析:此题掌握了角平分的性质是解题的关键.本题考查垂线和角平分线.E FD O BCA G。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时垂线段最短
关键问答
①将直线外一点与直线上各点连接,所得线段中最短的线段一定是什么线段?
②点到直线的距离是一个几何图形,还是一个正数?它与垂线段有什么区别?
1.①如图5-1-29,P是直线a外一点,PB⊥a,点A,B,C,D都在直线a上,下列线段中最短的是()
图5-1-29
A.P A B.PB
C.PC D.PD
2.②如图5-1-30,OA⊥AB于点A,点O到直线AB的距离是()
图5-1-30
A.线段OA B.线段OA的长度
C.线段OB的长度D.线段AB的长度
命题点1垂线段最短[热度:92%]
3.如图5-1-31,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做的依据是()
图5-1-31
A.两点之间线段最短B.点到直线的距离
C.两点确定一条直线D.垂线段最短
4.③如图5-1-32,在铁路旁有一村庄,现要建一火车站,为了使村庄里的人乘车最方便,请你在铁路线上选一点来建火车站,应建在()
图5-1-32
A.A点B.B点
C.C点D.D点
解题突破
③选一点建火车站可以转化为确定垂线段的垂足.
5.2018·秦皇岛月考如图5-1-33,已知A,B,C,D是某公园内的四个凉亭,图中的连线是甬道,且∠D=90°,∠BAC=90°,若AC=100米,则下列判断中不正确的是()
图5-1-33
A.甬道AD可能为100米B.甬道CD可能为60米
C.甬道AD可能为80米D.甬道BC可能为140米
6.④如图5-1-34,BD⊥AC于点D,DE⊥BC于点E.若DE=9,AB=12,不考虑点与点重合的情况,则线段BD的长度的取值范围是____________.
图5-1-34
解题突破
④BD的长既是点B到AC的距离,又是点D到直线BC上一点B的距离.
7.⑤如图5-1-35,码头、火车站分别位于A,B两点,直线a和b分别表示铁路与河流.
图5-1-35
(1)从火车站到码头怎样走最近?画图并说明理由;
(2)从码头到铁路怎样走最近?画图并说明理由;
(3)从火车站到河流怎样走最近?画图并说明理由.
方法点拨
⑤最短路线问题往往转化为点与点的距离或点到直线的距离问题.
命题点2点到直线的距离[热度:90%]
8.⑥如图5-1-36,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有()
图5-1-36
A.2条B.3条
C.4条D.5条
方法点拨
⑥直角三角形的直角边长能表示点到直线的距离.
9.⑦P为直线l外一点,A,B,C为直线l上三点,P A=5 cm,PB=3 cm,PC=4 cm,则点P到直线l的距离()
A.等于4 cm B.等于3 cm
C.小于3 cm D.不大于3 cm
模型建立
⑦点到直线的距离小于或等于点与直线上各点所连线段的长.
10.到直线l的距离等于2 cm的点有()
A.0个B.1个C.无数个D.无法确定
11.下列说法正确的是()
A.在同一平面内,过已知直线外一点作这条直线的垂线有且只有一条
B.连接直线外一点和直线上任一点,使这条线段垂直于已知直线
C.作出点P到直线的距离
D.连接直线外一点和直线上任一点的线段长是点到直线的距离
12.⑧如图5-1-37是李晓松同学在运动会跳远比赛中最好的一跳,M,P为双脚留下的痕迹,甲、乙、丙三名同学分别测得P A=5.52米,PB=5.37米,MA=5.60米,那么他的跳远成绩应该为________米.
图5-1-37
解题突破
⑧跳远成绩指的是两个脚印中,离踏板较近的脚的后脚跟到踏板所在直线的距离记录.
13.⑨如图5-1-38,关于如何量出点C到线段AB所在直线的距离,三名同学有不同的做法.
图5-1-38
甲同学:只要量出线段BC的长度即可;
乙同学:过点C无法向直线AB作垂线,所以无法量出点C到直线AB的距离;
丙同学:过点C作直线AB的垂线,垂线和直线AB不相交,所以不能量出点C到直线AB的距离.
你同意以上三名同学的做法吗?若不同意,请你写出正确的做法.
解题突破
⑨过点C作AB的垂线,垂足落在线段AB的延长线上.
14.⑩如图5-1-39,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.
图5-1-39
(1)不考虑其他因素,请你画图确定蓄水池点H的位置,使它到四个村庄的距离之和最小;
(2)计划把河水引入蓄水池H中,怎样开渠最短?画图并说明理由.
模型建立
⑩到四个点A,B,C,D的距离之和最小的点,是分别连接AD和BC所得的交点,可以用两点之间线段最短来解释.
15.一辆汽车在直线形的公路上由A向B行驶,点M,N分别是位于公路AB两侧的学校,如图5-1-40所示.
(1)汽车在公路上行驶时,会对两个学校的教学造成一定的影响,当汽车行驶到何处时,分别对两个学校的影响最大?并在图上标出来;
(2)当汽车从A向B行驶时,在哪一段路上对两个学校的影响都逐渐增大?在哪一段路上对M学校的影响逐渐减小,而对N学校的影响逐渐增大?
图5-1-40
典题讲评与答案详析
1.B 2.B
3.D[解析] 利用垂线段最短,可知AB是点A与直线CD上各点连接得到的线段中,长度最短的线段.
4.A
5.A
6.9<BD<12
[解析]B是直线AC外一点,BA,BD是点B与直线AC上两点连接得到的线段,根据垂线段最短,可得BD<AB.D是直线BC外一点,DE,DB是点D与直线BC上两点连接得到的线段,根据垂线段最短,可得DE<BD,所以9<BD<12.
7.解:如图所示.
(1)沿线段BA走,两点之间线段最短.
(2)沿线段AC走,垂线段最短.
(3)沿线段BD走,垂线段最短.
8.D[解析]AB的长表示点B到直线AC的距离,AC的长表示点C到直线AB的距离,AD的长表示点A到直线BC的距离,BD的长表示点B到直线AD的距离,CD的长表示点C到直线AD的距离.
9.D[解析] 由于P为直线l外一点,A,B,C为直线上三点,由垂线段最短,可得点P到直线l的距离应该小于或等于3 cm,即不大于3 cm.
10.C11.A
12.5.37
13.解:三名同学的做法都是错误的,所以不同意他们的做法.
正确做法:延长线段AB,过点C作CD⊥AB,交AB的延长线于点D,则线段CD的长就是点C到直线AB的距离.
14.解:(1)如图,因为两点之间线段最短,所以连接AD,BC,它们相交于点H,则点H为蓄水池的位置,它到四个村庄的距离之和最小.
(2)如图,过点H作HG⊥EF,垂足为G,沿GH开渠最短.理由:在连接直线外一点与直线上各点的所有线段中,垂线段最短.
15.解:(1)如图,
过点M作MC⊥AB于点C,过点N作ND⊥AB于点D.根据垂线段最短,知汽车在点C 处对M学校的影响最大,在点D处对N学校的影响最大.
(2)汽车由A向C行驶时,对两个学校的影响都逐渐增大;汽车由C向D行驶时,对M 学校的影响逐渐减小,而对N学校的影响逐渐增大.
【关键问答】
①垂线段.
②是一个正数.区别:“垂线段”是一条线段,它是一个图形;“点到直线的距离”是指垂线段的长度,它是一个数量.。

相关文档
最新文档