航空电气概论飞机电源系统概述.28页PPT
合集下载
第章B7飞机电源系统

PDP 2。
编辑版pppt
37
BPCU和GCU功能
BPCU和GCU控制并保护电源系统。 GCU控制并监控电源质量。GCU控制GCB的通断 GCU和BPCU可相互联系。 BPCU与GCU一起控制BTB的位置。 BPCU控制卸载继电器(主汇流条和厨房汇流条)
起动变换组件(SCU)控制APU发电机的电压, AGCU与SCU一起保持APU发电机电源良好。 AGCU监控电源的质量。APU电源质量不好会使 AGCU断开APB。
编辑版pppt
30
IDG输出电源控制
GCU从下列三个地方监控IDG输出电源的质量: ① 在IDG中线侧的电流互感器(NCT),在发电机
和接地之间;
② 差动保护电流互感器(DPCT),在发电机和 GCB之间的馈线上;
③ 在发电机到AVR的反馈线路上,在GCB之前 (POR)。
相位超前接头 三相交流反馈导线和地线安装在这一接头上。
29
IDG电气接头功能
电气接头A: ⑴ 将中线电流互感器(NCT)信号发送给GCU; ⑵ 从IDG脱开电门(P5)断开电磁线圈电源; ⑶ 将PMG输出的交流电提供给GCU。 电气接头B: ⑴ 来自于GCU的交流励磁机磁场直流电源输入; ⑵ 将IDG的滑油压力信号传送给P5面板上的
“DRIVE”灯。
DRIVE、XFR BUS OFF、SOURCE OFF、 GEN OFF BUS
编辑版pppt
42
GCU的输入/输出信号
编辑版pppt
43
GCB的控制逻辑(1)
GCB-人工闭合条件——“与”逻辑 ⑴ 控制电门1瞬时到ON位 ⑵ 防火电门在正常位 ⑶ 电源质量OK ⑷ GCU有来自显示电子组件(DEU)的准备加载
编辑版pppt
编辑版pppt
37
BPCU和GCU功能
BPCU和GCU控制并保护电源系统。 GCU控制并监控电源质量。GCU控制GCB的通断 GCU和BPCU可相互联系。 BPCU与GCU一起控制BTB的位置。 BPCU控制卸载继电器(主汇流条和厨房汇流条)
起动变换组件(SCU)控制APU发电机的电压, AGCU与SCU一起保持APU发电机电源良好。 AGCU监控电源的质量。APU电源质量不好会使 AGCU断开APB。
编辑版pppt
30
IDG输出电源控制
GCU从下列三个地方监控IDG输出电源的质量: ① 在IDG中线侧的电流互感器(NCT),在发电机
和接地之间;
② 差动保护电流互感器(DPCT),在发电机和 GCB之间的馈线上;
③ 在发电机到AVR的反馈线路上,在GCB之前 (POR)。
相位超前接头 三相交流反馈导线和地线安装在这一接头上。
29
IDG电气接头功能
电气接头A: ⑴ 将中线电流互感器(NCT)信号发送给GCU; ⑵ 从IDG脱开电门(P5)断开电磁线圈电源; ⑶ 将PMG输出的交流电提供给GCU。 电气接头B: ⑴ 来自于GCU的交流励磁机磁场直流电源输入; ⑵ 将IDG的滑油压力信号传送给P5面板上的
“DRIVE”灯。
DRIVE、XFR BUS OFF、SOURCE OFF、 GEN OFF BUS
编辑版pppt
42
GCU的输入/输出信号
编辑版pppt
43
GCB的控制逻辑(1)
GCB-人工闭合条件——“与”逻辑 ⑴ 控制电门1瞬时到ON位 ⑵ 防火电门在正常位 ⑶ 电源质量OK ⑷ GCU有来自显示电子组件(DEU)的准备加载
编辑版pppt
第四章飞机交流电源系统课件

5
二、飞机交流电源系统供电方式的分类
(一)并联供电 将多台频率相同的交流发电机并联起来,同时向机上所有汇流条 供电,称为并联供电。优点是发电机利用率高,系统工作可靠。 (二)单独供电 在正常状态时,每台发电机单独向各自的汇流条供电,只在故障 时实行转换,这种方式称为单独供电。
6
三、交流电网供电馈线的连接方式
2
二、交流电源系统的主要优缺点
(一)为什么要用交流电源作为主电源 1、电源容量的增加,要求提高电压以减轻重量 2、飞机电源工作环境条件的变化,迫使采用交流电源。 3、电压和功率变换的要求
3
(二)交流电源系统的主要优缺点
1、主要优点: 1 交流发电机工作可靠性大大提高。 2 电源电压的提高,使交流发电机和电网设备重量大大减轻。 3 交流电能易于变换,即易于变压和整流。 2、主要缺点: 1 恒速传动装置结构复杂,造价高、故障多,维护困难。 2 交流电源系统的控制保护设备比较复杂,特别是并联运行 时的控制保护更为复杂。
波形如图4-43的曲线1所示,经电容C1滤波后,电压波形将平滑一 些,接近于三角形波,如图中曲线2所示。
正好保持发电机转速为额定值所需要的输入轴转速 称为制动点
转速。可由(4-6)令
而求得:
输入转速等于制动点转速下的工作方式称为零差动工作方式。 2、恒装输入轴转速低于制动点转速时 在这种情况下,单靠机械传动,发电机的转速低于额定转速,为了 保持发电机恒速,必须由液压马达的转动补偿。 正差动工作方式 3、恒装输入轴转速高于制动点转速时 此时,单靠机械传动,发电机转速将高于额定转速,液压马达输出 齿轮反时针方向转动。
15
第四节飞机交流发电机的结构形式和励磁方式
一、励磁的形式: 1、有刷励磁——他励式、自励式 2、无刷励磁——他励式、自励式
二、飞机交流电源系统供电方式的分类
(一)并联供电 将多台频率相同的交流发电机并联起来,同时向机上所有汇流条 供电,称为并联供电。优点是发电机利用率高,系统工作可靠。 (二)单独供电 在正常状态时,每台发电机单独向各自的汇流条供电,只在故障 时实行转换,这种方式称为单独供电。
6
三、交流电网供电馈线的连接方式
2
二、交流电源系统的主要优缺点
(一)为什么要用交流电源作为主电源 1、电源容量的增加,要求提高电压以减轻重量 2、飞机电源工作环境条件的变化,迫使采用交流电源。 3、电压和功率变换的要求
3
(二)交流电源系统的主要优缺点
1、主要优点: 1 交流发电机工作可靠性大大提高。 2 电源电压的提高,使交流发电机和电网设备重量大大减轻。 3 交流电能易于变换,即易于变压和整流。 2、主要缺点: 1 恒速传动装置结构复杂,造价高、故障多,维护困难。 2 交流电源系统的控制保护设备比较复杂,特别是并联运行 时的控制保护更为复杂。
波形如图4-43的曲线1所示,经电容C1滤波后,电压波形将平滑一 些,接近于三角形波,如图中曲线2所示。
正好保持发电机转速为额定值所需要的输入轴转速 称为制动点
转速。可由(4-6)令
而求得:
输入转速等于制动点转速下的工作方式称为零差动工作方式。 2、恒装输入轴转速低于制动点转速时 在这种情况下,单靠机械传动,发电机的转速低于额定转速,为了 保持发电机恒速,必须由液压马达的转动补偿。 正差动工作方式 3、恒装输入轴转速高于制动点转速时 此时,单靠机械传动,发电机转速将高于额定转速,液压马达输出 齿轮反时针方向转动。
15
第四节飞机交流发电机的结构形式和励磁方式
一、励磁的形式: 1、有刷励磁——他励式、自励式 2、无刷励磁——他励式、自励式
《飞机电气设备》课件

根据故障定位结果,采取相应的措施排除故障,使设备恢复正常工作状态。
01
故障识别
通过观察、听诊、触诊等方式识别电气设备的故障。
02
故障定位
利用专业工具和仪器对故障进行定位,确定故障的具体位置。
飞机电气设备的安装与调试
确保电气设备符合相关标准和规范,如国际电工委员会(IEC)标准和航空行业标准。
电气设备应安装在指定的位置,并确保其稳定性和可靠性。
飞机电气设备的维护与检修
清洁保养
定期对电气设备进行清洁,防止灰尘和污垢影响设备性能。
日常检查
每日对飞机电气设备进行检查,确保设备工作正常,无异常声音或气味。
紧固件检查
检查并紧固电气设备的接线和连接器,确保其牢固可靠。
定期检查
按照规定的周期对电气设备进行检查,包括功能测试、性能检测等。
03
故障排除
定期检查
按照制造商的推荐,对飞机电气设备进行适当的维护保养,如清洁、润滑和更换磨损部件。
维护保养
根据技术发展和飞行安全需要,对飞机电气设备进行更新改造,提高设备的可靠性和安全性。
更新改造
1
2
3
在设计阶段,应充分考虑各种工作条件和环境因素,采用高可靠性设计,减少故障发生的可能性。
采用高可靠性设计
选用经过严格筛选和测试的高质量元器件,确保设备在正常工作条件下能够长期稳定运行。
详细描述
飞机电气设备在飞机系统中扮演着至关重要的角色。首先,它们为机载电子设备、照明、加热、冷却等提供能源,确保飞机正常运转。其次,飞机电气设备还负责控制和调节各种用电设备的运行状态,如发动机控制、导航控制、通信设备等。此外,在紧急情况下,飞机电气设飞机电气设备的性能和可靠性直接影响到飞机的安全和性能。
01
故障识别
通过观察、听诊、触诊等方式识别电气设备的故障。
02
故障定位
利用专业工具和仪器对故障进行定位,确定故障的具体位置。
飞机电气设备的安装与调试
确保电气设备符合相关标准和规范,如国际电工委员会(IEC)标准和航空行业标准。
电气设备应安装在指定的位置,并确保其稳定性和可靠性。
飞机电气设备的维护与检修
清洁保养
定期对电气设备进行清洁,防止灰尘和污垢影响设备性能。
日常检查
每日对飞机电气设备进行检查,确保设备工作正常,无异常声音或气味。
紧固件检查
检查并紧固电气设备的接线和连接器,确保其牢固可靠。
定期检查
按照规定的周期对电气设备进行检查,包括功能测试、性能检测等。
03
故障排除
定期检查
按照制造商的推荐,对飞机电气设备进行适当的维护保养,如清洁、润滑和更换磨损部件。
维护保养
根据技术发展和飞行安全需要,对飞机电气设备进行更新改造,提高设备的可靠性和安全性。
更新改造
1
2
3
在设计阶段,应充分考虑各种工作条件和环境因素,采用高可靠性设计,减少故障发生的可能性。
采用高可靠性设计
选用经过严格筛选和测试的高质量元器件,确保设备在正常工作条件下能够长期稳定运行。
详细描述
飞机电气设备在飞机系统中扮演着至关重要的角色。首先,它们为机载电子设备、照明、加热、冷却等提供能源,确保飞机正常运转。其次,飞机电气设备还负责控制和调节各种用电设备的运行状态,如发动机控制、导航控制、通信设备等。此外,在紧急情况下,飞机电气设飞机电气设备的性能和可靠性直接影响到飞机的安全和性能。
飞机电气系统PPT全套课件

➢ 定子 ➢ 转子 ➢ 电刷装置
59
直流发电机
60
直流发电机
电容器
引线组件
接线柱 火花抑制盒 接线盖
夹子
带窗孔 的带 与驱动端相 对的端架
夹板
密封滚珠轴承
转轴和 板组件 转轴花键 轴承支承架
端盖 挡盖
滚珠轴承
电刷
电枢
磁轭和 激磁线圈
61
直流发电机
➢ 标称电压为30V(对应的电网 电压一般为28V)
➢特点:既有遥控式的特点,又简化了控制 线。
19
正常和非正常供电
➢ 正常供电 :
在各个飞行 阶段均可完 成对用电设 备的供电任 务
➢ 非正常供电:
系统的短时意 外失控状态
20
主电源容量
➢ 飞机上主发电系统的台数与单 台发电系统额定容量的乘积
➢ 直流电源容量单位为千瓦(kW) ➢ 交流电源为千伏安(kVA)
电阻较小,一般为百分之几 到千分之几欧姆。 3.端电压 充电 U=E+IR 放电 U=E-IR
44
铅蓄电池放电曲线
极板附近及 孔隙中的电 解液浓度迅
速下降
A
2.0
B
U
1.5
E
F
C D
极板孔隙中的 硫酸浓度与极 板外的浓度达
到一定值
1.0
孔隙内硫酸
0.5
迅速下降
扩散 作用
极板 硬化
0 1 2 3 4 5 6 7 8 9 10 11
t(h)
45
铅蓄电池充电曲线
2.6
2.4 b
2.2 a
2.0
1.8
de U
c
E
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
59
直流发电机
60
直流发电机
电容器
引线组件
接线柱 火花抑制盒 接线盖
夹子
带窗孔 的带 与驱动端相 对的端架
夹板
密封滚珠轴承
转轴和 板组件 转轴花键 轴承支承架
端盖 挡盖
滚珠轴承
电刷
电枢
磁轭和 激磁线圈
61
直流发电机
➢ 标称电压为30V(对应的电网 电压一般为28V)
➢特点:既有遥控式的特点,又简化了控制 线。
19
正常和非正常供电
➢ 正常供电 :
在各个飞行 阶段均可完 成对用电设 备的供电任 务
➢ 非正常供电:
系统的短时意 外失控状态
20
主电源容量
➢ 飞机上主发电系统的台数与单 台发电系统额定容量的乘积
➢ 直流电源容量单位为千瓦(kW) ➢ 交流电源为千伏安(kVA)
电阻较小,一般为百分之几 到千分之几欧姆。 3.端电压 充电 U=E+IR 放电 U=E-IR
44
铅蓄电池放电曲线
极板附近及 孔隙中的电 解液浓度迅
速下降
A
2.0
B
U
1.5
E
F
C D
极板孔隙中的 硫酸浓度与极 板外的浓度达
到一定值
1.0
孔隙内硫酸
0.5
迅速下降
扩散 作用
极板 硬化
0 1 2 3 4 5 6 7 8 9 10 11
t(h)
45
铅蓄电池充电曲线
2.6
2.4 b
2.2 a
2.0
1.8
de U
c
E
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
直升机结构与系统--电源系统 ppt课件

《直升机结构与系统》 第八章 电源系统
碱性蓄电池的原理
➢ 当蓄电池和负载接 通以后,电池开始 放电,电子从负极 板流向正极板。如 图8-4 所示。【注: 过程详见教材描述】
充电状态的判别
➢ 电池放电时,只能 放到放电终止电压 1V(单体),否则 将影响电池的容量 和寿命。
➢ 充电时(指电瓶离 位充电),为保证 飞行安全,电池必 须充足,但也不能 长时间过充。
✓ 其缺点是:
①冲击电流大。当电瓶完全放电以后,电压很低,而充电电压保持不变,这时冲击电流很大。如一 个40Ah 的电瓶,冲击电流可能达到400A,随着电瓶电压的上升,充电电流逐步减小; ②由于各单元电池的内阻、极板、电解液不能完全一样,恒压充电时,每个单元电池分配的电压不 相等,容易造成单元电池充电不平衡,有些单元过充,有些单元充不足; ③当充电设备的电压设定过高或过低时,容易造成电瓶过充或充电不足。对碱性电瓶容易造成“热 击穿”(Thermal Runaway)和“容量失效”(Capacity Fading)。
✓ 另外,蓄电池还装有温度保护开关,当蓄电池温度超过130oF(54.44℃)时切断蓄电 池的充电电源。
➢ 由于碱性电瓶在低温充放电时,如充电电压不变,会引起充电不足或放电容量下降。某电 池上装有低温敏感开关和加热装置,当温度低于30 oF(-2℃)时,接通加热电路,当温度 达40 oF(5℃)时断开。
➢ 恒压充电是指在充电过程中,充电电压恒定不变,同时,瓶电压。充电设备的输出电压应高于 电瓶电压。 ✓ 这种充电方式的优点是:
①在充电设备能提供足够充电电流的情况下(大于10C),充电速度快。在开始充电的30min 内, 就可以将完全放电的电瓶充到90%的容量; ②充电设备简单; ③电解液的水分损失比较小。
飞机电源系统课件

。
电源控制板
控制电源的参数,使电 源系统适应不同的飞行
状态和用电需求。
电源保护装置
保护电源系统免受故障 影响,防止因故障导致 电源系统损坏或飞机安
全事故。
03
CHAPTER
飞机电源系统的特性与性能 指标
电源系统的特性
独立性
高效性
飞机电源系统应具备独立性,即使在飞机 其他系统出现故障的情况下,仍能保持正 常供电。
通过调节励磁电流或转子电流,控制输出电 压和频率。
配电系统工作原理
根据用电设备的需要,将电能进行合理的分 配。
电源保护装置工作原理
通过检测电流、电压等参数,在出现故障时 切断电源或报警。
电源系统的关键部件
发电机
作为电源系统的核心部 件,其性能直接影响整
个电源系统的性能。
配电系统
负责合理分配电能,保 证用电设备的正常运行
A 输出电压和频率
电源系统的输出电压和频率应符合 国际标准,以保证与飞机上其他设
备的兼容性。
B
C
D
启动性能
电源系统应能在各种极端条件下快速启动 ,并保持稳定运行。
能源效率
电源系统的能源效率是衡量其性能的重要 指标,高效率的电源系统可以降低能源消 耗和减少对环境的影响。
电源系统的安全与可靠性
过载保护
电源系统应具备过载保护功能,当输出电流超过允许值时 ,能够自动切断电源或降低输出功率。
短路保护
当电源系统发生短路时,应能迅速切断电源或降低输出电 压,以防止设备损坏和火灾事故。
接地保护
为了防止触电事故,电源系统应采用接地保护措施,确保 设备外壳与大地相连。
故障诊断与处理
电源系统应具备故障诊断与处理功能,当发生故障时,能 够自动检测、定位和隔离故障,并采取相应的措施,如切 换到备用电源或发出警报提示。
电源控制板
控制电源的参数,使电 源系统适应不同的飞行
状态和用电需求。
电源保护装置
保护电源系统免受故障 影响,防止因故障导致 电源系统损坏或飞机安
全事故。
03
CHAPTER
飞机电源系统的特性与性能 指标
电源系统的特性
独立性
高效性
飞机电源系统应具备独立性,即使在飞机 其他系统出现故障的情况下,仍能保持正 常供电。
通过调节励磁电流或转子电流,控制输出电 压和频率。
配电系统工作原理
根据用电设备的需要,将电能进行合理的分 配。
电源保护装置工作原理
通过检测电流、电压等参数,在出现故障时 切断电源或报警。
电源系统的关键部件
发电机
作为电源系统的核心部 件,其性能直接影响整
个电源系统的性能。
配电系统
负责合理分配电能,保 证用电设备的正常运行
A 输出电压和频率
电源系统的输出电压和频率应符合 国际标准,以保证与飞机上其他设
备的兼容性。
B
C
D
启动性能
电源系统应能在各种极端条件下快速启动 ,并保持稳定运行。
能源效率
电源系统的能源效率是衡量其性能的重要 指标,高效率的电源系统可以降低能源消 耗和减少对环境的影响。
电源系统的安全与可靠性
过载保护
电源系统应具备过载保护功能,当输出电流超过允许值时 ,能够自动切断电源或降低输出功率。
短路保护
当电源系统发生短路时,应能迅速切断电源或降低输出电 压,以防止设备损坏和火灾事故。
接地保护
为了防止触电事故,电源系统应采用接地保护措施,确保 设备外壳与大地相连。
故障诊断与处理
电源系统应具备故障诊断与处理功能,当发生故障时,能 够自动检测、定位和隔离故障,并采取相应的措施,如切 换到备用电源或发出警报提示。
《飞机电源系统》课件

早期飞机电源系统
采用简单的直流发电机作为电源,功率小、可靠性差 。
现代飞机电源系统
采用大功率的交流发电机和先进的控制技术,具有更 高的可靠性和效率。
未来飞机电源系统
将采用更加先进的电源技术和能源,如燃料电池、太 阳能等,以实现更加环保和高效的电能供应。
02 飞机电源系统的 组成
电源装置
总结词
电源装置是飞机电源系统的核心组成部分,负责产生和提供 电能。
可靠性试验
进行各种环境下的可靠性试验,验证电源系 统的可靠性。
预防性维护策略
制定有效的预防性维护策略,降低电源系统 故障率,提高其可靠性。
04 飞机电源系统的 维护与保养
日常维护与保养
每日检查
检查电源系统各部件是否正常工作,如发现异常 应及时处理。
清洁保养
定期清洁电源系统表面,保持其清洁干燥,防止 灰尘和污垢影响正常工作。
1 2
可再生能源利用
利用太阳能、风能等可再生能源为飞机供电,减 少对化石燃料的依赖,降低碳排放。
高效储能技术
研发高性能的储能电池和超级电容器,提高能源 储存和释放效率,满足飞机短时高功率需求。
3
能源回收与再利用
利用先进的能量回收技术,将飞机滑行、制动等 过程中的能量回收并再利用于电源系统,提高能 源利用效率。
电源的特性
高电压特性
飞机电源系统通常需要提供高 电压以驱动各种电子设备。
大电流特性
由于飞机上设备众多,需要大 电流来满足设备的用电需求。
稳定性
电源必须稳定,以确保飞机上 电子设备的正常运行。
高效性
为了减少能源消耗和减轻重量 ,飞机电源系统需要高效工作
。
对电源系统的要求
安全性
采用简单的直流发电机作为电源,功率小、可靠性差 。
现代飞机电源系统
采用大功率的交流发电机和先进的控制技术,具有更 高的可靠性和效率。
未来飞机电源系统
将采用更加先进的电源技术和能源,如燃料电池、太 阳能等,以实现更加环保和高效的电能供应。
02 飞机电源系统的 组成
电源装置
总结词
电源装置是飞机电源系统的核心组成部分,负责产生和提供 电能。
可靠性试验
进行各种环境下的可靠性试验,验证电源系 统的可靠性。
预防性维护策略
制定有效的预防性维护策略,降低电源系统 故障率,提高其可靠性。
04 飞机电源系统的 维护与保养
日常维护与保养
每日检查
检查电源系统各部件是否正常工作,如发现异常 应及时处理。
清洁保养
定期清洁电源系统表面,保持其清洁干燥,防止 灰尘和污垢影响正常工作。
1 2
可再生能源利用
利用太阳能、风能等可再生能源为飞机供电,减 少对化石燃料的依赖,降低碳排放。
高效储能技术
研发高性能的储能电池和超级电容器,提高能源 储存和释放效率,满足飞机短时高功率需求。
3
能源回收与再利用
利用先进的能量回收技术,将飞机滑行、制动等 过程中的能量回收并再利用于电源系统,提高能 源利用效率。
电源的特性
高电压特性
飞机电源系统通常需要提供高 电压以驱动各种电子设备。
大电流特性
由于飞机上设备众多,需要大 电流来满足设备的用电需求。
稳定性
电源必须稳定,以确保飞机上 电子设备的正常运行。
高效性
为了减少能源消耗和减轻重量 ,飞机电源系统需要高效工作
。
对电源系统的要求
安全性
飞机电气系统电子绪论课件

飞机电气系统电子绪论课件
目录
• 绪论 • 飞机电气系统的组成 • 飞机电气系统的特性与要求 • 飞机电气系统的维护与检修 • 飞机电气系统的未来发展
01
绪论
飞机电气系统概述
1
飞机电气系统是飞机的重要组成部分,负责提供 电力和控制系统,支持飞机的正常运作。
2
飞机电气系统包括发电机、电动机、控制装置、 电源分配系统等,这些组件协同工作,确保飞机 的安全和有效运行。
负载特性变化
不同负载在飞机运行过程 中可能需要不同的电压和 电流,系统需具备调节能 力。
负载保护要求
为防止过载或短路等异常 情况,电气系统需配备相 应的保护措施。
电源的特性与要求
电源稳定性和可靠性
飞机电气系统需要提供稳定、可靠的电源,确保各负载的正常运 行。
电源转换能力
系统应具备将发电机或外部电源的电能转换为适合负载需求的电能 的能力。
3
飞机电气系统的设计、制造和维护需要遵循严格 的标准和规范,以确保其可靠性和安全性。
飞机电气系统的重要性
飞机电气系统是飞机安全运行的基础 ,为飞机上的各种设备和系统提供电 力支持。
飞机电气系统的正常运行对于保证乘 客和机组人员的安全具有重要意义。
飞机电气系统对于飞机的导航、通信 、控制和生命保障等关键功能至关重 要。
清洁与除尘
定期清洁电气系统部件, 去除灰尘和污垢,以防止 发生故障。
紧固与润滑
对电气系统中的螺丝、螺 栓等进行紧固,对活动部 件进行润滑,确保系统稳 定运行。
飞机电气系统的定期检修
全面检查
对电气系统进行全面检查,包括电线、电缆、插 头、继电器等部件。
更换磨损部件
对磨损严重的部件进行更换,如电刷、轴承等。
目录
• 绪论 • 飞机电气系统的组成 • 飞机电气系统的特性与要求 • 飞机电气系统的维护与检修 • 飞机电气系统的未来发展
01
绪论
飞机电气系统概述
1
飞机电气系统是飞机的重要组成部分,负责提供 电力和控制系统,支持飞机的正常运作。
2
飞机电气系统包括发电机、电动机、控制装置、 电源分配系统等,这些组件协同工作,确保飞机 的安全和有效运行。
负载特性变化
不同负载在飞机运行过程 中可能需要不同的电压和 电流,系统需具备调节能 力。
负载保护要求
为防止过载或短路等异常 情况,电气系统需配备相 应的保护措施。
电源的特性与要求
电源稳定性和可靠性
飞机电气系统需要提供稳定、可靠的电源,确保各负载的正常运 行。
电源转换能力
系统应具备将发电机或外部电源的电能转换为适合负载需求的电能 的能力。
3
飞机电气系统的设计、制造和维护需要遵循严格 的标准和规范,以确保其可靠性和安全性。
飞机电气系统的重要性
飞机电气系统是飞机安全运行的基础 ,为飞机上的各种设备和系统提供电 力支持。
飞机电气系统的正常运行对于保证乘 客和机组人员的安全具有重要意义。
飞机电气系统对于飞机的导航、通信 、控制和生命保障等关键功能至关重 要。
清洁与除尘
定期清洁电气系统部件, 去除灰尘和污垢,以防止 发生故障。
紧固与润滑
对电气系统中的螺丝、螺 栓等进行紧固,对活动部 件进行润滑,确保系统稳 定运行。
飞机电气系统的定期检修
全面检查
对电气系统进行全面检查,包括电线、电缆、插 头、继电器等部件。
更换磨损部件
对磨损严重的部件进行更换,如电刷、轴承等。