概率论与数理统计作业 2讲解

概率论与数理统计作业 2讲解
概率论与数理统计作业 2讲解

第一章随机事件与概率

1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。

解:{}反正正、正反、反正、反=Ω

{}正正、正反

=A ,{}正正=B ,{}正正、正反、反正=C 2.设3

1)(=A P ,2

1)(=B P ,试就以下三种情况分别求)(A B P :

(1)AB =?,(2)B A ?,(3)81)(=AB P

解:

(1)5.0)()()()()(==-=-=B P AB P B P AB B P A B P

(2)6/13/15.0)()()()()()(=-=-=-=-=A P B P AB P B P AB B P A B P (3)375.0125.05.0)()()()(=-=-=-=AB P B P AB B P A B P

3.某人忘记了电话号码的最后一个数字,因而随机的拨号,求他拨号不超过三次而接通所需的电话的概率是多少?如果已知最后一个数字是奇数,那么此概率是多少?

解: 记H 表拨号不超过三次而能接通。 Ai 表第i 次拨号能接通。

注意:第一次拨号不通,第二拨号就不再拨这个号码。

10

3

819810*********)

|()|()()|()()()(2131211211321211=??+?+=

++=∴

++=A A A P A A P A P A A P A P A P H P A A A A A A H 三种情况互斥

如果已知最后一个数字是奇数(记为事件B )问题变为在B 已发生的条件下,求H 再发生的概率。

)|||)|(321211B A A A B A A B PA B H P ++=

)|()|()|()|()|()|(2131211211A A B A P A B A P B A P A B A P B A P B A P ++= 53

314354415451=??+?+=

4.进行一系列独立试验,每次试验成功的概率均为错误!未找到引用源。,试求以下事件的概率: (1)直到第r 次才成功;

(2)在n 次中取得)1(n r r ≤≤次成功;

解: (1)p p P r 1)1(--= (2)r n r r n p p C P --=)1(

5. 设事件A ,B 的概率都大于零,说明以下四种叙述分别属于那一种:(a )必然对,(b )必然错,(c )可能对也可能错,并说明理由。

(1)若A ,B 互不相容,则它们相互独立。 (2)若A 与B 相互独立,则它们互不相容。 (3)()()0.6P A P B ==,则A 与B 互不相容。 (4)()()0.6P A P B ==,则A 与B 相互独立。 解: (1)b, 互斥事件,一定不是独立事件 (2)c, 独立事件不一定是互斥事件,

(3)b, )()()()(AB P B P A P B A P -+=+ 若A 与B 互不相容,则0)(=AB P , 而12.1)()()()(>=-+=+AB P B P A P B A P

(4)a, 若A 与B 相互独立,则)()()(B P A P AB P =, 这时84.036.02.1)()()()(=-=-+=+AB P B P A P B A P

6. 有甲、乙两个盒子,甲盒中放有3个白球,2个红球;乙盒中放有4个白球,4个红球,现从甲盒中随机地取一个球放到乙盒中,再从乙盒中取出一球,试求:

(1)从乙盒中取出的球是白球的概率;

(2)若已知从乙盒中取出的球是白球,则从甲盒中取出的球是白球的概率。

解: (1)记A 1,A 2分别表“从甲袋中取得白球,红球放入乙袋”

再记B 表“再从乙袋中取得白球”。 ∵ B =A 1B +A 2B 且A 1,A 2互斥

P (B )=P (A 1)P (B | A 1)+ P (A 2)P (B | A 2) =

1

444

23214414233++?+++++?+= (2)

7.思考题:讨论对立、互斥(互不相容)和独立性之间的关系。 解:独立事件不是对立事件,也不一定是互斥事件;对立事件是互斥事件,不能是独立事件;互斥事件一般不是对立事件,一定不是独立事件.

第二章随机变量及其概率分布

1.设X 的概率分布列为:

F(x)为其分布的函数,则F (2)=?

解: 3.0}2{}1{}0{}2{)2(==+=+==≤=X P X P X P X P F 2.设随机变量X 的概率密度为

f (x )=??

???≤>,

1,0;1,

2

x x x c

则常数c 等于?

解:由于1122===??+∞+∞

∞-c dx x

c dx x c

,故1=c

3.一办公室内有5台计算机,调查表明在任一时刻每台计算机被使用的概率为0.6,计算机是否被使用相互独立,问在同一时刻 (1) 恰有2台计算机被使用的概率是多少? (2) 至少有3台计算机被使用的概率是多少? (3) 至多有3台计算机被使用的概率是多少? (4) 至少有1台计算机被使用的概率是多少? 解: (1)230

4.04.06.0}2{3225===C X P

(2)66304.06.04.06.01}5{}4{1}3{5445=--==-=-=≥C X P X P X P

(3)233

532254154.06.04.06.04.06.0}3{}2{}1{}3{C C C X P X P X P X P ++?==+=+==≤

=0.0768+0.2304+0.1728=0.48 (4)98976.04.01}0{1}1{5=-==-=≥X P X P

4.设随机变量K 在区间 (0, 5) 上服从均匀分布, 求方程 42x + 4Kx + K + 2 = 0 有实根的概率。

解: 由0321616)2(441622≥--=+??-=?k k k k 可得:2,1≥-≤k k 所以5

2

}2{=≥K P

5.假设打一次电话所用时间(单位:分)X 服从2.0=α的指数分布,如某人正好在你前面走进电话亭,试求你等待:(1)超过10分钟的概率;(2)10分钟 到20分钟的概率。

解:0,2.0)(~2.0>=-x e x f X x

2210

02.0112.01}10{1}10{---=+-=-=≤-=>?e e dx e X P X P x

4220

10

2.02.0}2010{----==≤≤?e e dx e X P x

6. 随机变量X ~N (3, 4), (1) 求 P(22),P(X>3);(2)确定c ,使得 P(X>c) = P(X

3

2()235(

}52{Φ+-Φ=-Φ-Φ=-Φ--Φ=≤

3

4()2310(}104{=-Φ=-Φ-Φ=--Φ--Φ=≤<-X P

)5.2()5.0(1)2

3

2()232(1}2{1}2{-Φ+-Φ-=--Φ+-Φ-=≤-=>X P X P

=6977.06915.09938.01)5.2(1))5.0(1(1=+-=Φ-+Φ--

5.05.01)23

3(

1}3{1}3{=-=-Φ-=≤-=>X P X P )2

3

(}{)23(1}{1}{-Φ=<=-Φ-=≤-=>c c X P c c X P c X P

所以 5.0)2

3

(

=-Φc 故 3=c 7.设随机变量X 与Y 相互独立,且X ,Y 的分布律分别为

试求:(1)二维随机变量(X ,Y )的分布律;(2)随机变量Z=XY 的分布律. 解:

8. 思考题:举出几个随机变量的例子。

第三章 多维随机变量及其概率分布

1.设盒子中有2个红球,2个白球,1个黑球,从中随机地取3个,用X 表示取到的红球个数,用Y 表示取到的白球个数,写出 (X, Y) 的联合分布律及边缘分布律。

解:

2.设二维随机变量),(Y X 的联合分布律为: 试根椐下列条件分别求a 和b 的值; (1)6.0)1(==X P ; (2)5.0)2|1(===Y X P ;

(3)设)(x F 是Y 的分布函数,5.0)5.1(=F 。 解: (1)6.02.01.0}1{=++==b X P ,3.0=b

(2)1}1{}0{==+=X P X P ,a X P X P +===-==3.04.0}1{1}0{,1.0=a

3.)(Y X 、的联合密度函数为:?

??<<<<+=他其01

0,10)(),(y x y x k y x f

求(1)常数k ;(2)P(X<1/2,Y<1/2);(3) P(X+Y<1);(4) P(X<1/2)。 解: (1)1)(),(101

0==+=????+∞∞-+∞∞-k dxdy y x k dxdy y x f ,故1=k

(2)8

1

)(}21,21{21

021

0=+=<

(3)3

1

)(}1{1010=+=<+??-x

dxdy y x Y X P

(4)8

3

)(}21{21

010=+=

4.)(Y X 、的联合密度函数为:??

?<<<<=他其0

0,10),(x

y x kxy y x f

求(1)常数k ;(2)P(X+Y<1);(3) P(X<1/2)。 解: (1)1),(2100===????+∞∞-+∞∞-k x

kxydxdy dxdy y x f ,故2=k (2) 24

12}1{21

01=

=<+?

?

-y y

xydxdy Y X P (3) 64

1

2}21{21

00==

5.设(X, Y) 的联合密度函数如下,分别求X 与Y 的边缘密度函数。

+∞<<∞-+∞<<∞-++=

y x y x y x f ,)

1)(1(1

),(222π

解: )

1(1

)1)(1(1),()(2

222x dy y x dy y x f x f X +=++==??+∞

-+∞∞-ππ )

1(1

)1)(1(1),()(2222y dx y x dx y x f y f Y +=

++==?

?+∞

∞-+∞

∞-ππ 6. 设(X, Y) 的联合密度函数如下,分别求X 与Y 的边缘密度函数。

??

?<<=-他

0),(x y e y x f x

解: x x

x X xe dy e dy y x f x f --+∞

∞-===??0),()(,)0(+∞<

y y

x X e dx e dx y x f x f -+∞

-+∞

-===??),()(,)0(+∞<

7. (X, Y) 的联合分布律如下, 试根椐下列条件分别求a 和b 的值;

(1) 3/1)1(==Y P ; (2) 5.0)2|1(==>Y X P ; (3)已知X 与Y 相互独立。

解: (1)3

1

61}1{=+==a Y P ,61=a

(2)1/6+1/6+1/9+b+1/18+1/9=1,b=7/18

8.(X,Y) 的联合密度函数如下,求常数c ,并讨论X 与Y 是否相互独立?

??

?<<<<=他

10,10),(2

y x cxy y x f

解:

16

),(101

2==

=?

?

??

+∞∞-+∞

-c

dxdy cxy dxdy y x f ,c=6 x dy xy dy y x f x f X 26),()(1

2

===??+∞

-,21

236),()(y dx xy dy y x f y f Y ===??+∞

-

),()()(y x f y f x f Y X =?,故X 与Y 相互独立.

9.思考题:联合分布能决定边缘分布吗?反之呢? 解:联合分布可以得到边缘分布,反之不真.

第四章 随机变量的数字特征

1.盒中有5个球,其中2个红球,随机地取3个,用X 表示取到的红球的个数,则EX 是:B

(A )1; (B )1.2; (C )1.5; (D )2.

2.设X 有密度函数:??

?

??=083)(2

x x f 他

其42≤≤x , 求)1(),12(),(2X E X E X E -,并求X

大于数学期望)(X E 的概率。(该题数有错)

解:2

152432383)(44

2

2===?x dx x x X E 824)8

1

163(83)12()12(344

22=-=-=-?x x dx x x X E

41

24818

31)1(422

22===?x dx x x X E

6718

31)5.7(1)5.7())((4

2

2

-=-=-=≤-=>=>?

dx x X P X P X E X P 3.设二维随机变量),(Y X 的联合分布律为

已知65.0)(=XY E , 则a 和b 的值是:D

(A )a=0.1, b=0.3; (B )a=0.3, b=0.1; (C )a=0.2, b=0.2; (D )a=0.15, b=0.25。

4.设随机变量 (X, Y) 的联合密度函数如下:求)1(,,+XY E EY EX 。

??

?<<<<=他其

020,10),(y x xy y x f 解:

3

2

)(2

1

2

102

=

=?=???

?ydy dx x xydxdy x X E

3

4)(2

210

102

=

=?=???

?dy y xdx xydxdy y Y E

=+)1(XY E

5.设X 有分布律:

则)32(2+-X X E 是:D

(A )1;(B )2; (C )3; (D )4.

6.丢一颗均匀的骰子,用X 表示点数,求DX EX ,. 解:X 的分布为 6,5,4,3,2,1,6

1)(===k k X P

27

621616615614613612611)(==?+?+?+?+?+?

=X E 6

91

616615614613612611)(222222=?+?+?+?+?+?=X E

6

19

))(()()(22=-=X E X E X D

7.X 有密度函数:?

??+=04/)1()(x x f 他其2

0≤≤x ,求 D(X).

解:6741)(2

0=+?

=?dx x x X E ,3

5

41)(2022=+?=?dx x x X E 36

11

)67(35))(()()(222=-=-=X E X E X D

8.设(2)X P ,)6.0,3(~B Y ,相互独立,则)2(),2(Y X D Y X E --的值分别是:

(A )-1.6和4.88; (B )-1和4; (C )1.6和4.88; (D )1.6和-4.88. 解: A

9. 设)3,4(~),,(~N Y b a U X ,X 与Y 有相同的期望和方差,求b a ,的值。 (A ) 0和8; (B ) 1和7; (C ) 2和6; (D ) 3和5. 解: B

10.下列结论不正确的是( ) (A )X 与Y 相互独立,则X 与Y 不相关; (B )X 与Y 相关,则X 与Y 不相互独立; (C ))()()(Y E X E XY E =,则X 与Y 相互独立;

(D ))()(),(y f x f y x f Y X =,则X 与Y 不相关; 解: B

11.若 0),(=Y X COV ,则不正确的是( ) (A ))()()(Y E X E XY E =;(B ))()()(Y E X E Y X E +=+; (C ))()()(Y D X D XY D =;(D ))()()(Y D X D Y X D +=+; 解:D

12.(Y X ,)有联合分布律如下,试分析X 与Y 的相关性和独立性。

解: 由于648

8}1{}1{=?=-=?-=Y P X P 而8

1}1,1{=-=-=Y X P 所以X 与Y 不独立.

由于0)(,0)(,0)(===XY E Y E X E ,所以0=ρ,X 与Y 不相关

13.)()()(Y E X E XY E =是X 与Y 不相关的( B )

(A )必要条件;(B )充分条件:(C )充要条件;(D )既不必要,也不充分。

14. )()()(Y E X E XY E =是X 与Y 相互独立的(A )

(A ) 必要条件;(B )充分条件:(C )充要条件;(D )既不必要,也不充分。

15.思考题:(1) 设随机变量 (X, Y) 有联合密度函数如下:试验证X 与Y 不相关,但不独立。

??

?<<=他其0

1

4/21),(22y x y x y x f 解: 0421)(1

11

22=?

=??-x dxdy y x x X E 9

7

421)(11122=?=??-x dxdy y x y Y E =?=??-1

11

224

21)(x dxdy y

x xy XY E 0,0=ρ,不相关 ??

?

??≤≤--==?011,8

)

1(21421)(22122x x x dy y x x f x X ?????≤≤==?-0

1

0,2

7421)(25

2

y y dx y x y f y y

Y 显然:),()()(y x f y f x f Y X ≠?,所以X 与Y 不独立.

(2)设),(Y X 有?????<<=他其0

1

45

),(2y x y y x f ,试验证)()()(Y E X E XY E =,但X 与Y 不相

互独立

解: 045)(111

2

=?

=??-x dxdy y x X E 7

545)(1112=?=??-x dxdy y y Y E 04

5)(1

11

2=?

=?

?-x

dxdy y

xy XY E )()()(Y E X E XY E = ??

?

??≤≤--==?011,8

)

1(545)(412x x dy y x f x X ?????

≤≤==?-0

1

0,2545)(23

y y dx y y f y y

Y 显然:),()()(y x f y f x f Y X ≠?,所以X 与Y 不独立.

讨论)()()(Y E X E XY E =与独立性,相关性与独立性之间的关系 解:若X 与Y 相互独立,则)()()(Y E X E XY E =,反之不成立. 独立一定不相关,反之不真.

第五章大数定律及中心极限定理

1.一批元件的寿命(以小时计)服从参数为0.004的指数分布,现有元件30只,一只在用,其余29只备用,当使用的一只损坏时,立即换上备用件,利用中心极限定理求30只元件至少能使用一年(8760小时)的近似概率。

解: 设第i 只元件的寿命为i X (30,...2,1=i ),225=i EX ,50625=i DX ,则

∑==30

1i i X Y 是这30只元件寿命的总合,675030*225==EY ,151875030*50625==DY ,

则所求的概率为:

0516.0)63.1(1}1518750

6750

8760225

306750

{}8760{}8760{30

1

30

1

=Φ-=-≥

?-=≥=≥∑∑==i i

i i X

P X P Y P

2.某一随机试验,“成功”的概率为0.04,独立重复100次,由中心极限定理求最多“成功”6次的概率的近似值。

解: 设成功的次数为X ,则)04.0,100(~B X ,4=np ,9596.196.0*4==npq

8461.0)02.1(9596.1469596.14}6{=Φ=?

?????-≤-=≤X P X P

第六章样本与统计量

1.有n=10的样本;1.2, 1.4, 1.9,

2.0, 1.5, 1.5, 1.6, 1.4, 1.8, 1.4,则样本均值X =1.57 ,样本均方差=S 0.2541,样本方差=2S 0.06456。

2.设总体方差为2b 有样本n X X X ,,,21 ,样本均值为X ,则=),(1X X Cov n

b

。 3. 查有关的附表,下列分位点的值:

9.0Z =?,)5(21.0χ=9.236 ,)10(9.0t =-1.3722 。

4.设n X X X ,,,21 是总体)(2m χ的样本,求)(),(X D X E 。 解: n

m X D m X E =

=)(,)( 5.设总体),(~2σμN X ,样本n X X X ,,,21 ,样本均值X ,样本方差2S ,则

~/n

X σμ

- )1,0(N ,

~/n

S X μ

-)1(-n T ,

∑=-n

i i

X X

1

2

2

)(1

σ

~)1(2

-n χ,

∑=-n

i i

X

1

22

)(1

μσ

~)(2n χ

第七章 参数估计

1.设总体X 的密度函数为:????

?≤≤=-他

其0

1

0)(1

x x

x f θθ,有样本n X X X ,,,21 ,

求未知参数θ 的矩估计。

解:1)(1

01+=?=?-θθ

θθdx x x X E ,故θ 的矩估计:2

1???

?

??-=x x θ

2.每分钟通过某桥量的汽车辆数)(~λπX ,为估计λ的值,在实地随机地调查了20次,每次1分钟,结果如下:

次数: 2 3 4 5 6 量数: 9 5 3 7 4 试求λ的一阶矩估计和二阶矩估计。 解:2.5=x ,8.62=s ,λ

1

=

EX ,2

1

λ=

DX ,所以1923.01?==x λ

,3835.01?==s

λ

3.设总体X 的密度函数为:????

?≤≤+=他

其0

1

0)1()(x x

x f θ

θ,有样本n X X X ,,,21 ,

求未知参数θ 的极大似然估计。

解:由题设,似然函数为:

θ

θ

θθ)

...()1()1(()211

n n n

i i

x x x x L +=+=∏=

)ln ()1ln()(ln 1

∑=++=n

i i x n L θθθ,

02ln )1(2)(ln 1=++=∑=θθθθθn

i i x n

d L d 解得θ的极大似然估计为21

)ln 1(?∑=+

=n

i i

x

n

θ

4.纤度是衡量纤维粗细程度的一个量,某厂化纤纤度),(~2σμN X ,抽取9根纤维,测量其纤度为:1.36,1.49,1.43,1.41,1.27,1.40,1.32,1.42,

1.47,试求μ的置信度为95.0的置信区间,(1)若22048.0=σ,(2)若2σ未知

解: (1)3967.1=x ,05.0=α的置信区间为

[]4281.1,3653

.196.1,96.1=???

??

?+-n x n x σσ (2) 3967.1=x ,0049.02=s ,05.0=α时,3060.2)8(025.0=t 置信区间为:[]4505.1,3429.1307.03060.23967.1,307.03060

.23967.1=??

?

??

?+- 5. 为分析某自动设备加工的另件的精度,抽查16个另件,测量其长度,得075.12=x ㎜,s = 0.0494㎜,设另件长度),(~2σμN X ,取置信度为95.0,(1)求2σ的置信区间,(2)求σ的置信区间。

解:00244036.02=s ,0366054.0)1(2=-s n ,262.6)15(2975.0=χ,448.27)15(2025.0=χ 所以2σ置信区间为: []0058.0,0013.0262.60366054.0,448.270366054.0=??

?

?

??. σ的置信区间为:[0.0361,0.0762]

第八章假设检验

1.某种电子元件的阻值(欧姆))400,1000(~N X ,随机抽取25个元件,测得平均电阻值992=x ,试在1.0=α下检验电阻值的期望μ是否符合要求?

解:检验假设:1000:0=μH ,1000:1≠μH 由已知可得:25

/201000

992-=-=

u 查表得:64.105.0=u ,故拒绝原假设, 电阻值的期望μ不符合要求

2.在上题中若2σ未知,而25个元件的均方差25=s ,则需如何检验,结论是什么?

解:由于方差未知,故用t 检验.

检验假设: 1000:0=μH ,1000:1≠μH 6.15

/251000

992-=-=

t 查表 7109.1)24(05.0=t 由于7109.16.1<=t ,故接收原假设, 电阻值的期望μ符

合要求,

3.成年男子肺活量为3750=μ毫升的正态分布,选取20名成年男子参加某项体育锻练一定时期后,测定他们的肺活量,得平均值为3808=x 毫升,设方差为22120=σ,试检验肺活量均值的提高是否显著(取02.0=α)?

解: 检验假设: 3750:0=μH ,3750:1≠μH ,1615.220

/12037503808=-=

u

查表得: 33.201.0=u ,故接收原假设,即提高不显著.

概率论与数理统计习题集及答案

* 《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . ? §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 \ §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. — §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。

概率论与数理统计课程教学大纲

概率论与数理统计课程教学大纲 一、课程说明 (一)课程名称:概率论与数理统计 所属专业:物理学 课程性质:必修 学分:3 (二)课程简介、目标与任务; 《概率论与数理统计》是研究随机现象规律性的一门学科;它有着深刻的实际背景,在自然科学、社会科学、工程技术、军事和工农业生产等领域中有广泛的应用。通过本课程的学习,使学生掌握概率与数理统计的基本概念,并在一定程度上掌握概率论认识问题、解决问题的方法。同时这门课程的学习对培养学生的逻辑思维能力、分析解决问题能力也会起到一定的作用。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 先修课程:高等数学。后续相关课程:统计物理。《概率论与数理统计》需要用到高等数学中的微积分、级数、极限等数学知识与计算方法。它又为统计物理、量子力学等课程提供了数学基础,起了重要作用。 (四)教材与主要参考书。 教材: 同济大学数学系编,工程数学–概率统计简明教程(第二版),高等教 育出版社,2012. 主要参考书: 1.浙江大学盛骤,谢式千,潘承毅编,概率论与数理统计(第四版), 高等教育出版社,2008. 2.J.L. Devore, Probability and Statistics(fifth ed.)概率论与数 理统计(第5版)影印版,高等教育出版社,2004. 二、课程内容与安排 第一章随机事件 1.1 样本空间和随机事件; 1.2 事件关系和运算。

第二章事件的概率 2.1概率的概念;2.2 古典概型;2.3几何概型;2.4 概率的公理化定义。第三章条件概率与事件的独立性 3.1 条件概率; 3.2 全概率公式; 3.3贝叶斯公式;3.4 事件的独立性; 3.5 伯努利试验和二项概率。 第四章随机变量及其分布 4.1 随机变量及分布函数;4.2离散型随机变量;4.3连续型随机变量。 第五章二维随机变量及其分布 5.1 二维随机变量及分布函数;5.2 二维离散型随机变量;5.3 二维连续随机变量;5.4 边缘分布; 5.5随机变量的独立性。 第六章随机变量的函数及其分布 6.1 一维随机变量的函数及其分布;6.2 多元随机变量的函数的分布。 第七章随机变量的数字特征 7.1数学期望与中位数; 7.2 方差和标准差; 7.3协方差和相关系数; *7.4大数律; 7.5中心极限定理。 第八章统计量和抽样分布 8.1统计与统计学;8.2统计量;8.3抽样分布。 第九章点估计

概率论与数理统计学1至7章课后标准答案

第五章作业题解 5.1 已知正常男性成人每毫升的血液中含白细胞平均数是7300, 标准差是700. 使用切比雪 夫不等式估计正常男性成人每毫升血液中含白细胞数在5200到9400之间的概率. 解:设每毫升血液中含白细胞数为,依题意得,7300)(==X E μ,700)(==X Var σ 由切比雪夫不等式,得 )2100|7300(|)94005200(<-=<

概率论与数理统计练习题

概率论与数理统计练习题 一、填空题 1、设A 、B 为随机事件,且P (A)=,P (B)=,P (B A)=,则P (A+B)=__ __。 2、θθθ是常数21? ,?的两个 无偏 估计量,若)? ()?(21θθD D <,则称1?θ比2?θ有效。 3、设A 、B 为随机事件,且P (A )=, P (B )=, P (A ∪B )=,则P (B A )=。 4. 设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。 5. 设随机变量X 的概率密度是: ?? ?<<=其他 103)(2 x x x f ,且{}784 .0=≥αX P ,则α= 。 6. 已知随机向量(X ,Y )的联合密度函数 ?????≤≤≤≤=其他 , 010,20, 2 3 ),(2y x xy y x f ,则 E (Y )= 3/4 。 7. 若随机变量X ~N (1,4),Y ~N (2,9),且X 与Y 相互独立。设Z =X -Y +3,则Z ~ N (2, 13) 。 * 8. 设A ,B 为随机事件,且P (A)=,P (A -B)=,则=?)(B A P 。 9. 设随机变量X ~ N (1, 4),已知Φ=,Φ=,则{}=<2X P 。 10. 随机变量X 的概率密度函数1 22 1 )(-+-= x x e x f π ,则E (X )= 1 。 11. 已知随机向量(X ,Y )的联合密度函数 ?? ?≤≤≤≤=其他 , 010,20, ),(y x xy y x f ,则 E (X )= 4/3 。 12. 设A ,B 为随机事件,且P (A)=, P (AB)= P (B A ), 则P (B )= 。 13. 设随机变量),(~2σμN X ,其密度函数6 4 4261)(+-- = x x e x f π ,则μ= 2 。 14. 设随机变量X 的数学期望EX 和方差DX >0都存在,令DX EX X Y /)(-=,则D Y= 1 。 15. 随机变量X 与Y 相互独立,且D (X )=4,D (Y )=2,则D (3X -2Y )= 44。 16. 三个人独立地向某一目标进行射击,已知各人能击中的概率分别为3 1 ,41,51,则目标能被击中 的概率是3/5 。 17. 设随机变量X ~N (2,2σ),且P {2 < X <4}=,则P {X < 0}= 。 ! 18. 设随机变量X 的概率分布为5.0)3(,3.0)2(,2.0)1(======X P X P X P ,则X 的期望

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

《概率论与数理统计》在线作业

第一阶段在线作业 第1题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:对立不是独立。两个集合互补。第2题 您的答案:D 题目分数:0.5 此题得分:0.5 批注:A发生,必然导致和事件发生。第3题

您的答案:B 题目分数:0.5 此题得分:0.5 批注:分布函数的取值最大为1,最小为0. 第4题 您的答案:A 题目分数:0.5 此题得分:0.5 批注:密度函数在【-1,1】区间积分。第5题

您的答案:A 题目分数:0.5 此题得分:0.5 批注:A答案,包括了BC两种情况。 第6题 您的答案:A 题目分数:0.5 此题得分:0.5 批注:古典概型,等可能概型,16种总共的投法。第7题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:几何概型,前两次没有命中,且第三次命中,三次相互独立,概率相乘。 第8题 您的答案:D 题目分数:0.5 此题得分:0.5 批注:利用随机变量单调性函数的概率密度求解公式公式。中间有反函数求导数,加绝对值。第9题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:利用概率密度的性质,概率密度在相应范围上的积分值为1.验证四个区间。 第10题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:利用分布函数的性质,包括分布函数的值域[0,1]当自变量趋向无穷时,分布函数取值应该是1.排除答案。 第11题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:利用上分位点的定义。 第12题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:利用和事件的公式,还有概率小于等于1.P(AB)小于等于P(C)。第13题

概率论与数理统计教学大纲(48学时)

概率论与数理统计课程教学大纲(48学时) 撰写人:陈贤伟编写日期:2019 年8月 一、课程基本信息 1.课程名称:概率论与数理统计 2.课程代码: 3.学分/学时:3/48 4.开课学期:4 5.授课对象:本科生 6.课程类别:必修课 / 通识教育课 7.适用专业:软件技术 8.先修课程/后续课程:高等数学、线性代数/各专业课程 9.开课单位:公共基础课教学部 10.课程负责人: 11.审核人: 二、课程简介(包含课程性质、目的、任务和内容) 概率论与数理统计是描述“随机现象”并研究其数量规律的一门数学学科。通过本课程的教学,使学生掌握概率的定义和计算,能用随机变量概率分布及数字特征研究“随机现象”的规律,了解数理统计的基本理论与思想,并掌握常用的包括点估计、区间估计和假设检验等基本统计推断方法。该课程的系统学习,可以培养学生提高认识问题、研究问题与处理相关实际问题的能力,并为学习后继课程打下一定的基础。 本课程主要介绍随机事件及其概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律与中心极限定理、数理统计的基本概念、参数估计、假设检验等。 体现在能基于随机数学及统计推断的基本理论和方法对实验现象和数据进行分析、解释,并能对工程领域内涉及到的复杂工程问题进行数学建模和分析,且通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、数学运算能力、综合解题能力、数学建模与实践能力以及自学能力。 三、教学内容、基本要求及学时分配 1.随机事件及其概率(8学时) 理解随机事件的概念;了解样本空间的概念;掌握事件之间的关系和运算。理解概率的定义;掌握概率的基本性质,并能应用这些性质进行概率计算。理解条件概率的概念;掌握概率的加法公式、乘法公式;了解全概率公式、贝叶斯公式;理解事件的独立性概念。掌握应用事件独立性进行简单概率计算。理解伯努利试验;掌握二项分布的应用和计算。 2.随机变量及其分布(6学时) 理解随机变量的概念,理解随机变量分布函数的概念及性质,理解离散型随机变量的分布律及其性质,理解连续型随机变量的概率密度及其性质;掌握应用概率分布计算简单事件概率的方法,掌握二项分布、泊松分布、正态分布、均匀分布和指数分布和应用,掌握求简单随机变量函数的概率分布的方法。 3.多维随机变量及其分布(7学时)

概率论与数理统计教程习题(第二章随机变量及其分布)(1)答案

概率论与数理统计练习题 系 专业 班 姓名 学号 第六章 随机变量数字特征 一.填空题 1. 若随机变量X 的概率函数为 1 .03.03.01.02.04 3211p X -,则 =≤)2(X P ;=>)3(X P ;=>=)04(X X P . 2. 若随机变量X 服从泊松分布)3(P ,则=≥)2(X P 8006.0413 ≈--e . 3. 若随机变量X 的概率函数为).4,3,2,1(,2)(=?==-k c k X P k 则=c 15 16 . 4.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=,P (B )=,则()P AB =____________.() 5.设事件A 、B 互不相容,已知()0.4=P A ,()0.5=P B ,则()=P AB 6. 盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为____________.( 13 ) 7.设随机变量X 服从[0,1]上的均匀分布,则()E X =____________.( 12 ) 8.设随机变量X 服从参数为3的泊松分布,则概率密度函数为 __. (k 3 3(=,0,1,2k! P X k e k -==L )) 9.某种电器使用寿命X (单位:小时)服从参数为1 40000 λ=的指数分布,则此种电器的平 均使用寿命为____________小时.(40000) 10在3男生2女生中任取3人,用X 表示取到女生人数,则X 的概率函数为 11.若随机变量X 的概率密度为)(,1)(2 +∞<<-∞+= x x a x f ,则=a π1 ;=>)0(X P ;==)0(X P 0 . 12.若随机变量)1,1(~-U X ,则X 的概率密度为 1 (1,1) ()2 x f x ?∈-? =???其它

概率论与数理统计习题解答

第一章随机事件及其概率 1. 写出下列随机试验的样本空间: (1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标; (3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数; (4)测量一汽车通过给定点的速度. 解所求的样本空间如下 (1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x2+y2<1} (3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0} 2. 设A、B、C为三个事件,用A、B、C的运算关系表示下列事件: (1)A发生,B和C不发生; (2)A与B都发生,而C不发生; (3)A、B、C都发生;

(4)A、B、C都不发生; (5)A、B、C不都发生; (6)A、B、C至少有一个发生; (7)A、B、C不多于一个发生; (8)A、B、C至少有两个发生. 解所求的事件表示如下 3.在某小学的学生中任选一名,若事件A表示被选学生是男生,事件B表示该生是三年级学生,事件C表示该学生是运动员,则 (1)事件AB表示什么? (2)在什么条件下ABC=C成立? ?是正确的? (3)在什么条件下关系式C B (4)在什么条件下A B =成立? 解所求的事件表示如下 (1)事件AB表示该生是三年级男生,但不是运动员. (2)当全校运动员都是三年级男生时,ABC=C成立. ?是正确的. (3)当全校运动员都是三年级学生时,关系式C B

(4)当全校女生都在三年级,并且三年级学生都是女生时,A B =成立. 4.设P (A )=,P (A -B )=,试求()P AB 解 由于 A ?B = A – AB , P (A )= 所以 P (A ?B ) = P (A ?AB ) = P (A )??P (AB ) = , 所以 P (AB )=, 故 ()P AB = 1? = . 5. 对事件A 、B 和C ,已知P(A) = P(B)=P(C)=1 4 ,P(AB) = P(CB) = 0, P(AC)= 1 8 求A 、B 、C 中至少有一个发生的概率. 解 由于,()0,?=ABC AB P AB 故P(ABC) = 0 则P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC) 6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率: A ={两球颜色相同}, B ={两球颜色不同}. 解 由题意,基本事件总数为2a b A +,有利于A 的事件数为2 2a b A A +,有利于B 的事件数为111111 2a b b a a b A A A A A A +=, 则 2 2 11 2 22()()a b a b a b a b A A A A P A P B A A +++==

概率论与数理统计课后习题及答案-高等教育出版社

概率论与数理统计课后习题答案 高等教育出版社 习题解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点 数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1(ΛΛΛΛ=Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1(Λ=+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下 事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和:C B A ++,C AB +,AC B -.

概率论与数理统计教学大纲

《概率论与数理统计》教学大纲 一、内容简介 《概率论与数理统计》是从数量侧面研究随机现象规律性的数学理论,其理论与方法已广泛应用于工业、农业、军事和科学技术中。主要包括:随机事件和概率,一维和多维随机变量及其分布,随机变量的数字特征,大数定律与中心极限定理,参数估计,假设检验等内容。 二、本课程的目的和任务 本课程是理工学科和社会学科部分专业的基础课程。课程内容侧重于讲解概率论与数理统计的基本理论与方法,同时在教学中结合各专业的特点介绍性地给出在科研、生产、社会等各领域中的具体应用。课程的任务在于使学生建立随机现象的基本概念和描述方法,掌握运用概率论和统计学原理对自然和人类社会的现象进行观察、描述和预言的方法和能力。为学生树立基本的概率论和统计思维素养,以及进一步在相关方向深造,打下基础。 三、本课程与其它课程的关系 学生在进入本课程学习之前,应学过:高等数学、线性代数。这些课程的学习,为本课程提供了必需的数学基础知识。本课程学习结束后,学生可具备进一步学习相关课程的理论基础,同时由于概率论与数理统计的理论与方法向各基础学科、工程学科的广泛渗透,与其他学科相结

合发展成不少边缘学科,所以它是许多新的重要学科的基础,学生应对本课程予以足够的重视。 四、本课程的基本要求 概率论与数理统计是一个有特色的数学分支,有自己独特的概念和方法,内容丰富,结果深刻。通过对本课程的学习,学生应该建立用概率和统计的语言对随机现象进行描述的基本概念,熟练掌握概率论与数理统计中的基本理论和分析方法,能熟练运用基本原理解决某些实际问题。具体要求如下: (一)随机事件和概率 1、理解随机事件的概念,了解样本空间的概念,掌握事件之间的关系和 运算。 2、理解概率的定义,掌握概率的基本性质,并能应用这些性质进行概率 计算。 3、理解条件概率的概念,掌握概率的加法公式、乘法公式、全概率公 式、贝叶斯公式,并能应用这些公式进行概率计算。 4、理解事件的独立性概念,掌握应用事件独立性进行概率计算。 5、掌握伯努利概型及其计算。 (二)随机变量及其概率分布 1、理解随机变量的概念 2、理解随机变量分布函数的概念及性质,理解离散型随机变量的分布律 及其性质,理解连续型随机变量的概率密度及其性质,会应用概率分

概率论与数理统计习题答案

习题五 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

【解】令1,,0,i i X ?? ?若第个产品是合格品其他情形. 而至少要生产n 件,则i =1,2,…,n ,且 X 1,X 2,…,X n 独立同分布,p =P {X i =1}=. 现要求n ,使得 1 {0.760.84}0.9.n i i X P n =≤ ≤≥∑ 即 0.80.9n i X n P -≤≤≥∑ 由中心极限定理得 0.9,Φ-Φ≥ 整理得0.95,Φ≥?? 查表 1.64,10≥ n ≥, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能 才可以95%的概率保证不致因供电不足而影响生产. 【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,

概率论与数理统计复旦大学出版社第一章课后参考答案

精心整理 第一章 1.见教材习题参考答案. 2.设A ,B ,C 为三个事件,试用A ,B ,C (1)A 发生,B ,C 都不发生; (2)A , B , C 都发生; (3)A ,B ,C (4)A , B , C 都不发生; (5)A ,B ,C (6)A ,【解】(1(B C (4)ABC B C (5)ABC ∪ABC ∪ABC ABC =AB BC AC 3. . 4.设A ,?B )=0.3,求P (. 【解】P 5.设A ,(A )=0.6,P (B )=0.7, (1AB (2AB 【解】(1)()0.6AB P A ==,()P AB 取到最大值为(2)当()()()0.3P A P B P A B =+-= 6.设A ,B ,P (C )=1/3P (AC )至少有一事件发生的概率. )=0, 由加法公式可得 =14+14+13?112=34 7.52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少? 【解】设A 表示“取出的13张牌中有5张黑桃,3张红心,3张方块,2张梅花”, 则样本空间Ω中样本点总数为13 52n C =,A 中所含样本点533213131313k C C C C =,所求概率为 8. (1)求五个人的生日都在星期日的概率;(2)求五个人的生日都不在星期日的概率; (3)求五个人的生日不都在星期日的概率. 【解】(1)设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故

P (A 1)= 5 17 =(17)5(亦可用独立性求解,下同) (2)设A 2={五个人生日都不在星期日},有利事件数为65,故 P (A 2)=5567=(67 )5 (3)设A 3={五个人的生日不都在星期日} P (A 3)=1?P (A 1)=1?(1 7 )5 9..见教材习题参考答案. 10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n

概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案

;第一章 一、填空题 1.若事件A?B且P(A)=0.5, P(B) =0.2 , 则P(A -B)=(0.3 )。 2.甲、乙各自同时向一敌机炮击,已知甲击中敌 机的概率为0.7,乙击中敌机的概率为0.8.求 敌机被击中的概率为(0.94 )。 3.设A、B、C为三个事件,则事件A,B,C中 不少于二个发生可表示为(AB AC BC ++)。 4.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率 为(0.496 )。 5.某人进行射击,每次命中的概率为0.6 独立 射击4次,则击中二次的概率为 ( 0.3456 )。 6.设A、B、C为三个事件,则事件A,B与C都 不发生可表示为(ABC)。 7.设A、B、C为三个事件,则事件A,B,C中 不多于一个发生可表示为(AB AC BC I I); 8.若事件A与事件B相互独立,且P(A)=0.5, P(B) =0.2 , 则P(A|B)=(0.5 );

9.甲、乙各自同时向一敌机炮击,已知甲击中敌机 的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(0.8 ); 10.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A-)=(0.5 ) 11.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为(0.864 )。 12.若事件A?B且P(A)=0.5, P(B) =0.2 , 则 P(B A)=(0.3 ); 13.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A)=(0.5 ) 14.A、B为两互斥事件,则A B= U(S )15.A、B、C表示三个事件,则A、B、C恰 有一个发生可表示为 (ABC ABC ABC ++) 16.若()0.4 P AB A B= U P AB=0.1则(|) P B=,() P A=,()0.2 ( 0.2 ) 17.A、B为两互斥事件,则AB=(S ) 18.保险箱的号码锁定若由四位数字组成,则一次 )。 就能打开保险箱的概率为(1 10000

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案
第 1 章 概率论的基本概念
§1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢 3 次,观察正面 H﹑反面 T 出现的情形. 样本空间是:S=
(2) 一枚硬币连丢 3 次,观察出现正面的次数. 样本空间是:S= 2.(1) 丢一颗骰子. A:出现奇数点,则 A= ;B:数点大于 2,则 B= (2) 一枚硬币连丢 2 次, A:第一次出现正面,则 A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则 C= ;b5E2RGbCAP ;p1EanqFDPw .DXDiTa9E3d .
§1 .2 随机事件的运算
1. 设 A、B、C 为三事件,用 A、B、C 的运算关系表示下列各事件: (1)A、B、C 都不发生表示为: .(2)A 与 B 都发生,而 C 不发生表示为: .RTCrpUDGiT (3)A 与 B 都不发生,而 C 发生表示为: .(4)A、B、C 中最多二个发生表示为: .5PCzVD7HxA (5)A、B、C 中至少二个发生表示为: .(6)A、B、C 中不多于一个发生表示为: .jLBHrnAILg 2. 设 S ? {x : 0 ? x ? 5}, A ? {x : 1 ? x ? 3}, B ? {x : 2 ?? 4}:则 (1) A ? B ? (4) A ? B = , (2) AB ? , (5) A B = , (3) A B ? 。 ,
xHAQX74J0X
§1 .3 概率的定义和性质
1. 已知 P( A ? B) ? 0.8, P( A) ? 0.5, P( B) ? 0.6 ,则 (1) P( AB) ? , (2)( P( A B) )= 则 P( AB) = , (3) P( A ? B) = . .LDAYtRyKfE
2. 已知 P( A) ? 0.7, P( AB) ? 0.3,
§1 .4 古典概型
1. 某班有 30 个同学,其中 8 个女同学, 随机地选 10 个,求:(1)正好有 2 个女同学的概率, (2)最多有 2 个女同学的概率,(3) 至少有 2 个女同学的概率. 2. 将 3 个不同的球随机地投入到 4 个盒子中,求有三个盒子各一球的概率.
§1 .5 条件概率与乘法公式
1.丢甲、乙两颗均匀的骰子,已知点数之和为 7, 则其中一颗为 1 的概率是 2. 已知 P( A) ? 1 / 4, P( B | A) ? 1 / 3, P( A | B) ? 1 / 2, 则 P( A ? B) ? 。 。
§1 .6 全概率公式
1.
有 10 个签,其中 2 个“中” ,第一人随机地抽一个签,不放回,第二人再随机地抽一个签,说明两人 抽“中‘的概率相同。Zzz6ZB2Ltk 1 / 19

概率论与数理统计学习地总结

概率论与数理统计 学习报告 学院 学号: 姓名:

概率论与数理统计学习报告 通过短短一学期的学习,虽然学习、研究地并不深入,但该课程的每一处内容都有不同的奇妙吸引着我,让我对它在生活中饰演的角色充满遐想;它将我带入了一个由随机变量为桥梁,通过表面偶然性找出其内在规律性,从而与其它的数学分支建立联系的世界,让我对这种进行大量的随机重复实验,通过分析研究得出统计规律性的过程产生了极大地兴趣。我很喜欢这门课程,但也不得不说课后在它上面花的时间并不多,因此学得还不深入,但它真的深深地吸引了我,我一定会找时间进一步深入地学习它。 先简单地介绍一下概率论与数理统计这门学科。 概率论是基于给出随机现象的数学模型,并用数学语言来描述它们,然后研究其基本规律,透过表面的偶然性,找出其内在的规律性,建立随机现象与数学其他分支的桥梁,使得人们可以利用已成熟的数学工具和方法来研究随机现象,进而也为其他数学分支和其他新兴学科提供了解决问题的新思路和新方法。数理统计是以概率论为基础,基于有效的观测、收集、整理、分析带有随机性的数据来研究随机现象,进而对所观察的问题作出推断和预测,直至为采取一定的决策和行动提供依据和建议。 概率论与数理统计是研究随机现象及其规律性的一门数学学科。研究随机现象的规律性有其独特的思想方法,它不是寻求出现每一现象的一切物理因素,不能用研究确定性现象的方法研究随机现象,而是承认在所研究的问题中存在一些人们不能认识或者根本不知道的

随机因素作用下,发生随机现象。这样,人们既可以通过试验来观察随机现象,揭示其规律性,作出决策,也可根据实际问题的具体情况找出随机现象的规律,作出决策。 至今,概率论与数理统计的理论与方法已经广泛应用于自然科学、社会科学以及人文科学等各个领域中,并随着计算机的普及,概率论与数理统计已成为处理信息、制定决策的重要理论和方法。它们不仅是许多新兴学科,如信息论、控制论、排队论、可靠性论以及人工智能的数学理论基础,而且与其他领域的新兴学科的相互交叉而产生了许多新的分支和边缘学科,如生物统计、统计物理、数理金融、神经网络统计分析、统计计算等。 概率论应用随机变量与随机变量的概率分布、数字特征及特征函数为数学工具对随机现象进行描述、分析与研究,其前提条件是假设随机变量的概率分布是已知的;而数理统计中作为研究对象的随机变量的概率分布是完全未知的,或者分布类型已知,但其中的某些参数或某些数字特征是未知的。概率论研究问题的方法是从假设、命题、已知的随机现象的事实出发,按一定的逻辑推理得到结论,在方法上是演绎式的。而统计学的方法是归纳式的,从所研究地对象的全体中随机抽取一部分进行试验或观测,以获得试验数据,依据试验数据所获取的信息,对整体进行推断,是归纳而得到结论的。因此掌握它特有的学习方法是很重要的。 在学习的过程中,不论是老师提出的一些希望我们课后讨论的问题还是自己在做作业看书过程中遇到的一些问题都引发了我的一些

概率论与数理统计作业与解答

概率论与数理统计作业及解答 第一次作业 ★ 1.甲.乙.丙三门炮各向同一目标发射一枚炮弹?设事件ABC 分别表示甲.乙.丙 击中目标.则三门炮最多有一门炮击中目标如何表示? 事件E 丸事件A, B,C 最多有一个发生},则E 的表示为 E =ABC ABC ABC ABC;或工 ABU AC U B C;或工 ABU ACU BC; 或工 ABACBC ;或工 ABC_(AB C ABC A BC ). (和 A B 即并AU B,当代B 互斥即AB 二'时.AU B 常记为AB) 2. 设M 件产品中含m 件次品.计算从中任取两件至少有一件次品的概率 ★ 3.从8双不同尺码鞋子中随机取6只.计算以下事件的概率 A 二{8只鞋子均不成双}, B={恰有2只鞋子成双}, C 珂恰有4只鞋子成双}. C 6 (C 2 )6 32 C 8C 4(C 2)4 80 0.2238, P(B) 8 皆 0.5594, P(A) 8 /143 ★ 4.设某批产品共50件.其中有5件次品?现从中任取3件?求 (1) 其中无次品的概率-(2)其中恰有一件次品的概率‘ /八 C 5 1419 C :C 5 99 ⑴冷 0.724.⑵虫产 0.2526. C 50 1960 C 50 392 5. 从1?9九个数字中?任取3个排成一个三位数?求 (1) 所得三位数为偶数的概率-(2)所得三位数为奇数的概率? 4 (1) P {三位数为偶数} = P {尾数为偶数}=-, 9 ⑵P {三位数为奇数} = P {尾数为奇数} = 5, 9 或P {三位数为奇数} =1 -P {三位数为偶数} =1 -彳=5. 9 9 6. 某办公室10名员工编号从1到10任选3人记录其号码 求(1)最小号码为5的概率 ⑵ 最大号码为5的概率 记事件A ={最小号码为5}, B={最大号码为5}. 1 1 2 C m C M m C m m(2M - m -1) M (M -1) 6 — C 16 143 P(C)二 C 8 CJC 2 ) 30 0.2098. 143 C 16

概率论与数理统计教程(魏宗舒)第七章答案

. 第七章 假设检验 设总体2(,)N ξμσ~,其中参数μ,2σ为未知,试指出下面统计假设中哪些是简单假设,哪些是复合假设: (1)0:0,1H μσ==; (2)0:0,1H μσ=>; (3)0:3,1H μσ<=; (4)0:03H μ<<; (5)0:0H μ=. 解:(1)是简单假设,其余位复合假设 设1225,,,ξξξL 取自正态总体(,9)N μ,其中参数μ未知,x 是子样均值,如对检验问题0010:,:H H μμμμ=≠取检验的拒绝域:12250{(,,,):||}c x x x x c μ=-≥L ,试决定常数c ,使检验的显着性水平为 解:因为(,9)N ξμ~,故9 (,)25 N ξμ~ 在0H 成立的条件下, 000 53(||)(||)53 521()0.05 3c P c P c ξμξμ-≥=-≥? ?=-Φ=??? ? 55( )0.975,1.9633 c c Φ==,所以c =。 设子样1225,,,ξξξL 取自正态总体2 (,)N μσ,20σ已知,对假设检验0010:,:H H μμμμ=>,取临界域12n 0{(,,,):|}c x x x c ξ=>L , (1)求此检验犯第一类错误概率为α时,犯第二类错误的概率β,并讨论它们之间的关系; (2)设0μ=,20σ=,α=,n=9,求μ=时不犯第二类错误的概率。 解:(1)在0H 成立的条件下,2 00(, )n N σξμ~,此时 00000()P c P ξαξ=≥=

10 αμ-= ,由此式解出010c αμμ-= + 在1H 成立的条件下,2 0(, )n N σξμ~,此时 1010 10 ()(P c P αξβξμ-=<==Φ=Φ=Φ- 由此可知,当α增加时,1αμ-减小,从而β减小;反之当α减少时,则β增加。 (2)不犯第二类错误的概率为 10 0.9511(0.650.51(3) 0.2 1(0.605)(0.605)0.7274αβμμ--=-Φ-=-Φ- =-Φ-=Φ= 设一个单一观测的ξ子样取自分布密度函数为()f x 的母体,对()f x 考虑统计假设: 0011101 201 :():()00x x x H f x H f x ≤≤≤≤??==? ??? 其他其他 试求一个检验函数使犯第一,二类错误的概率满足2min αβ+=,并求其最小值。 解 设检验函数为 1()0x c x φ∈?=?? 其他(c 为检验的拒绝域)

相关文档
最新文档