山东高考圆锥曲线真题

合集下载

(7年真题推荐)山东省高考数学 真题分类汇编 圆锥曲线

(7年真题推荐)山东省高考数学 真题分类汇编 圆锥曲线

圆锥曲线(一)选择题1.(07山东卷(10)设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为(A )1342222=-y x (B)15132222=-y x (C)1432222=-y x (D)112132222=-y x答案:A2.(2009山东卷理)设双曲线12222=-by a x 的一条渐近线与抛物线y=x 2+1 只有一个公共点,则双曲线的离心率为( ). A.45 B. 5 C. 25D.5 【解析】:双曲线12222=-b y a x 的一条渐近线为x a b y =,由方程组21b y xa y x ⎧=⎪⎨⎪=+⎩,消去y,得210b x x a -+=有唯一解,所以△=2()40ba-=, 所以2b a =,2221()5c a b b e a a a+===+=,故选D.答案:D.【命题立意】:本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念基本方法和基本技能.3.(2009山东卷文)设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为( ).A.24y x =±B.28y x =±C. 24y x = D. 28y x =【解析】: 抛物线2(0)y ax a =≠的焦点F 坐标为(,0)4a,则直线l 的方程为2()4a y x =-,它与y 轴的交点为A (0,)2a -,所以△OAF 的面积为1||||4242a a⋅=,解得8a =±.所以抛物线方程为28y x =±,故选B. 答案:B.【命题立意】:本题考查了抛物线的标准方程和焦点坐标以及直线的点斜式方程和三角形面积的计算.考查数形结合的数学思想,其中还隐含着分类讨论的思想,因参数a 的符号不定而引发的抛物线开口方向的不定以及焦点位置的相应变化有两种情况,这里加绝对值号可以做到合二为一.4、(2010山东文数)(9)已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线与A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为 (A )1x = (B)1x =- (C)2x = (D)2x =- 答案:B5、(2010山东理数)(7)由曲线y=2x ,y=3x 围成的封闭图形面积为 (A )112(B)14(C)13(D)712【答案】A【解析】由题意得:所求封闭图形的面积为123x -x )dx=⎰(1111-1=3412⨯⨯,故选A 。

2020年高考山东版高考理科数学 10.4 圆锥曲线的综合问题

2020年高考山东版高考理科数学      10.4 圆锥曲线的综合问题

10.4 圆锥曲线的综合问题挖命题【考情探究】分析解读 1.会处理动曲线(含直线)过定点的问题.2.会证明与曲线上的动点有关的定值问题.3.会按条件建立目标函数,研究变量的最值问题及变量的取值范围问题,注意运用“数形结合”“几何法”求某些量的最值.4.能与其他知识交汇,从假设结论成立入手,通过推理论证解答存在性问题.5.本节在高考中围绕直线与圆锥曲线的位置关系,展开对定值、最值、参数取值范围等问题的考查,注重对数学思想方法的考查,分值约为12分,难度偏大.破考点【考点集训】考点一定值、定点、最值及范围问题1.(2017河北衡水中学期中,11)已知A(-1,0),B是圆F:x2-2x+y2-11=0(F为圆心)上一动点,线段AB的垂直平分线交BF于P,则动点P的轨迹方程为( )A.+=1B.-=1C.-=1D.+=1答案D2.(2018河北唐山调研,14)过抛物线y2=4x的焦点作直线与此抛物线交于P,Q两点,那么线段PQ中点的轨迹方程是.答案y2=2x-23.(2018河北五校12月联考,20)已知椭圆C:+=1(a>b>0)的离心率为,右焦点为F,上顶点为A,且△AOF 的面积为(O是坐标原点).(1)求椭圆C的方程;(2)设P是椭圆C上的一点,过P的直线l与以椭圆的短轴为直径的圆切于第一象限,切点为M,证明:|PF|+|PM|为定值.解析(1)设椭圆的半焦距为c,由已知得⇒∴椭圆的方程为+y2=1.(2)证明:以短轴为直径的圆的方程为x2+y2=1,F(1,0),设P(x0,y0),则+=1(0<x0≤),∴|PF|=-=--=-=-=(2-x0).又l与圆x2+y2=1相切于M,∴|PM|=-=-=-==x0,∴|PF|+|PM|=(2-x0)+x0=,为定值.4.(2018湖北武汉4月调研,19)已知椭圆Γ:+=1,过点P(1,1)作倾斜角互补的两条不同直线l1,l2,设l1与椭圆Γ交于A、B两点,l2与椭圆Γ交于C,D两点.(1)若P(1,1)为线段AB的中点,求直线AB的方程;(2)若直线l1与l2的斜率都存在,记λ=,求λ的取值范围.解析(1)解法一(点差法):由题意可知直线AB的斜率存在.设A(x1,y1),B(x2,y2),则两式作差得--=-·=-·=-,∴直线AB的方程为y-1=-(x-1),即x+2y-3=0.解法二:由题意可知直线AB的斜率存在.设直线AB的斜率为k,则其方程为y-1=k(x-1),代入x2+2y2=4中,得x2+2[kx-(k-1)]2-4=0,∴(1+2k2)x2-4k(k-1)x+2(k-1)2-4=0,Δ=[-4(k-1)k]2-4(2k2+1)[2(k-1)2-4]=8(3k2+2k+1)>0.设A(x1,y1),B(x2,y2),则---∵AB中点为(1,1),∴(x1+x2)=-=1,则k=-.∴直线AB的方程为y-1=-(x-1),即x+2y-3=0.(2)由(1)可知|AB|=|x1-x2|=·-=·.设直线CD的方程为y-1=-k(x-1)(k≠0),同理可得|CD|=·-.∴λ==-(k≠0),λ>0,∴λ2=1+-=1+-.令t=3k+,则t∈(-∞,-2]∪[2,+∞),令g(t)=1+-,t∈(-∞,-2]∪[2,+∞),∵g(t)在(-∞,-2],[2,+∞)上单调递减,∴2-≤g(t)<1或1<g(t)≤2+.故2-≤λ2<1或1<λ2≤2+.∴λ∈-∪.思路分析(1)解法一:利用点差法得直线AB的斜率,进而得直线AB的方程.解法二:设出直线AB的方程,与椭圆方程联立并消元,利用根与系数的关系及AB中点的坐标建立斜率k的方程,从而求得k,得直线AB方程.(2)利用弦长公式求得|AB|与|CD|,进而将λ=表示成关于k的函数,结合函数特征及函数性质求得λ的取值范围.方法点拨解决直线与圆锥曲线的弦中点问题常利用点差法或根与系数的关系,两者都需要对直线斜率是否存在进行讨论,同时也都用到整体代换的求解方法.考点二存在性问题1.(2018湖北张家口期末,18)已知M是直线l:x=-1上的动点,点F的坐标是(1,0),过M的直线l'与l垂直,并且l'与线段MF的垂直平分线相交于点N.(1)求点N的轨迹C的方程;(2)设曲线C上的动点A关于x轴的对称点为A',点P的坐标为(2,0),直线AP与曲线C的另一个交点为B(B 与A'不重合).是否存在一个定点T,使得T,A',B三点共线?若存在,求出点T的坐标;若不存在,请说明理由. 解析(1)依题意,|NM|=|NF|,即点N到直线l的距离与到点F(1,0)的距离相等,故点N的轨迹C为抛物线,其焦点为F(1,0),准线方程为x=-1,所以点N的轨迹C的方程为y2=4x.(2)设A,则A'-,直线AP的斜率为k AP=-=-,直线AB的方程为y=-(x-2).由方程组--得ay2-(a2-8)y-8a=0,则y=a或y=-.设B(x0,y0),则y0=-,x0=,所以B-,又A'-,所以A'B的方程为y+a=--.令y=0,得x=-2,即直线A'B与x轴交于定点T(-2,0).因此存在定点T(-2,0),使得T,A',B三点共线.2.(2018山西康杰中学等六校12月联考,20)已知F1,F2分别为椭圆E:+=1(a>b>0)的左、右焦点,点P在椭圆E上,且|PF1|+|PF2|=4.(1)求椭圆E的方程;(2)过F1的直线l1,l2分别交椭圆E于A,C和B,D,且l1⊥l2,问是否存在实数λ,使得,λ,成等差数列?若存在,求出λ的值;若不存在,请说明理由.解析(1)由已知|PF1|+|PF2|=4,得2a=4,即a=2,又点P在椭圆上,所以+=1,解得b=,故椭圆的标准方程为+=1.(2)当AC⊥x轴时,|BD|=4,|AC|=3,由2λ=+=,得λ=.当BD⊥x轴时,|BD|=3,|AC|=4,由2λ=+=,得λ=.当AC、BD与x轴均不垂直时,设l1:y=k(x+1)(k≠0),A(x1,y1),C(x2,y2),直线l1与椭圆E的方程联立并消去y得(3+4k2)x2+8k2x+4k2-12=0,则x1+x2=-,x1x2=-,所以|AC|=|x1-x2|=,从而=,同理可得=,所以+==,令=2λ,得λ=.综上,存在常数λ=,使得,λ,成等差数列.炼技法【方法集训】方法1 与圆锥曲线相关的最值、范围问题的解题方法1.(2017江西南昌三校联考,11)已知双曲线x2-=1的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则·的最小值为( )A.-2B.-C.1D.0答案A2.(2018浙江,17,4分)已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m= 时,点B 横坐标的绝对值最大.答案 53.(2018湖南衡阳一模,20)已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,离心率为,直线y=1与C的两个交点间的距离为.(1)求椭圆C的方程;(2)分别过F1、F2作l1、l2满足l1∥l2,设l1、l2与C的上半部分分别交于A、B两点,求四边形ABF2F1面积的最大值.解析(1)易知椭圆过点,所以+=1,①又=,②a2=b2+c2,③所以由①②③得a2=4,b2=3,所以椭圆C的方程为+=1.(2)设直线l1的方程为x=my-1,它与C的另一个交点为D.将直线l1与椭圆C的方程联立,消去x,得(3m2+4)y2-6my-9=0,Δ=144(m2+1)>0.|AD|=·,又F2到l1的距离d=,所以△=12.令t=,t≥1,则△=,当t=1时,△取得最大值,为3.又=(|BF2|+|AF1|)·d=(|AF1|+|DF1|)·d=|AB|·d=△,四边形所以四边形ABF2F1面积的最大值为3.方法2 圆锥曲线中定点(定值)问题的求法1.(2018云南玉溪模拟,20)已知F(1,0),P是平面上一动点,P在直线l:x=-1上的射影为点N,且满足·=0.(1)求点P的轨迹C的方程;(2)过点M(1,2)作曲线C的两条弦MA,MB,设MA,MB所在直线的斜率分别为k1,k2,当k1,k2变化且满足k1+k2=-1时,证明直线AB过定点,并求出该定点坐标.解析(1)设P(x,y),则N(-1,y).=(-1-x,0),又F(1,0),从而=(2,-y),则+=(-1-x,0)+(2,-y)=--,由·=0,得--·(2,-y)=0,即-2x+y2=0.化简得y2=4x,即为所求的点P的轨迹C对应的方程.(2)设A(x1,y1)、B(x2,y2).由题意知MA:y=k1(x-1)+2,MB:y=k2(x-1)+2.将y=k1(x-1)+2与y2=4x联立,得k1y2-4y-4k1+8=0,由y1+2=,得y1=-2,①同理,y2=-2,②直线AB的方程为y-y1=--(x-x1),即y=x+,③由①②得y1+y2=-2+-2=-4=--4, y1y2=4-=4,代入③得,y=--x+--,整理得k1k2(x+y+1)+6+y=0.由⇒-故直线AB过定点(5,-6).知识拓展过圆锥曲线上一定点M作圆锥曲线的两条弦MA,MB,设MA,MB所在直线的斜率分别为k1,k2,当k1+k2为定值且k1+k2≠0时,直线AB过定点;当k1+k2=0时,直线AB的斜率为定值.2.(2017湖南长沙长郡中学模拟,20)在平面直角坐标系xOy中,过点C(2,0)的直线与抛物线y2=4x相交于A、B两点,设A(x1,y1),B(x2,y2).(1)求证:y1y2为定值;(2)是否存在平行于y轴的定直线被以AC为直径的圆截得的弦长为定值?如果存在,求出该直线的方程和弦长;如果不存在,说明理由.解析(1)证明:设直线AB的方程为my=x-2.由-得y2-4my-8=0,∴y1y2=-8,为定值.(2)存在.设存在直线x=a满足条件.设AC的中点为E,则E,|AC|=-,因此以AC为直径的圆的半径r=|AC|=-=,点E到直线x=a的距离d=-,所以所截弦长为2-=2--=--=---.当1-a=0,即a=1时,弦长为定值2,这时直线方程为x=1.方法3 存在性问题的解题策略1.(2018山东济宁一模,20)已知椭圆C:+=1(a>2),直线l:y=kx+1(k≠0)与椭圆C相交于A,B两点,点D为AB的中点.(1)若直线l与直线OD(O为坐标原点)的斜率之积为-,求椭圆C的方程;(2)在(1)的条件下,y轴上是否存在定点M,使得当k变化时,总有∠AMO=∠BMO(O为坐标原点)?若存在,求出定点M的坐标;若不存在,请说明理由.解析(1)由得(4+a2k2)x2+2a2kx-3a2=0, 显然Δ>0,设A(x1,y1),B(x2,y2),D(x0,y0),则x1+x2=-,x1x2=-,∴x0=-,y0=-+1=,∴k·=k·-=-,∴a2=8,∴椭圆C的方程为+=1.(2)假设存在定点M符合题意,且设M(0,m),由∠AMO=∠BMO得k AM+k BM=0,∴-+-=0,即y1x2+y2x1-m(x1+x2)=0,∴2kx1x2+x1+x2-m(x1+x2)=0.由(1)知x1+x2=-,x1x2=-,∴--+=0,∴-=0,即-=0,∵k≠0,∴-4+m=0,∴m=4.∴存在定点M(0,4),使得∠AMO=∠BMO.2.(2018湖北八校12月联考,20)已知抛物线C:y2=2px(p>0)在第一象限内的点P(2,t)到焦点F的距离为.(1)若M-,过点M,P的直线l1与抛物线相交于另一点Q,求的值;(2)若直线l2与抛物线C相交于A,B两点,与圆M:(x-a)2+y2=1相交于D,E两点,O为坐标原点,OA⊥OB,试问:是否存在实数a,使得DE的长为定值?若存在,求出a的值;若不存在,请说明理由.解析(1)∵点P(2,t),∴2+=,解得p=1,故抛物线C的方程为y2=2x,当x=2时,t=2,∴l1的方程为y=x+,与抛物线方程y2=2x联立可得x Q=,又∵|QF|=x Q+,∴==.(2)设直线AB的方程为x=ty+m,代入抛物线方程可得y2-2ty-2m=0,设A(x1,y1),B(x2,y2),则y1+y2=2t①,y1y2=-2m②,由OA⊥OB得(ty1+m)(ty2+m)+y1y2=0,整理得(t2+1)y1y2+tm(y1+y2)+m2=0③,将①②代入③解得m=2,∴直线l2:x=ty+2,∵圆心到直线l2的距离d=,∴|DE|=2--,显然当a=2时,|DE|=2,为定值.过专题【五年高考】A组山东省卷、课标卷题组考点一定值、定点、最值及范围问题1.(2017课标Ⅰ,10,5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则|AB|+|DE|的最小值为( )A.16B.14C.12D.10答案A2.(2017课标Ⅰ,20,12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3-,P4中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.解析本题考查椭圆的方程和性质、直线与椭圆的位置关系以及定点问题,考查学生的逻辑思维能力、运算求解能力和对数形结合思想的应用能力.(1)由于P3,P4两点关于y轴对称,故由题设知C经过P3,P4两点.又由+>+知,C不经过点P1,所以点P2在C上.因此解得故C的方程为+y2=1.(2)设直线P2A与直线P2B的斜率分别为k1,k2.如果l与x轴垂直,设l:x=t,由题设知t≠0,且|t|<2,可得A,B的坐标分别为-,--.则k1+k2=----=-1,得t=2,不符合题设.从而可设l:y=kx+m(m≠1).将y=kx+m代入+y2=1得(4k2+1)x2+8kmx+4m2-4=0.由题设可知Δ=16(4k2-m2+1)>0.设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=-.而k1+k2=-+-=-+-=-,由题设k1+k2=-1,故(2k+1)x1x2+(m-1)(x1+x2)=0, 即(2k+1)·-+(m-1)·-=0.解得k=-.当且仅当m>-1时,Δ>0,于是l:y=-x+m,即y+1=-(x-2),所以l过定点(2,-1).思路分析(1)椭圆的对称性易知点P3,P4在椭圆上,将点P1(1,1)代入椭圆方程,经过比较可知点P1(1,1)不在椭圆上,进而可列方程组求出椭圆方程;(2)设出直线l的方程,将直线l与椭圆的方程联立并消元,利用根与系数的关系使问题得解,在解题中要注意直线斜率不存在的情况.方法点拨定点问题的常见解法:(1)根据题意选择参数,建立一个含参数的直线系或曲线系方程,经过分析、整理,对方程进行等价变形,以找出适合方程且与参数无关的坐标,该坐标对应的点即为所求的定点.(2)从特殊位置入手,找出定点,再证明该定点符合题意.3.(2016课标Ⅱ,20,12分)已知椭圆E:+=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(1)当t=4,|AM|=|AN|时,求△AMN的面积;(2)当2|AM|=|AN|时,求k的取值范围.解析(1)设M(x1,y1),则由题意知y1>0.当t=4时,E的方程为+=1,A(-2,0).由已知及椭圆的对称性知,直线AM的倾斜角为.因此直线AM的方程为y=x+2.将x=y-2代入+=1得7y2-12y=0.解得y=0或y=,所以y1=.因此△AMN的面积S△AMN=2×××=.(2)由题意,t>3,k>0,A(- ,0).将直线AM的方程y=k(x+ ) 代入+=1得(3+tk2)x2+2 ·tk2x+t2k2-3t=0. 由x1·(- )=-得x1=-,故|AM|=|x1+ |=.由题设,直线AN的方程为y=-(x+ ),故同理可得|AN|=.由2|AM|=|AN|得=,即(k3-2)t=3k(2k-1).当k=时上式不成立,因此t=--.t>3等价于---=--<0,即--<0.由此得--或--解得<k<2.因此k的取值范围是(,2).疑难突破第(1)问中求出直线AM的倾斜角是解决问题的关键;第(2)问利用2|AM|=|AN|得出t与k的关系式,由t>3,建立关于k的不等式,从而得出k的取值范围.名师点拨本题主要考查椭圆的几何性质,直线与椭圆的位置关系以及方程思想的应用,考查学生的运算求解能力及逻辑思维能力.挖掘出题目中t>3这一隐含条件是把等式转化为不等式的关键.4.(2016课标Ⅰ,20,12分)设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D 两点,过B作AC的平行线交AD于点E.(1)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(2)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.解析(1)因为|AD|=|AC|,EB∥AC,故∠EBD=∠ACD=∠ADC.所以|EB|=|ED|,故|EA|+|EB|=|EA|+|ED|=|AD|.又圆A的标准方程为(x+1)2+y2=16,从而|AD|=4,所以|EA|+|EB|=4.由题设得A(-1,0),B(1,0),|AB|=2,由椭圆定义可得点E的轨迹方程为+=1(y≠0).(2)当l与x轴不垂直时,设l的方程为y=k(x-1)(k≠0),M(x1,y1),N(x2,y2).由-得(4k2+3)x2-8k2x+4k2-12=0.则x1+x2=,x1x2=-.所以|MN|=|x1-x2|=.过点B(1,0)且与l垂直的直线m:y=-(x-1),A到m的距离为,所以|PQ|=2-=4.故四边形MPNQ的面积S=|MN||PQ|=12.可得当l与x轴不垂直时,四边形MPNQ面积的取值范围为(12,8).当l与x轴垂直时,其方程为x=1,|MN|=3,|PQ|=8,四边形MPNQ的面积为12.综上,四边形MPNQ面积的取值范围为[12,8).方法总结定义法求轨迹方程的一般步骤:(1)判定动点的运动轨迹满足某种曲线的定义;(2)设标准方程,求方程中的基本量;(3)写出轨迹方程.5.(2015山东,20,13分)平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,左、右焦点分别是F1,F2.以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.(1)求椭圆C的方程;(2)设椭圆E:+=1,P为椭圆C上任意一点.过点P的直线y=kx+m交椭圆E于A,B两点,射线PO交椭圆E于点Q.(i)求的值;(ii)求△ABQ面积的最大值.解析(1)证明:由题意知2a=4,则a=2.又=,a2-c2=b2,可得b=1,所以椭圆C的方程为+y2=1.(2)由(1)知椭圆E的方程为+=1.(i)设P(x0,y0),=λ,由题意知Q(-λx0,-λy0).因为+=1,又-+-=1,即=1,所以λ=2,即=2.(ii)设A(x1,y1),B(x2,y2).将y=kx+m代入椭圆E的方程,可得(1+4k2)x2+8kmx+4m2-16=0,由Δ>0,可得m2<4+16k2.①由韦达定理有x1+x2=-,x1x2=-.所以|x1-x2|=-.因为直线y=kx+m与y轴交点的坐标为(0,m), 所以△OAB的面积S=|m||x1-x2|=-=-=2-.设=t.将y=kx+m代入椭圆C的方程,可得(1+4k2)x2+8kmx+4m2-4=0,由Δ≥0,可得m2≤1+4k2.②由①②可知0<t≤1,因S=2-=2-,故S≤2,当且仅当t=1,即m2=1+4k2时取得最大值2.由(i)知,△ABQ面积为3S,所以△ABQ面积的最大值为6.考点二存在性问题(2014山东,21,14分)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,△ADF为正三角形.(1)求C的方程;(2)若直线l1∥l,且l1和C有且只有一个公共点E,(i)证明直线AE过定点,并求出定点坐标;(ii)△ABE的面积是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.解析(1)由题意知F.设D(t,0)(t>0),则FD的中点为.因为|FA|=|FD|,由抛物线的定义知3+=-,解得t=3+p或t=-3(舍去).由=3,解得p=2.所以抛物线C的方程为y2=4x.(2)(i)由(1)知F(1,0),设A(x0,y0)(x0y0≠0),D(x D,0)(x D>0), 因为|FA|=|FD|,则|x D-1|=x0+1,由x D>0得x D=x0+2,故D(x0+2,0). 故直线AB的斜率k AB=-.因为直线l1和直线AB平行,所以设直线l1的方程为y=-x+b, 代入抛物线方程得y2+y-=0, 由题意得Δ=+=0,得b=-. 设E(x E,y E),则y E=-,x E=,当≠4时,k AE=--=--=-,可得直线AE的方程为y-y0=-(x-x0),由=4x0,整理可得y=-(x-1),直线AE恒过点F(1,0).当=4时,直线AE的方程为x=1,过点F(1,0), 所以直线AE过定点F(1,0).(ii)由(i)知直线AE过焦点F(1,0),所以|AE|=|AF|+|FE|=(x0+1)+=x0++2. 设直线AE的方程为x=my+1,因为点A(x0,y0)在直线AE上,故m=-,设B(x1,y1),直线AB的方程为y-y0=-(x-x0), 由于y0≠0,可得x=-y+2+x0,代入抛物线方程得y2+y-8-4x0=0.所以y0+y1=-,可求得y1=-y0-,x1=+x0+4,所以点B到直线AE的距离为-d===4.则△ABE的面积S=×4≥16,当且仅当=x0,即x0=1时等号成立.所以△ABE的面积的最小值为16.评析本题考查抛物线的标准方程、几何性质,直线与圆锥曲线的位置关系以及解析几何中的定点问题、最值问题和结论探究性问题.本题综合性较强、难度较大,很好地考查了考生的逻辑思维能力和运算求解能力.本题的易错点是定点的确定.B组其他自主命题省(区、市)卷题组考点一定值、定点、最值及范围问题1.(2014湖北,9,5分)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A. B. C.3 D.2答案A2.(2018北京,19,14分)已知抛物线C:y2=2px经过点P(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.(1)求直线l的斜率的取值范围;(2)设O为原点,=λ,=μ,求证:+为定值.解析(1)由已知可得4=2p,所以抛物线C的方程为y2=4x,设A(x1,y1),B(x2,y2),直线l显然不能与两坐标轴垂直,设其方程为y=kx+1(k≠0),由y2=4x得x=,将其代入y=kx+1,得y=k·+1,即ky2-4y+4=0.所以由已知可得-解得k<1且k≠0.又PA,PB与y轴相交,故直线l不过点(1,-2),从而k≠-3.所以直线l的斜率的取值范围为(-∞,-3)∪(-3,0)∪(0,1).(2)由(1)知y1+y2=,y1y2=.而点A(x1,y1),B(x2,y2)均在抛物线上,所以x1=,x2=.因为直线PA与直线PB均与y轴相交,则直线PA与直线PB的斜率均存在,即y1≠-2,y2≠-2.因为k PA=--=--=--=,所以直线PA的方程为y-2=(x-1),令x=0,可得y M=2-=,即M, 同理可得N,而由=λ可得,-1=-λ,所以=-.同理由=μ可得,-1=-μ,所以=-.所以+=-+-=----=--=--·=--=2.故+为定值.方法总结圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题设条件,得出与代数式有关的等式,化简即可得出定值.(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的表达式,再利用题设条件化简、变形求得.(3)求某线段长度为定值.利用两点间的距离公式求得线段长度的表达式,再依据条件对表达式进行化简、变形即可求得.3.(2016北京,19,14分)已知椭圆C:+=1(a>b>0)的离心率为,A(a,0),B(0,b),O(0,0),△OAB的面积为1.(1)求椭圆C的方程;(2)设P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N.求证:|AN|·|BM|为定值.解析(1)由题意得解得a=2,b=1.所以椭圆C的方程为+y2=1.(2)证法一:由(1)知,A(2,0),B(0,1).设P(x0,y0),则+4=4.当x0≠0时,直线PA的方程为y=-(x-2).令x=0,得y M=--,从而|BM|=|1-y M|=-.直线PB的方程为y=-x+1.令y=0,得x N=--,从而|AN|=|2-x N|=-.所以|AN|·|BM|=-·-=----=----=4.当x0=0时,y0=-1,|BM|=2,|AN|=2,所以|AN|·|BM|=4.综上,|AN|·|BM|为定值.证法二:点P在曲线+=1上,不妨设P(2cos θ,sinθ),当θ≠kπ且θ≠kπ+(k∈Z)时,直线AP的方程为y-0=-(x-2),令x=0,得y M=-;直线BP的方程为y-1=-(x-0),令y=0,得x N=-.∴|AN|·|BM|=2--·--=2----=2×2=4(定值).当θ=kπ或θ=kπ+(k∈Z)时,M、N是定点,易得|AN|·|BM|=4.综上,|AN|·|BM|=4.考点二存在性问题1.(2015北京,19,14分)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(1)求椭圆C的方程,并求点M的坐标(用m,n表示);(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N.问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标;若不存在,说明理由.解析(1)由题意得解得a2=2. 故椭圆C的方程为+y2=1.设M(x M,0).因为m≠0,所以-1<n<1.直线PA的方程为y-1=-x,所以x M=-,即M-.(2)因为点B与点A关于x轴对称,所以B(m,-n).设N(x N,0),则x N=.“存在点Q(0,y Q)使得∠OQM=∠ONQ”等价于“存在点Q(0,y Q)使得=”,即y Q满足=|x M||x N|.因为x M=-,x N=,+n2=1,所以=|x M||x N|=-=2.所以y Q=或y Q=-.故在y轴上存在点Q,使得∠OQM=∠ONQ.点Q的坐标为(0,)或(0,-).2.(2015四川,20,13分)如图,椭圆E:+=1(a>b>0)的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B 两点.当直线l平行于x轴时,直线l被椭圆E截得的线段长为2.(1)求椭圆E的方程;(2)在平面直角坐标系xOy中,是否存在与点P不同的定点Q,使得=恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.解析(1)由已知得,点(,1)在椭圆E上.因此,-解得a=2,b=.所以椭圆E的方程为+=1.(2)当直线l与x轴平行时,设直线l与椭圆相交于C,D两点. 如果存在定点Q满足条件,则有==1,即|QC|=|QD|.所以Q点在y轴上,可设Q点的坐标为(0,y0).当直线l与x轴垂直时,设直线l与椭圆相交于M,N两点,则M,N的坐标分别为(0,),(0,-).由=,有=-,解得y0=1或y0=2.所以,若存在不同于点P的定点Q满足条件,则Q点坐标只可能为(0,2).下面证明:当Q的坐标为(0,2)时,对任意直线l,均有=. 当直线l的斜率不存在时,由上可知,结论成立.当直线l的斜率存在时,可设直线l的方程为y=kx+1,A,B的坐标分别为(x1,y1),(x2,y2). 联立得(2k2+1)x2+4kx-2=0.其判别式Δ=(4k)2+8(2k2+1)>0,所以,x1+x2=-,x1x2=-.因此+==2k.易知,点B关于y轴对称的点B'的坐标为(-x2,y2).又k QA=-=-=k-,k QB'=--=--=-k+=k-,所以k QA=k QB',即Q,A,B'三点共线.所以===.故存在与P不同的定点Q(0,2),使得=恒成立.C组教师专用题组考点一定值、定点、最值及范围问题1.(2014四川,10,5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,·=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )A.2B.3C.D.答案B2.(2018浙江,21,15分)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(1)设AB中点为M,证明:PM垂直于y轴;(2)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.解析(1)设P(x0,y0),A,B.因为PA,PB的中点在抛物线上,所以y1,y2为方程=4·即y2-2y0y+8x0-=0的两个不同的实根.所以y1+y2=2y0,因此,PM垂直于y轴.(2)由(1)可知-所以|PM|=(+)-x0=-3x0,|y1-y2|=2-.因此,△PAB的面积S△PAB=|PM|·|y1-y2|=(-4x0.因为+=1(x0<0),所以-4x0=-4-4x0+4∈[4,5].因此,△PAB面积的取值范围是.疑难突破解析几何中“取值范围”与“最值”问题在解析几何中,求某个量(直线斜率,直线在x、y轴上的截距,弦长,三角形或四边形面积等)的取值范围或最值问题的关键是利用条件把所求量表示成关于某个变量(通常是直线斜率,动点的横、纵坐标等)的函数,并求出这个变量的取值范围(即函数的定义域),将问题转化为求函数的值域或最值.3.(2016课标Ⅲ,20,12分)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(1)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.解析由题设知F.设l1:y=a,l2:y=b,则ab≠0,且A,B,P-,Q-,R-.记过A,B两点的直线为l,则l的方程为2x-(a+b)y+ab=0.(1)由于F在线段AB上,故1+ab=0.记AR的斜率为k1,FQ的斜率为k2,则==-=-b=k2.k1=-=--所以AR∥FQ.(2)设l与x轴的交点为D(x1,0),则S△ABF=|b-a||FD|=|b-a|-,S△PQF=-.由题设可得2×|b-a|-=-,所以x1=0(舍去),或x1=1.设满足条件的AB的中点为E(x,y).当AB与x轴不垂直时,(x≠1).由k AB=k DE可得=-而=y,所以y2=x-1(x≠1).当AB与x轴垂直时,E与D重合.所以,所求轨迹方程为y2=x-1.疑难突破第(1)问需把AR∥FQ的证明转化为k AR=k FQ的证明;第(2)问需找到AB中点所满足的几何条件,从而将其转化为等量关系.4.(2015浙江,19,15分)已知椭圆+y2=1上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).解析(1)由题意知m≠0,可设直线AB的方程为y=-x+b.由消去y,得x2-x+b2-1=0.-因为直线y=-x+b与椭圆+y2=1有两个不同的交点, 所以Δ=-2b2+2+>0,①将AB中点M代入直线方程y=mx+,解得b=-.②由①②得m<-或m>.(2)令t=∈-∪,则|AB|=·-,且O到直线AB的距离为d=.设△AOB的面积为S(t),所以S(t)=|AB|·d=--≤.当且仅当t2=时,等号成立.故△AOB面积的最大值为.5.(2015湖南,20,13分)已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1(a>b>0)的一个焦点,C1与C2的公共弦的长为2.(1)求C2的方程;(2)过点F的直线l与C1相交于A,B两点,与C2相交于C,D两点,且与同向.(i)若|AC|=|BD|,求直线l的斜率;(ii)设C1在点A处的切线与x轴的交点为M,证明:直线l绕点F旋转时,△MFD总是钝角三角形.解析(1)由C1:x2=4y知其焦点F的坐标为(0,1).因为F也是椭圆C2的一个焦点,所以a2-b2=1.①又C1与C2的公共弦的长为2,C1与C2都关于y轴对称,且C1的方程为x2=4y,由此易知C1与C2的公共点的坐标为,所以+=1.②联立①,②得a2=9,b2=8.故C2的方程为+=1.(2)如图,设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).(i)因与同向,且|AC|=|BD|,所以=,从而x3-x1=x4-x2,即x1-x2=x3-x4,于是(x1+x2)2-4x1x2=(x3+x4)2-4x3x4.③设直线l的斜率为k,则l的方程为y=kx+1.由得x2-4kx-4=0.而x1,x2是这个方程的两根,所以x1+x2=4k,x1x2=-4.④由得(9+8k2)x2+16kx-64=0.而x3,x4是这个方程的两根,所以x3+x4=-,x3x4=-.⑤将④,⑤代入③,得16(k2+1)=+,即16(k2+1)=,所以(9+8k2)2=16×9,解得k=±,即直线l的斜率为±.(ii)由x2=4y得y'=,所以C1在点A处的切线方程为y-y1=(x-x1),即y=-.令y=0,得x=,即M,所以=-.而=(x1,y1-1),于是·=-y1+1=+1>0,因此∠AFM是锐角,从而∠MFD=180°-∠AFM是钝角.故直线l绕点F旋转时,△MFD总是钝角三角形.6.(2014湖南,21,13分)如图,O为坐标原点,椭圆C1:+=1(a>b>0)的左、右焦点分别为F1、F2,离心率为e1;双曲线C2:-=1的左、右焦点分别为F3、F4,离心率为e2,已知e1e2=,且|F2F4|=-1.(1)求C1,C2的方程;(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ 面积的最小值.解析(1)因为e1e2=,所以-·=,即a4-b4=a4,因此a2=2b2,从而F2(b,0),F4(b,0),于是b-b=|F2F4|=-1,所以b=1,所以a2=2.故C1,C2的方程分别为+y2=1,-y2=1.(2)因为AB不垂直于y轴,且过点F1(-1,0),故可设直线AB的方程为x=my-1.由-得(m2+2)y2-2my-1=0,易知此方程的判别式大于0,设A(x1,y1),B(x2,y2),则y1,y2是上述方程的两个实根,所以y1+y2=,y1y2=-. 因此x1+x2=m(y1+y2)-2=-,于是AB的中点M的坐标为-.故直线PQ的斜率为-,则PQ的方程为y=-x,即mx+2y=0.由--得(2-m2)x2=4,所以2-m2>0,且x2=-,y2=-,从而|PQ|=2=2-.设点A到直线PQ的距离为d,则点B到直线PQ的距离也为d,所以2d=,因为点A,B在直线mx+2y=0的异侧,所以(mx1+2y1)(mx2+2y2)<0,于是|mx1+2y1|+|mx2+2y2|=|mx1+2y1-mx2-2y2|,从而2d=.又因为|y1-y2|=-=,所以2d=.故四边形APBQ的面积S=|PQ|·2d=-=2--.而0<2-m2<2,故当m=0时,S取得最小值2.综上所述,四边形APBQ面积的最小值为2.评析本题考查椭圆、双曲线的标准方程和性质,双曲线弦长的计算,点到直线的距离公式,根与系数的关系(韦达定理),求函数的最值等知识.考查学生的运算求解能力和综合分析问题的能力,属于难题.7(2013课标Ⅰ,20,12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P 的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.解析由已知得圆M的圆心为M(-1,0),半径r1=1;圆N的圆心为N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.(1)因为圆P与圆M外切并且与圆N内切,所以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4.由椭圆的定义可知,曲线C是以M、N为左、右焦点,长半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为+=1(x≠-2).(2)对于曲线C上任意一点P(x,y),由于|PM|-|PN|=2R-2≤2,所以R≤2,当且仅当圆P的圆心为(2,0)时,R=2.所以当圆P的半径最长时,其方程为(x-2)2+y2=4.若l的倾斜角为90°,则l与y轴重合,可得|AB|=2.若l的倾斜角不为90°,由r1≠R知l不平行于x轴,设l与x轴的交点为Q,则=,可求得Q(-4,0),所以可设l:y=k(x+4).由l与圆M相切得=1,解得k=±.当k=时,将y=x+代入+=1,并整理得7x2+8x-8=0,解得x1,2=-.所以|AB|=|x2-x1|=.当k=-时,由图形的对称性可知|AB|=.综上,|AB|=2或|AB|=.思路分析(1)由动圆P与两定圆的位置关系可求得|PM|+|PN|=4,根据椭圆的定义即可判定动圆圆心P的轨迹,进而求得曲线C的方程,注意检验特殊点是否符合题意;(2)根据条件确定圆P的半径最长时圆P的方程,对直线l的倾斜角进行讨论.当直线的斜率不存在时,直接求|AB|.当直线的斜率存在时,利用相切关系求其斜率与方程,将直线方程代入曲线C的方程,解出x,再利用弦长公式求|AB|.8.(2013陕西,20,13分)已知动圆过定点A(4,0),且在y轴上截得弦MN的长为8.(1)求动圆圆心的轨迹C的方程;(2)已知点B(-1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的平分线,证明直线l过定点.解析(1)如图,设动圆圆心为O1(x,y),由题意,知|O1A|=|O1M|,当O1不在y轴上时,过O1作O1H⊥MN交MN 于H,则H是MN的中点,∴|O1M|=,又|O1A|=-,∴-=,化简得y2=8x(x≠0).又当O1在y轴上时,O1与O重合,点O1的坐标(0,0)也满足方程y2=8x,∴动圆圆心的轨迹C的方程为y2=8x.(2)由题意,设直线l的方程为y=kx+b(k≠0),P(x1,y1),Q(x2,y2),将y=kx+b代入y2=8x,得k2x2+(2bk-8)x+b2=0.其中Δ=-32kb+64>0.由根与系数的关系得,x1+x2=-,①x1x2=.②因为x轴是∠PBQ的平分线,所以=-,即y1(x2+1)+y2(x1+1)=0,∴(kx1+b)(x2+1)+(kx2+b)(x1+1)=0,整理得2kx1x2+(b+k)(x1+x2)+2b=0,③将①②代入③并化简得8(b+k)=0,∴k=-b,此时Δ>0,∴直线l的方程为y=k(x-1),即直线l过定点(1,0).考点二存在性问题(2015湖北,21,14分)一种作图工具如图1所示.O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且DN=ON=1,MN=3.当栓子D在滑槽AB内做往复运动时,带动N绕O转动一周(D不动时,N也不动),M处的笔尖画出的曲线记为C.以O为原点,AB所在的直··线为x轴建立如图2所示的平面直角坐标系.(1)求曲线C的方程;。

山东高考理科数学圆锥曲线大题

山东高考理科数学圆锥曲线大题

一、弦长问题圆锥曲线的弦长求法 设圆锥曲线C ∶f(x ,y)=0与直线l ∶y=kx+b 相交于A(11,y x )、B(22,y x )两点,则弦长|AB|为:(2)若弦AB 过圆锥曲线的焦点F ,则可用焦半径求弦长,|AB|=|AF|+|BF|.例1 过抛物线241x y -=的焦点作倾斜角为α的直线l 与抛物线交于A 、B 两点,且|AB|=8,求倾斜角α.分析一:由弦长公式易解.解答为:∵ 抛物线方程为y x 42-=, ∴焦点为(0,-1).设直线l 的方程为y-(-1)=k(x-0),即y=kx-1.将此式代入y x 42-=中得:0442=-+kx x .∴k x x x x 442121-=+-=,由|AB|=8得:()()41441822-⨯⨯--⋅+=k k ∴1±=k又有1tan ±=α得:4πα=或43πα=.分析二:利用焦半径关系.∵2,221py BF p y AF +-=+-=∴|AB|=-(1y +y 2)+p=-[(kx 1-1)+(kx 2-1)]+p=-k(1x +x 2)+2+p .由上述解法易求得结果,可由同学们自己试试完成.二、最值问题方法1:定义转化法①根据圆锥曲线的定义列方程;②将最值问题转化为距离问题求解.例2、已知点F 是双曲线x 24-y 212=1的左焦点,定点A 的坐标为(1,4),P 是双曲线右支上的动点,则|PF |+|PA |的最小值为________.方法2:数形结合(切线法)当所求的最值是圆锥曲线上的点到某条直线的距离的最值时:①求与直线平行的圆锥曲线的切线;②求出两平行线的距离即为所求的最值.例3、求椭圆x 22+y 2=1上的点到直线y =x +23的距离的最大值和最小值,并求取得最值时椭圆上点的坐标.方法3:参数法(函数法)①选取合适的参数表示曲线上点的坐标;②求解关于这个参数的函数最值例4、在平面直角坐标系xOy中,点P(x,y)是椭圆x23+y2=1上的一个动点,则S=x+y的最大值为________.方法4:基本不等式法①将最值用变量表示.②利用基本不等式求得表达式的最值.例5、求椭圆x23+y2=1内接矩形ABCD面积的最大值.例6 已知定点A(0,3),点B、C分别在椭圆2216413x y+=的左右准线上运动,当∠BAC=90°时,求△ABC面积的最小值。

2022山东各地市高考数学联考分类篇:10圆锥曲线

2022山东各地市高考数学联考分类篇:10圆锥曲线

2022山东各地市高考数学联考分类篇:10圆锥曲线一、选择题:11.(山东省济南市2020年2月高三定时练习文科)已知圆0241022=+-+x y x 的圆心是双曲线)0(19222>=-a y ax 的一个焦点,则此双曲线的渐近线方程为( B )A .x y 34±= B .x y 43±= C .x y 53±=D .x y 54±= 3.(山东省济南市2020年2月高三定时练习理科)抛物线214y x =的焦点坐标是( D )A .,0161()B .(1,0)C .1-,016() D . 0,1()11.(山东省济南市2020年2月高三定时练习理科)已知点1F 、2F 分别是双曲线22221x y a b-=的左、右焦点,过1F 且垂直于x 轴的直线与双曲线交于A 、B 两点,若2ABF ∆为锐角三角形,则该双曲线的离心率e 的取值范畴是 ( D ) A .(1,)+∞B .(1,3)C .(1,2)D .(1,12)+10.(山东省潍坊市2020年3月高三一轮模拟文理科)直线4h 一4y —k=0与抛物线y2=x 交于A 、B 两点,若,则弦AB 的中点到直线x+1/2=0的距离等于( C ) A .7/4 B .2 C.9/4 D .411. (山东省淄博市2020年3月高三第一次模拟文科)设双曲线22x a -22y b=1的半焦距为c ,直线l 过A (a ,0),B (0,b )两点,若原点O 到l 的距离为34c ,则双曲线的离心率为( A ) A.223或2或33 D.2335. (山东省实验中学2020年3月高三第四次诊断文科)对任意实数θ,则方程22sin 4x y θ+=所表示的曲线不可能是( C )A.椭圆B.双曲线C.抛物线D.圆7. (山东省实验中学2020年3月高三第四次诊断文科)已知抛物线22(0)y px p =>的准线与圆22670x y x +--=相切,则p 的值为( C ) A.12B.1C.2D.4 5.(山东省烟台市2020年高三诊断性检测理)已知P 为抛物线x y 42=上一个动点,Q 为圆1)4(22=-+y x 上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和最小值是( D )A .5B .8 C.25+ D.171-10. (山东省济南一中2020届高三上学期期末文科)已知抛物线22(0)y px p =>上一点(1,)(0)M m m >到其焦点的距离为5,双曲线221x y a-=的左顶点为A ,若双曲线的一条渐近线与直线AM 平行,则实数a 的值是( A )A . 19B .125C .15D .135.(山东省烟台市2020届高三上学期期末文科)直线220x y -+=通过椭圆22221(0)x y a b a b +=>>的一个焦点和一个顶点,则该椭圆的离心率为 A .255 B.12 C.55 D. 2311. (山东省青岛市2020届高三上学期期末文科)以双曲线22221x y a b-=(0,0)a b >>的左焦点F 为圆心,作半径为b 的圆F ,则圆F 与双曲线的渐近线( C ) A .相交 B .相离C .相切D .不确定二、填空题:13.(山东省潍坊市2020年3月高三一轮模拟文理科)双曲线的离心率为2,则该双曲线的渐近线方程为 。

2024年新高考版数学专题1_9.5 圆锥曲线的综合问题(分层集训)

2024年新高考版数学专题1_9.5 圆锥曲线的综合问题(分层集训)

解析 (1)设动点P的坐标为(x,y),因为| PF | = 5 ,
d5
所以
(x 1)2 y2
=
5 ,即5[(x+1)2+y2]=|x+5|2,整理得 x2 + y2 =1.所以动点P的
| x5|
5
54
轨迹方程为 x2 + y2 =1.
54
(2)设M(x1,y1),N(x2,y2),由(1)可得点A的坐标为(0,-2),故直线AM:y=
AC
·BC
=1,
则点C的轨迹为 ( )
A.圆 B.椭圆 C.抛物线 D.直线
答案 A
3.(2023届贵州遵义新高考协作体入学质量监测,8)已知圆C的方程为(x-1)2
+y2=16,B(-1,0),A为圆C上任意一点,若点P为线段AB的垂直平分线与直线
AC的交点,则点P的轨迹方程为 ( )
A. x2 + y2 =1
2 2
+
y2 b2
=1(a>b>0)的离心率e=
2 ,四
2
个顶点组成的菱形的面积为8 2 ,O为坐标原点.
(1)求椭圆E的方程;
(2)过☉O:x2+y2= 8
上任意点P作☉O的切线l与椭圆E交于点M,N,求证:
PM
·
3
PN
为定值.
解析 (1)由题意得2ab=8 2 ,e= c = 2 ,a2=b2+c2,
2
3
6
,
0
,∴
PM
=
0,
2
3
6
,
PN
=
0,
2
6 3
,

山东省各地市2020年高考数学 最新试题分类大汇编 11 圆锥曲线(1) 理

山东省各地市2020年高考数学 最新试题分类大汇编 11 圆锥曲线(1) 理

山东省各地市2020年高考数学(理科)最新试题分类大汇编:第11部分:圆锥曲线(1)一、选择题【山东省青州市2020届高三2月月考理】10. 设双曲线的渐近线与抛物线相切,则该双曲线的离心率等于A. B. C. D.【答案】B滕州二中【山东省微山一中2020届高三10月月考理】8. 若双曲线上不存在点P使得右焦点F关于直线OP(O为双曲线的中心)的对称点在y轴上,则该双曲线离心率的取值范围为()A. B. C.D.答案:C解析:这里给出否定形式,直接思考比较困难,按照正难则反,考虑存在点P使得右焦点F关于直线OP(O为双曲线的中心)的对称点在y轴上,因此只要在这个双曲线上存在点P使得OP斜率为1即可,所以只要渐进线的斜率大于1,也就是离心率大于,求其在大于1的补集;该题通过否定形式考查反证法的思想,又考查数形结合、双曲线的方程及其几何性质,是中档题.【山东省临沭一中2020届高三12月理】8.已知双曲线的一个焦点与抛物线的焦点重合,且双曲线的离心率等于,则该双曲线的方程为( )A. B. C. D.【答案】D【山东省实验中学2020届高三上学期第一次诊断性考试理】12. 点P在双曲线上•,是这条双曲线的两个焦点,,且的三条边长成等差数列,则此双曲线的离心率是(A) .2 (B) .3 (C) .4 (D) .5【答案】D【山东省滕州二中2020届高三上学期期中理】11: 已知直线是椭圆的右准线,如果在直线上存在一点M,使得线段OM(O为坐标原点)的垂直平分线过右焦点,则椭圆的离心率的取值范围是()A.B. C .D.【答案】B【山东省青岛市2020届高三期末检测理】10.以坐标轴为对称轴,原点为顶点,且过圆圆心的抛物线方程是A.或B.C.或D.或【答案】D【山东省青岛市2020届高三期末检测理】11.以双曲线的左焦点为圆心,作半径为的圆,则圆与双曲线的渐近线A.相交B.相离C.相切D.不确定【答案】C【山东省莱芜市2020届高三上学期期末检测理】正三角形一个顶点是抛物线的焦点,另两个顶点在抛物线上,则满足此条件的正三角形共有A.0个B.1个C.2个D.4个【答案】C【山东省莱芜市2020届高三上学期期末检测理】若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上任意一点,则的最小值为A. B.3 C.8 D.15【答案】A【山东省烟台市2020届高三期末检测理】7.直线经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为A. B. C. D.【答案】C【山东省潍坊市重点中学2020届高三2月月考理】11.若双曲线的左右焦点分别为、,线段被抛物线的焦点分成3:2的两段,则此双曲线的离心率为A.B.C.D.【答案】D【山东省潍坊市三县2020届高三12月联考理】10.若椭圆mx2+ny2=1与直线x+y-1=0交于A、B两点,过原点与线段AB中点的直线的斜率为则=()A B C D【答案】B【山东省潍坊市三县2020届高三12月联考理】11.过双曲线=1(a>0,b>0)的左焦点F(-c,0)(c>0),作圆的切线,切点为E,延长FE交双曲线右支于点P,若,则双曲线的离心率为()A.B.C.D.【答案】C【山东省枣庄市2020届高三上学期期末理】11.已知双曲线的一个焦点与抛物线的焦点重合,且该双曲线的离心率为,则该双曲线的渐近线方程为A. 2B. 4C.D.【答案】C【山东实验中学2020届高三第一次诊断性考试理】12. 点P在双曲线上•,是这条双曲线的两个焦点,,且的三条边长成等差数列,则此双曲线的离心率是(A) .2 (B) .3 (C) .4 (D) .5【答案】D【解析】解:设|PF2|,|PF1|,|F1F2|成等差数列,且分别设为m-d,m,m+d,则由双曲线定义和勾股定理可知:m-(m-d)=2a,m+d=2c, (m-d)2+m2=(m+d)2,解得m=4d=8a,故选项为D【山东省聊城市五校2020届高三上学期期末联考】6.已知P是以F1、F2为焦点的椭圆则该椭圆的离心率为()A.B.C.D.【答案】D【山东济宁梁山二中2020届高三12月月考理】12.设F是抛物线的焦点,点A是抛物线与双曲线的一条渐近线的一个公共点,且AF轴,则双曲线的离心率为A. B. C.D. 2【答案】B【莱州一中2020高三第三次质量检测理】10.已知点P是抛物线上一点,设P到此抛物线准线的距离是,到直线的距离是,则的最小值是A. B. C. D. 3【答案】C【山东省滨州市沾化一中2020届高三上学期期末理】9.若椭圆(m>n>0)和双曲线(a>b >0)有相同的焦点F1,F2,P是两条曲线的一个交点,则|PF1|·|PF2|的值是()A.m-a B.C.m2-a2D.【答案】A【山东济宁邹城二中2020届高三上学期期中】2.已知双曲线的焦点为F1、F2,点M在双曲线上且则点M到x轴的距离为( )A. B. C. D.【答案】C【山东济南市2020界高三下学期二月月考理】已知点、分别是双曲线的左、右焦点,过且垂直于轴的直线与双曲线交于、两点,若为锐角三角形,则该双曲线的离心率的取值范围是A.B.C.(1,2)D.【答案】D【山东济南市2020界高三下学期二月月考理】抛物线的焦点坐标是A.B.C.D.【答案】D【山东省济宁市2020届高三上学期期末检测理】2.抛物线的焦点坐标为A.(1,0)B.(2,0)C.(0,1)D.(0,2)【答案】C【山东省济南一中2020届高三上学期期末理】10. 已知抛物线上一点到其焦点的距离为5,双曲线的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数的值是A. B. C. D.【答案】A【山东省苍山县2020届高三上学期期末检测理】2.抛物线的焦点到准线的距离是()A.1 B.2 C.4 D.8【答案】C【山东省潍坊市2020届高三上学期期末考试理】10.已知点P是抛物线上一点,设P到此抛物线准线的距离是d1,到直线的距离是d2,则d l+d2的最小值是A. B. C. D.3【答案】C【山东省苍山县2020届高三上学期期末检测理】12.已知圆,以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为()A.B.C.D.【答案】B二、填空题【山东省潍坊市2020届高三上学期期末考试理】15.已知双曲线的离心率为,焦距为2c,且2a2=3c,双曲线上一点P满足,则.【答案】4【山东省莱芜市2020届高三上学期期末检测理】若双曲线的一条渐近线与抛物线只有一个公共点,则双曲线的离心率等于 .【答案】3【山东省潍坊市三县2020届高三12月联考理】13. 已知是过抛物线焦点的弦,,则中点的横坐标是 .【答案】【莱州一中2020高三第三次质量检测理】15.已知双曲线的离心率为,焦距为2c,且,双曲线上一点P满足、为左、右焦点),则 .【答案】4【山东省东营市2020届高三上学期期末(理)】15.已知双曲线的离心率为,焦距为2c,且2a2=3c,双曲线上一点P满足,则.【答案】4【山东省济宁市汶上一中2020届高三11月月考理】12.已知点是以为焦点的椭圆上一点,且则该椭圆的离心率等于________.【答案】【山东省临沭一中2020届高三12月理】16. 椭圆的左、右焦点分别是F1,F2,过F2作倾斜角为的直线与椭圆的一个交点为M,若MF1垂直于x轴,则椭圆的离心率为【答案】三、解答题【山东实验中学2020届高三第一次诊断性考试理】22.(本小题满分14分)己知椭圆C :旳离心率e =,左、.右焦点分别为,点.,点尽在线段PF1的中垂线i.(1) 求椭圆C的方程;(2) 设直线与椭圆C交于M,N两点,直线、的倾斜角分别为,且,求证:直线/过定点,并求该定点的坐标.【解题说明】本试题主要考察椭圆的标准方程,以及恒过定点的直线,直线与圆锥曲线的综合运用。

山东历年高考题汇总椭圆双曲线抛物线

山东卷历年高考圆锥曲线部分汇总【2007年】13、 设O 是坐标原点,F 是抛物线22(0)y px p =>的焦点,A 是抛物线上的一点,FA与x 轴正向的夹角为60︒,则OA 为________.【答案】:2p 【分析】:过 A 作AD x ⊥轴于D ,令FD m =,则2FA m =,2p m m +=,m p =。

.2OA p ∴==15、与直线20x y +-=和曲线221212540x y x y +--+=都相切的半径最小的圆的标准方程是_________. 【答案】:. 22(2)(2)2x y -+-=【分析】:曲线化为22(6)(6)18x y -+-=,其圆心到直线20x y +-=的距离为d ==所求的最小圆的圆心在直线y x =,圆心坐标为(2,2).标准方程为22(2)(2)2x y -+-=。

(21)、(本小题满分12分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点的距离的最大值为3,最小值为1.(I)求椭圆C 的标准方程;(II)若直线:l y kx m =+与椭圆C 相交于A,B 两点(A,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.解:(I)由题意设椭圆的标准方程为22221(0)x y a b a b+=>>3,1a c a c +=-=,22,1,3a c b === 22 1.43x y ∴+= (II)设1122(,),(,)A x y B x y ,由22143y kx mx y =+⎧⎪⎨+=⎪⎩得222(34)84(3)0k x mkx m +++-=,22226416(34)(3)0m k k m ∆=-+->,22340k m +->.212122284(3),.3434mk m x x x x k k -+=-⋅=++22221212121223(4)()()().34m k y y kx m kx m k x x mk x x m k-⋅=+⋅+=+++=+ 以AB 为直径的圆过椭圆的右顶点(2,0),D 1AD BD k k ⋅=-,1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k --+++=+++, 2271640m mk k ++=,解得1222,7km k m =-=-,且满足22340k m +->.当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0).7综上可知,直线l 过定点,定点坐标为2(,0).7【2008年】(10)设椭圆C1的离心率为135,焦点在x 轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为(A )1342222=-y x (B)15132222=-y x (C)1432222=-y x (D)112132222=-y x【解析】本题考查椭圆、双曲线的标准方程。

专题50 圆锥曲线(多选题部分)(解析版)

专题50 圆锥曲线(多选题部分)一、题型选讲题型一 、圆锥曲线定义与性质的考查例1、(202年山东卷)已知曲线22:1C mx ny +=( ) A .若0m =,0n >,则C 是两条直线 B .若0m n =>,则CC .若0m n >>,则C 是椭圆,其焦点在x 轴上D .若0mn <,则C是双曲线,其渐近线方程为y = 【答案】AD【详解】对于A ,若0m =,0n >,则2:1C ny =即y =,为两条直线,故A 正确; 对于B ,若0m n =>,则221:C x y n +=,所以CB 错误; 对于C ,若0m n >>,则110m n<<, 所以22:1C mx ny +=即22:111x y C m n +=为椭圆,且焦点在y 轴上,故C 错误; 对于D ,若0mn <,则22:111x y C m n +=为双曲线,且其渐近线为y ==,故D 正确.例2、已知双曲线C过点(且渐近线方程为3y x =±,则下列结论正确的是( ) A .C 的方程为2213x y -=B .CC .曲线21x y e -=-经过C 的一个焦点 D.直线10x -=与C 有两个公共点【答案】AC【详解】对于A:由双曲线的渐近线方程为3y x =±,可设双曲线方程为223x y λ-=,把点代入,得923λ-=,即1λ=.∴双曲线C 的方程为2213x y -=,故A 正确; 对于B :由23a =,21b =,得2c =,∴双曲线C=,故B 错误; 对于C :取20x +=,得2x =-,0y =,曲线21x y e +=-过定点(2,0)-,故C 正确;对于D :双曲线的渐近线0x ±=,直线10x --=与双曲线的渐近线平行,直线10x -=与C 有1个公共点,故D 不正确.故选:AC .例3、(2020·山东济南外国语学校高三月考)已知双曲线的左、右焦点分别为为双曲线上一点,且,若,则对双曲线中的有关结论正确的是( ) A .B .C .D .【答案】ABCD【解析】由双曲线的定义知:, 由,在中,由余弦定理可得:,22221(0,0)x y a b a b-=>>12,,F F P122PF PF =12sin 4F PF ∠=,,,a b c e e =2e =b =b =12212,4PF PF PF a PF a -==∴=12sin F PF ∠=121cos 4F PF ∠=±12PF F △222416412244a a c a a +-=±⨯⨯解得或,, 或,又, 可得或故选:ABCD例4、已知双曲线,若的离心率最小,则此时( )A.BC .双曲线的一个焦点坐标为D【答案】AB【解析】因为,所以双曲线的焦点在轴上,所以,,所以.又双曲线的离心率,则.因为,所以,当且仅当,即时,等号成立,则双曲线的离心率最小时,,,,则双曲,故A ,B 正确;双曲线的焦点坐标为(,0),故C 错误;焦点,故D 错误.故选:AB .题型二圆锥曲线的综合性问题例5、的椭圆为“黄金椭圆”.如图,已知椭圆C :22221(0)x y a b a b +=>>,12,A A 分别为左、右顶点,1B ,2B 分别为上、下顶点,1F ,2F 分别为左、右焦点,P 为椭圆上一点,则满足下列条件能使椭圆C 为“黄金椭圆”的有( )224c a =226c a=2ce a∴==2c a ∴=c =222c a b =+b =b =()222:104x y C m m m m -=>-+C 2m =0y ±=)0m >C x 2a m =224b m m =-+224c m =+c e a =222244c m e m a m m+===+0m >244e m m =+≥=4m m=2m =C 22a =26b =28c =0y ±=±()0y +=2==A .2112212A F F A F F ⋅= B .11290F B A ∠=︒C .1PF x ⊥轴,且21//PO A BD .四边形221AB A B 的内切圆过焦点1F ,2F【答案】BD【详解】∵椭圆2222:1(0)x y C a b a b+=>>∴121212(,0),,0),(0,),(0,),(,0),(,)(0A a A a B b B b F c F c ---对于A ,若2112212A F F A F F ⋅=,则22()(2)a c c -=,∴2a c c -=,∴13e =,不满足条件,故A 不符合条件;对于B ,11290F B A ︒∠=,∴222211112A F B F B A =+ ∴2222()a c a a b +=++,∴220c ac a +-= ∴210e e +-=,解得e =e =,故B 符合条件; 对于C ,1PF x ⊥轴,且21//PO A B ,∴2,b P c a ⎛⎫- ⎪⎝⎭∵21PO A B k k =∴2b c ab a =--,解得 ∵,∴b c =222a b c =+a =∴,不满足题意,故C不符合条件;对于D,四边形的内切圆过焦点即四边形的内切圆的半径为c,∴∴,∴,解得(舍去)或,∴,故D符合条件.例6、已知椭圆()22:10x yC a ba b+=>>的左、右焦点分别为1F,2F且122F F=,点()1,1P在椭圆内部,点Q在椭圆上,则以下说法正确的是()A.1QF QP+的最小值为1B.椭圆C的短轴长可能为2C.椭圆C的离心率的取值范围为⎛⎝⎭D.若11PF FQ=,则椭圆C【答案】ACD【详解】A.因为12||2F F,所以22(1,0),||1F PF=,所以122||||||||||1QF QP QF QP PF+=+≥=,当2,,Q F P,三点共线时,取等号,故正确;B.若椭圆C的短轴长为2,则1,2b a==,所以椭圆方程为22121x y+=,11121+>,则点P在椭圆外,故错误;C.因为点(1,1)P在椭圆内部,所以111a b+<,又1a b-=,所以1b a=-,所以1111+<-a a,即2310a a-+>,解得236(1244a+++>==,12+>,所以12=<e,所以椭圆C的离心率的取值范围为,故正确;2cea===1221A B A B12,F F1221A B A B ab=422430c a c a-+=42310e e-+=235e+=235e-=51e-=D .若11PF FQ =,则1F 为线段PQ 的中点,所以(3,1)Q --,所以911+=a b,又1a b -=,即21190-+=a a ,解得a ====,所以椭圆C,故正确.例7、(2020·山东高三开学考试)已知双曲线,过其右焦点的直线与双曲线交于两点、,则( )A .若、同在双曲线的右支,则的斜率大于B .若在双曲线的右支,则最短长度为C .的最短长度为D .满足的直线有4条 【答案】BD【解析】易知双曲线的右焦点为,设点、,设直线的方程为, 当时,直线的斜率为, 联立,消去并整理得. 则,解得. 对于A 选项,当时,直线轴,则、两点都在双曲线的右支上,此时直线的斜率不存在,A 选项错误;对于B 选项,,B 选项正确; 对于C 选项,当直线与轴重合时,,C 选项错误; 对于D 选项,当直线与轴重合时,; 当直线与轴不重合时,由韦达定理得,, 22:1916x y C -=F l A B A B l 43A FA 2AB 32311AB =C ()5,0F ()11,A x y ()22,B x y l 5x my =+0m ≠l 1k m=225169144x my x y =+⎧⎨-=⎩x ()221691602560m y my -++=()()222222169016042561699610m m m m ⎧-≠⎪⎨∆=-⨯-=+>⎪⎩34m ≠0m =l x ⊥A B l min 532F c a A =-=-=l x 32263AB a ==<l x 2611AB a ==≠l x 122160169m y y m +=--122256169y y m =-由弦长公式可得,解得或.故满足的直线有条,D 选项正确. 故选:BD.例8、(2020·江苏扬州中学高二月考)已知椭圆的左、右焦点分别为,且,点在椭圆内部,点在椭圆上,则以下说法正确的是( )A .的最小值为B .椭圆的短轴长可能为2C .椭圆的离心率的取值范围为D .若,则椭圆【答案】ACD【解析】A. 因为,所以,所以,当,三点共线时,取等号,故正确;B.若椭圆的短轴长为2,则,所以椭圆方程为,,则点在椭圆外,故错误;C. 因为点在椭圆内部,所以,又,所以,所以,即,解得,所以,所以椭圆的离心率的取值范围为,故正确;()2122961169m AB y y m +=-==-()226161611169m m +==-4m =±m =11AB =4()22:10x y C a b a b+=>>1F 2F 122F F =()1,1P Q 1QF QP +21a -C C ⎛ ⎝⎭11PF FQ =C 122F F =()221,0,1=F PF 1222221+=-+≥-=-QF QP a QF QP a PF a 2,,Q F P C 1,2b a ==22121x y +=11121+>P ()1,1P 111a b+<1a b -=1b a =-1111+<-a a 2310a a -+>(2136244++>==a >12=<e C 10,2⎛⎫⎪ ⎪⎝⎭D. 若,则为线段的中点,所以,所以,又,即,解得,所以椭圆的,故正确.故选:ACD例9、(2020届山东省枣庄、滕州市高三上期末)在平面直角坐标系xOy 中,抛物线2:2C y px =(0)p >的焦点为F ,准线为l.设l 与x 轴的交点为K ,P 为C 上异于O 的任意一点,P 在l 上的射影为E ,EPF ∠的外角平分线交x 轴于点Q ,过Q 作QN PE ⊥交EP 的延长线于N ,作QM PF ⊥交线段PF 于点M ,则( )A .||||PE PF =B .||||PF QF =C .||||PN MF =D .||||PN KF =【答案】ABD 【解析】由抛物线的定义,PE PF =,A 正确;∵//PN QF ,PQ 是FPN ∠的平分线,∴FQP NPQ FPQ ∠=∠=,∴||||PF QF =,B 正确; 若||||PN MF =,由PQ 是外角平分线,QN PE ⊥,QM PF ⊥得QM QN =,从而有PM PN =,于是有PM FM =,这样就有QP QF =,PFQ ∆为等边三角形,60FPQ ∠=︒,也即有60FPE ∠=︒,11PF FQ =1F PQ ()3,1Q --911+=a b1a b -=21190-+=a a 21122244++===a =C这只是在特殊位置才有可能,因此C 错误;连接EF ,由A 、B 知PE QF =,又//PE QF ,EPQF 是平行四边形,∴EF PQ =,显然EK QN =,∴KF PN =,D 正确.二、达标训练1、(2020·山东高三其他模拟)关于双曲线与双曲线,下列说法正确的是( ).A .它们有相同的渐近线B .它们有相同的顶点C .它们的离心率不相等D .它们的焦距相等【答案】CD【解析】双曲线的顶点坐标,渐近线方程:,离心率为:,焦距为10.双曲线,即:,它的顶点坐标,渐近线方程:,离心率为:,焦距为10. 所以它们的离心率不相等,它们的焦距相等. 故选:.2、(2020届山东省滨州市高三上期末)已知双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点分别为1(5,0)F -,2(5,0)F ,则能使双曲线C 的方程为221169x y -=的是( )A .离心率为54B .双曲线过点95,4⎛⎫ ⎪⎝⎭C .渐近线方程为340±=x yD .实轴长为4【答案】ABC【解析】由题意,可得:焦点在x 轴上,且5c =;A 选项,若离心率为54,则4a =,所以2229b c a =-=,此时双曲线的方程为:221169x y -=,故A 正确;221:1916x y C -=222:1916y x C -=-221:1916x y C -=(3,0)430x y ±=53222:1916y x C -=-221169x y -=(4,0)±340±=x y 54CDB 选项,若双曲线过点95,4⎛⎫ ⎪⎝⎭,则22222812516125a b a b c ⎧⎪⎪-=⎨⎪+==⎪⎩,解得:22169a b ⎧=⎨=⎩;此时双曲线的方程为:221169x y -=,故B 正确;C 选项,若双曲线的渐近线方程为340±=x y ,可设双曲线的方程为:22(0)169x y m m -=>,所以216925c m m =+=,解得:1m =,所以此时双曲线的方程为:221169x y -=,故C 正确; D 选项,若实轴长为4,则2a =,所以22221b c a =-=,此时双曲线的方程为:224121x y -=,故D 错误;故选:ABC.3、(2020届山东省德州市高三上期末)已知抛物线2:2C y px =()0p >的焦点为F经过点F ,直线l 与抛物线C 交于点A 、B 两点(点A 在第一象限),与抛物线的准线交于点D ,若8AF =,则以下结论正确的是( ) A .4p = B .DF FA =C .2BD BF =D .4BF =【答案】ABC 【解析】 如下图所示:分别过点A 、B 作抛物线C 的准线m 的垂线,垂足分别为点E 、M .抛物线C 的准线m 交x 轴于点P ,则PF p =,由于直线l 60,//AE x 轴,60EAF ∴∠=,由抛物线的定义可知,AE AF =,则AEF ∆为等边三角形,60EFP AEF ∴∠=∠=,则30PEF ∠=,228AF EF PF p ∴====,得4p =,A 选项正确;2AE EF PF ==,又//PF AE ,F ∴为AD 的中点,则DF FA =,B 选项正确;60DAE ∴∠=,30ADE ∴∠=,22BD BM BF ∴==(抛物线定义),C 选项正确; 2BD BF =,118333BF DF AF ∴===,D 选项错误. 故选:ABC.4、(2020届山东省日照市高三上期末联考)过抛物线24y x =的焦点F 作直线交抛物线于A ,B 两点,M为线段AB 的中点,则( ) A .以线段AB 为直径的圆与直线32x =-相离 B .以线段BM 为直径的圆与y 轴相切 C .当2AF FB =时,92AB = D .AB 的最小值为4【答案】ACD【解析】对于选项A ,点M 到准线1x =-的距离为()1122AF BF AB +=,于是以线段AB 为直径的圆与直线1x =-一定相切,进而与直线32x =-一定相离: 对于选项B ,显然AB 中点的横坐标与12BM 不一定相等,因此命题错误. 对于选项C ,D ,设()11,A x y ,()22,B x y ,直线AB 方程为1x my =+,联立直线与抛物线方程可得2440y my --=,124y y =-,121=x x ,若设()24,4A a a ,则211,4B aa ⎛⎫- ⎪⎝⎭,于是21221424AB x x p a a=++=++,AB 最小值为4;当2AF FB =可得122y y =-, 142a a ⎛⎫=-- ⎪⎝⎭,所212a =,92AB =.故选:ACD.5、(2020届山东省临沂市高三上期末)已知P 是椭圆C :2216x y +=上的动点,Q 是圆D :()22115x y ++=上的动点,则( )A .CB .C 的离心率为6C .圆D 在C 的内部D .PQ 【答案】BC【解析】2216x y += a ∴=,1b =c ∴===C 的焦距为c e a ===.设(), P x y (x ≤≤, 则()()22222256441111665555x x y x x PD ⎛⎫++=++-=++≥> ⎪⎝⎭=,所以圆D 在C 的内部,且PQ =. 故选:BC .6、(2020届山东省烟台市高三上期末)已知抛物线2:4C y x =的焦点为F 、准线为l ,过点F 的直线与抛物线交于两点()11,P x y ,()22,Q x y ,点P 在l 上的射影为1P ,则 ( ) A .若126x x +=,则8PQ =B .以PQ 为直径的圆与准线l 相切C .设()0,1M ,则1PM PP +≥D .过点()0,1M 与抛物线C 有且仅有一个公共点的直线至多有2条 【答案】ABC【解析】对于选项A,因为2p =,所以122x x PQ ++=,则8PQ =,故A 正确;对于选项B,设N 为PQ 中点,设点N 在l 上的射影为1N ,点Q 在l 上的射影为1Q ,则由梯形性质可得111222PP QQ PF QF PQ NN ++===,故B 正确; 对于选项C,因为()1,0F ,所以1PM PP PM PF MF +=+≥=故C 正确; 对于选项D,显然直线0x =,1y =与抛物线只有一个公共点,设过M 的直线为1y kx =+, 联立214y kx y x=+⎧⎨=⎩,可得()222410k x k x +-+=,令0∆=,则1k =,所以直线1y x =+与抛物线也只有一个公共点,此时有三条直线符合题意,故D 错误; 故选:ABC7、(2020·福清西山学校高二期中)在平面直角坐标系中,动点与两个定点和连线的斜率之积等于,记点的轨迹为曲线,直线:与交于,两点,则( ) A .的方程为B .C .的渐近线与圆相切D .满足的直线仅有1条【答案】AC【解析】设点,整理得,所以点的轨迹为曲线的方程为,故A 正确;又离心率,故B 不正确; 圆的圆心到曲线的渐近线为的距离为,又圆的半径为1,故C 正确;直线与曲线的方程联立整理得,设, ,且,xOy P ()1F)2F 13P E l ()2y k x =-E A B E 221(3x y x -=≠E E ()2221x y -+=AB =l (),P xy 13=2213x y -=P E 221(3x y x -=≠e ==()2221x y -+=()20,E y x =1d ==()2221x y -+=l E ()2221(3y k x x y x ⎧=-⎪⎨-=≠⎪⎩()222213+121230k x x k k ---=()()1122,,A B x y x y ,()()()224214441312312+1>0kk kk ∆=----=2130k -≠有,所以, 要满足,则需或或,当,此时,而曲线E 上,所以满足条件的直线有两条,故D 不正确,故选:AC .2122221212123+,1313x xx k x kk k ---==--)221+13k AB k===-AB =)221+13k k=-0k =1k =1k =-0k =)()AB ,x ≠。

山东省2011-2022年普通高校招生(春季)数学试题专题之圆锥曲线(椭圆、双曲线、抛物线)

山东省2011-2022年普通高校招生(春季)数学专题圆锥曲线(椭圆、双曲线、抛物线)一、选择题(11-25)若中心在坐标原点,焦点在x轴上的双曲线,虚轴长是实轴长的2倍,则其渐近线方程为A.y=±14xB.y=±4xC.y=±12xD.y=±2x(11-29)已知抛物线y2=4x,过其焦点且斜率为1的直线交抛物线于A,B两点,则|AB|等于A.6B.8C.10D.12(12-10)已知以坐标原点为顶点的抛物线,其焦点在x轴正半轴上,且焦点到准线的距离是3,则抛物线的标准方程是()A.y2=6xB.y2=−6xC.y2=3xD.y2=−3x(12-13)椭圆x 29+y28=1的离心率是()A.13B.√173C. √24D.2√23(12-24)已知椭圆x 225+y220=1= 1 的左焦点是F1,右焦点是F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么|PF1|:|PF2|等于()A.3:2B.2:3C.9:1D.1:9(13-14)已知抛物线的准线方程为x=2,则抛物线的标准方程为()A. y2=8xB. y2=−8xC. y2=4xD. y2=−4x(13-25)点p是等轴双曲线上除顶点外的任意一点,A1,A2是双曲线的顶点,则直线pA1与pA2的斜率之积为()A. 1B. −1C. 2D.−2(14-15)第一象限内的点P在抛物线y2=−12x上,它到准线的距离为7,则点P的坐标为A.(4,4√3)B.(3,6)C.(2,2√6)D.(1,2√3)(14-19)双曲线4x2-9y2=1的渐近线方程为A.y=±32xB.y=±23xC.y=±94xD.y=±49x(15-14)关x,y的方程x2+my2=1,给出下列命题:②当m<0时,方程表示双曲线;②当m=0时,方程表示抛物线;③当0<m<1时,方程表示椭圆;④当m=1时,方程表示等轴双曲线;⑤当m>1时,方程表示椭圆。

2024年全国一卷数学新高考题型细分S13圆锥曲线解答题3

2024年全国一卷新高考题型细分S13——圆锥曲线 大题31、试卷主要是2024年全国一卷新高考地区真题、模拟题,合计202套。

其中全国高考真题4套,广东47套,山东22套,江苏18套,浙江27套,福建15套,河北23套,湖北19套,湖南27套。

2、题目设置有尾注答案,复制题干的时候,答案也会被复制过去,显示在文档的后面,双击尾注编号可以查看。

方便老师备课选题。

3、题型纯粹按照个人经验进行分类,没有固定的标准。

4、《圆锥曲线——大题》题目主要按长短顺序排版,具体有:短,中,长,涉后导数等,大概206道题。

每道题目后面标注有类型和难度,方便老师备课选题。

1. (2024年冀J12大数据应用调研)19. 已知圆()()22:4,1,0,1,0O x y B C +=-.点M 在圆O 上,延长CM 到A ,使CM MA =,点P 在线段AB 上,满足()0PA PC AC +⋅=.(1)求点P 的轨迹E 的方程;(①)(2)设Q 点在直线1x =上运动,()()122,0,2,0D D -.直线1QD 与2QD 与轨迹E 分别交于G H ,两点,求OGH 面积的最大值.(椭圆,中下;面积,最值,中档;)2. (2024年冀J16邯郸三调)18. 已知椭圆2222:1(0,0)x y E a b a b +=>>经过2P ⎛⎫- ⎪⎝⎭,31,2Q ⎛⎫- ⎪⎝⎭两点.(1)求E 的方程;(②)(2)若圆221x y +=的两条相互垂直的切线12,l l 均不与坐标轴垂直,且直线12,l l 分别与E 相交于点A ,C 和B ,D ,求四边形ABCD 面积的最小值. (椭圆,基础;面积,最值,中档;)3. (2024年冀J11衡水一模)17. 已知椭圆2222:1(0)x y C a b a b+=>>过31,2⎛⎫ ⎪⎝⎭和⎭两点.12,F F 分别为椭圆的左、右焦点,P 为椭圆上的点(P 不在x 轴上),过椭圆右焦点2F 的直线l 与椭圆交于A B 、两点.(1)求椭圆的标准方程;(③)(2)求AB 的范围.(椭圆,基础;长度,范围,中档;)4. (2024年粤J105湛江二模)18. 双曲线2222:1(0,0)x y C a b a b-=>>上一点(D 到左、右焦点的距离之差为6,(1)求双曲线C 的方程,(④)(2)已知()(),3,03,0A B -,过点()5,0的直线l 与C 交于,M N (异于,A B )两点,直线MA 与NB 交于点P ,试问点P 到直线2x =-的距离是否为定值?若是,求出该定值;若不是,请说明理由, (双曲线,易;距离,定值,中档;)5. (2024年粤J104名校一联考)16. 现有一“v ”型的挡板如图所示,一椭圆形物件的短轴顶点被固定在A 点.物件可绕A 点在平面内旋转.AP 间距离可调节且与两侧挡板的角度固定为60°.已知椭圆长轴长为4,短轴长为2.(1)在某个角度固定椭圆,则当椭圆不超过挡板时AP 间距离最短为多少;(⑤)(2)为了使椭圆物件能自由绕A 点自由转动,AP 间距离最短为多少.求出最短距离并证明其可行性. (椭圆,距离最值,中档;距离最值,中档;)6. (2024年闽J13厦门二检)17.(15分)双曲线C :()222210,0x y a b a b-=>>,点T在C 上.(1)求C 的方程;(⑥)(2)设圆O :222x y +=上任意一点P 处的切线交C 于M 、N 两点,证明:以MN 为直径的圆过定点.(双曲线,基础;圆切线,定点,中档;)7. (2024年湘J42岳阳三检)18.已知动圆P 过定点(0,1)F 且与直线3y =相切,记圆心P 的轨迹为曲线E .(⑦)(1)已知A 、B 两点的坐标分别为(2,1)-、(2,1),直线AP 、BP 的斜率分别为1k 、2k ,证明:121k k -=; (2)若点()11,M x y 、()22,N x y 是轨迹E 上的两个动点且124x x =-,设线段MN 的中点为Q ,圆P 与动点Q 的轨迹Γ交于不同于F 的三点C 、D 、G ,求证:CDG 的重心的横坐标为定值. (斜率,中下;中点,定值,中档;)8.(2024年湘J47长沙雅礼二模)17.已知椭圆2222:1(0)x y G a b a b +=>>右焦点为(),斜率为1的直线l 与椭圆G 交于,A B 两点,以AB 为底边作等腰三角形,顶点为(3,2)P -. (1)求椭圆G 的方程;(⑧) (2)求PAB 的面积. (椭圆,易;面积,中下;)9. (2024年鲁J46烟台二模)19.已知椭圆()222103x y a a Γ+=>:的右焦点为()1,0F ,过点F 且不垂直于坐标轴的直线交Γ于,A B 两点,Γ在,A B 两点处的切线交于点Q . (1)求证:点Q 在定直线上,并求出该直线方程;(⑨)(2)设点M 为直线OQ 上一点,且AB AM ⊥,求AM 的最小值. (椭圆,定直线,中档;长度,中档;)10. (2024年鲁J38济宁三模)18.已知椭圆2222:1(0)x y E a b a b+=>>的左焦点为F ,上顶点为B ,离心率2e =,直线FB 过点(1,2)P . (1)求椭圆E 的标准方程;(⑩)(2)过点F 的直线l 与椭圆E 相交于M ,N 两点(M 、N 都不在坐标轴上),若MPF NPF =∠∠,求直线l 的方程.(椭圆,基础;角度,直线,中档;)11. (2024年鲁J42青岛二适)16.已知椭圆2222:1(0)x y E a b a b+=>>的左,右焦点分别为12,F F ,椭圆E的离心率为12,椭圆E 上的点到右焦点的最小距离为1. (1)求椭圆E 的方程;(11)(2)若过右焦点2F 的直线l 与椭圆E 交于B ,C 两点,E 的右顶点记为A ,1//AB CF ,求直线l 的方程. (椭圆,中下;直线,中档;)12. (2024年浙J40台州二评)18.已知椭圆C :229881x y +=,直线l :=1x -交椭圆于M ,N 两点,T为椭圆的右顶点,TMN △的内切圆为圆Q . (1)求椭圆C 的焦点坐标;(12) (2)求圆Q 的方程;(3)设点()1,3P ,过P 作圆Q 的两条切线分别交椭圆C 于点A ,B ,求PAB 的周长. (椭圆,易;圆,中下;圆切线,周长,中档;)13. (2024年浙J31五校联考)16.已知椭圆()222210x y a b a b+=>>的左焦点为F ,椭圆上的点到点F 距离11. (1)求该椭圆的方程;(13)(2)对椭圆上不在上下顶点的任意一点P ,其关于y 轴的对称点记为P ',求PF P F '+; (3)过点()2,0Q 作直线交椭圆于不同的两点A ,B ,求FAB 面积的最大值. (椭圆,中下;椭圆,基础;面积最值,中档;)14. (2024年苏J35南京二模)18.已知抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,且4p b =.过F 的直线1与抛物线C 交于A ,B 两点,与E 的两条近线交于P ,Q 两点(均位于y 轴右侧). (1)求E 的渐近线方程;(14)(2)若实数λ满足1111||||||||OP OQ AF BF λ⎛⎫+=- ⎪⎝⎭,求λ的取值范围. (双曲线,基础;范围分析,中档;)15. (2024年粤J138汕头金南三模)19.已知动圆M (M 为圆心)过定点(2,0)P ,且与定直线:2l x =-相切.(1)求动圆圆心M 的轨迹方程;(15)(2)设过点P 且斜率为1)中的曲线交于A 、B 两点,求AOBS ;(3)设点(,0)N a 是x 轴上一定点,求M 、N 两点间距离的最小值()d a . (抛物线,中下;面积,中下;距离最值,中档;)16. (2024年粤J137梅州二模)15.已知椭圆C :22221x y a b+=(0a b >>)的离心率为12,且经过点31,2T ⎛⎫ ⎪⎝⎭.(1)求椭圆C 的方程:(16)(2)求椭圆C 上的点到直线l :2y x =的距离的最大值. (椭圆,基础;最值,中下;)17. (2024年粤J136茂名高州一模)21.已知抛物线()2:20C y px p =>,F 为抛物线的焦点,,P Q 其为准线上的两个动点,且PF QF ⊥.当2PF QF =时,5PQ =. (1)求抛物线C 的标准方程;(17)(2)若线段,PF QF 分别交抛物线C 于点,A B ,记PQF △的面积为1S ,ABF △的面积为2S ,当129S S =时,求PQ 的长.(抛物线,基础;面积,长度,中档;)18. (2024年粤J135茂名二测)17.已知椭圆22:12x C y +=,右焦点为F ,过点F 的直线l 交C 于,A B 两点.(1)若直线l 的倾斜角为π4,求AB ;(18)(2)记线段AB 的垂直平分线交直线=1x -于点M ,当AMB ∠最大时,求直线l 的方程. (椭圆,常规,基础;最值求直线,中档)19. (2024年粤J133江门开平忠源)18.已知双曲线2222:1(0,0)x y C a b a b -=>>的焦点与椭圆2215x y +=的焦点重合,其渐近线方程为y =. (1)求双曲线C 的方程;(19)(2)若,A B 为双曲线C 上的两点且不关于原点对称,直线1:3l y x =过AB 的中点,求直线AB 的斜率.(双曲线,常规,基础;直线中点,斜率,中下)20. (2024年冀J47唐山二模)18.已知椭圆C 的右焦点为()1,0F ,其四个顶点的连线围成的四边形面积为ABDE 内接于椭圆C . (1)求椭圆C 的标准方程;(20)(2)(ⅰ)坐标原点O 在边AB 上的投影为点P ,求点P 的轨迹方程; (ⅰ)求菱形ABDE 面积的取值范围.(椭圆,基础;轨迹,中档;面积范围,中上)①【答案】(1)22143x y +=(2【解析】【分析】(1)由题意可得PA PC =,再根据M 为AC 的中点,可得12OM AB =,再根据PB PC PB PA AB +=+=,结合椭圆的定义即可得解;(2)设()()()011221,,,,,Q y G x y H x y ,根据1,,Q G D 三点共线,2,,Q H D 三点共线,求出,G H 两点坐标的关系,设GH 的方程为ty x m =+,联立方程,利用韦达定理求得1212,y y y y +,再根据弦长公式及点到直线的距离公式分析即可得解. 【小问1详解】因为()0PA PC AC +⋅=,所以()()0PA PC PC PA +⋅-=, 所以22PA PC =,所以PA PC =, 因为CM MA =,所以M 为AC 的中点, 又因O 为BC 的中点,所以122OM AB ==,所以AB 4=,则4PB PC PB PA AB BC +=+==>,所以点P 的轨迹是以,B C 为焦点的椭圆,而22213-=,所以点P 的轨迹E 的方程为22143x y +=;【小问2详解】由(1)得()()122,0,2,0D D -是椭圆E 的左右顶点, 设()()()011221,,,,,Q y G x y H x y ,由1,,Q G D 三点共线,得11//D Q D G ,而()()101113,,2,D Q y D G x y ==+, 所以()10132y y x =+,所以10132y y x =+, 由2,,Q H D 三点共线,得22//D Q D H ,而()()101221,,2,DQ y DG x y =-=-, 所以()1012y y x -=-,所以2022y y x =--, 所以1212322y y x x =-+-,即()()12213220y x y x -++=, 设GH 的方程为ty x m =+,联立22143ty x m x y =+⎧⎪⎨+=⎪⎩,得()2223463120t y tmy m +-+-=,则()()()222222Δ3643431248340t m t m t m =-+-=-+>,21212226312,3434tm m y y y y t t -+==++,所以()2121242m ty y y y m-=+,由()()12213220y x y x -++=,得()()12213220y ty m y ty m --+-+=, 即()()122142320ty y m y m y ---+=, 所以()()()()21221242320m y y m ym y m-+---+=,所以()()()214220m m y m y ⎡⎤+--+=⎣⎦恒成立,所以4m =-, 则()2Δ483120t =->,所以24t >, 则21221234243634,t y y y y t t ==++-+,GH 的方程为4ty x =-,所以GH ==,原点O 到直线GH 的距离d =则12424323416OGHSGH d t ====-++≤===t =时取等号,所以OGH【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.②【答案】(1)22143x y +=.(2)24049. 【解析】【分析】(1)依据椭圆经过两点,将点的坐标代入椭圆方程,待定系数法解方程即可;(2)设其中一条的斜截式方程,首先由直线与圆相切,得出直线的斜率与截距关系;再设而不求,用韦达定理表示出两条直线与椭圆相交的弦长,再利用条件知两弦垂直,故四边形ABCD 的面积1||||2S AC BD =⋅,利用弦长将面积表示成其中一条直线斜率的函数,利用函数求最值. 【小问1详解】因为E过点P ⎛ ⎝⎭,31,2Q ⎛⎫- ⎪⎝⎭, 所以2222231,2191,4a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩解得224,3.a b ⎧=⎨=⎩ 故E 的方程为22143x y +=.【小问2详解】由题知12,l l 的斜率存在且不为0. 设1:(0)l y kx m k =+≠. 因为1l 与圆221x y +=1=,得221m k =+.联立1l 与E 的方程,可得()2223484120kxkmx m +++-=,设()11,A x y ,()22,C x y ,则122834km x x k -+=+,212241234m x x k-=+.所以12AC x =-==,将221m k =+代入,可得AC =.用1k-替换k,可得BD =四边形ABCD 的面积123434S AC BD k k =⋅=++令21t k=+,则(1,)t ∈+∞,可得212S t t==+-, 再令u =(1,)t ∈+∞,则52u ⎤∈⎥⎦,可得2242424240652649625u S u u u ==≥=+++⨯,即四边形ABCD 面积的最小值为24049.③【答案】(1)22143x y +=(2)[]3,4 【解析】【分析】(1)将点3(1,2代入椭圆方程,即可求出椭圆C 的标准方程;(2)分类讨论直线斜率是否为0,从而假设直线方程,与椭圆方程联立,利用韦达定理与弦长公式得到关于m 的关系式,再分析即可得解; 【小问1详解】由题意可知,将点3(1,2代入椭圆方程,得222291416241a b a b ⎧⎪+=⎪⎪⎨⎪⎪+=⎪⎩,解得224,3a b ==,所以椭圆的标准方程为22143x y +=.【小问2详解】由(1)知()11,0F -,()21,0F , 当直线l 的斜率为0时,24AB a ==,当直线l 的斜率不为0时,设直线l 的方程为1x my =+,()11,A x y ,()22,B x y ,联立221431x y x my ⎧+=⎪⎨⎪=+⎩,消去x ,得22(34)690m y my ++-=, 易得()22Δ636(34)0m m =++>,则12122269,3434m y y y y m m --+==++, 所以AB ==2221212443434m m m +===-++, 因为20m ≥,所以2344m +≥,所以240134m <≤+,所以34AB ≤<,综上,34AB ≤≤,即AB 的范围是[]3,4.④【答案】(1)2219x y -=(2)是定值,定值为195【解析】【分析】(1)利用双曲线的定义与点在双曲线上得到关于,a b 的方程,解之即可得解;(2)假设直线l 方程5x my =+,联立双曲线方程得到1212,y y y y +,再由题设条件得到直线AM 与BN 的方程,推得两者的交点P 在定直线上,从而得解. 【小问1详解】依题意可得22222661a ab =⎧⎪⎨-=⎪⎩,解得23,1a b ==,故双曲线C 的方程为2219x y -=.【小问2详解】由题意可得直线l 的斜率不为0,设直线l 的方程为5x my =+,联立22519x my x y =+⎧⎪⎨-=⎪⎩,消去x ,得()22910160m y my -++=, 则290m -≠,()()()222Δ10416936160m m m =-⨯-=+>,设()()1122,,,M x y N x y ,则1212221016,99m y y y y m m -+==--, 又()()3,0,3,0A B -, 直线11:(3)3y AM y x x =++,直线22:(3)3y BN y x x =--, 联立1122(3)3(3)3y y x x y y x x ⎧=+⎪+⎪⎨⎪=-⎪-⎩,两式相除,得()()()()2121122121212138833322y x y my my y y x x y x y my my y y ++++===--++()1122212121121112216806488889994161622299m m my y my y y y y m m m m m my y y y y m m ----++----====-+++--, 即343x x +=--,解得95x =, 所以点P 在定直线95x =上,因为直线95x =与直线2x =-之间的距离为919255+=, 所以点P 到直线2x =-的距离为定值,且定值为195. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式; (5)代入韦达定理求解.⑤【答案】(1)13- (2)13+,证明见解析 【解析】【分析】(1)如图,设00(,)P x y 和过点P 的直线,切线,PM PN 的斜率分别为12,k k ,联立椭圆方程,利用韦达定理表示1212,k k k k +,进而可得121200tan 1k k MPN k k -∠==+,结合tan 0MPN ∠>或tan MPN ∠≤(2)当PA 恒为正实数R 时,设11(,)B x y 1(11)y -≤≤为椭圆上任意一点,则2163PB ≤,进而1R x >=.由(1)可得222012(320)(320)160R y R -+--≤或20320620R y -++≥,利用换元法,结合011R y R -≤≤+建立不等式组,化简可得2310R ≥+.【小问1详解】由题意,如图,该椭圆的方程为2214x y +=,(0,1)A ,,PM PN 分别为椭圆的2条切线,切点分别为,M N ,设直线,PM PN 的斜率分别为12,k k .设00(,)P x y ,当02x =±时,12,k k 其中1个不存在,另1个趋于∞; 当02x ≠±时,设过点P 的直线为00()y k x x y =-+(0)k ≠,00222200002()(14)8()4()4014y k x x y k x k y kx x y kx x y =-+⎧⎪⇒++-+--=⎨+=⎪⎩, 所以2222000064()16(14)[()1]0k y kx k y kx ∆=--+--=,整理,得220000(4)210x k x y k y --+-=,①由12,k k 是方程①的2个实根,得20001212220021,44x y y k k k k x x -+==--, 所以220002222200121212222012122021()444()4tan 11(1)(1)4x y y x x k k k k k k MPN y k k k k x -----+-∠===-+++- 2222222000000022222222000004()4(1)(4)(4)4(44)(4)(5)(5)x y y x x x y x x y x y ----+-=⨯=-+-+-, 又220014x y +>,所以2200440x y +->, 当220050x y +->时,点P 在圆225x y +=的外部,则tan 0MPN ∠>,此时00tan MPN ∠=;当220050x y +-<时,点P 在圆225x y +=的内部,则tan 0MPN ∠>,此时00tan MPN ∠=,所以00tan MPN ∠=.又tan 0MPN ∠>或tan tan120MPN ︒∠≤=,000>00≤整理,得220050x y +-≥或2222200004(44)3(5)x y x y +-≥+-.要求PA 的最小值,只需考虑MPN ∠为钝角的情况,即2222200004(44)3(5)x y x y +-≥+-且220050x y +-<,得22222220000003(5)4(44)4(444)x y x y x y +-≤+-≤+-.令2OP t =,则5t <且23(5)4(44)t t -≤-,即2346910t t -+≤,解得7133t ≤≤,所以OP ≥13PA OP OA ≥-=-,当且仅当,,P O A 三点共线时等号成立.故00tan MPN ∠=053=-,得120MPN ︒∠=. 综上,PA的最小值为13-. 【小问2详解】当PA 恒为正实数R 时,设11(,)B x y 1(11)y -≤≤为椭圆上任意一点, 则22222211111111216(1)213255333PB x y x y y y y =+-=+-+=--+≤-++=,当且仅当1113x y ==时等号成立,所以13R x >=. 由(1)知,2222200004(44)3(5)x y x y +-≥+-或220050x y +-≥,由22200(1)x y R +-=,得22222200004[(1)44]3[(1)5]R y y R y y --+-≥--+-或22200(1)50R y y --+-≥,即22220004(325)3(26)y y R R y ++-≥+-或20260R y +-≥,整理,得222012(320)(320)160R y R -+--≤或20320620R y -++≥,令2320u R =-,则4u >-,得2012160uy u +-≤或0620u y ++≥,011R y R -≤≤+.当2203R ≤即0u <时,201612u y u-≥或026u y --≥,令v u =-,则04v <<,得201612v y v -≥-或026v y -≥,又011y ≤得216112v v --或216v -≥,而12111136v -=<-<-<,所以216112v v--,整理,得010v <≤-10u ≥- 当0u ≥时,010u ≥>,符合题意.综上,10u ≥,则232010u R =-≥,即2310R ≥+解得1R ≥+,所以R1,即PA1.【点睛】方法点睛:解决圆锥曲线中范围问题的方法:一般题目中没有给出明确的不等关系,首先需要根据已知条件进行转化,利用圆锥曲线的几何性质及曲线 上点的坐标确定不等关系;然后构造目标函数,把原问题转化为求函数的值域或引入参数根据参数范围求解,解题时应注意挖掘题目中的隐含条件,寻找量与量之间的转化.⑥17. 方法一:(1)依题意:22222221a b c a b ca⎧-=⎪⎪=+⎨⎪⎪=⎩,……2分解得:21a =,22b =,……3分所以双曲线方程为2212y x -=.……4分 (2)设()11,M x y ,()22,N x y ,①当切线斜率存在时,设直线方程为y kx m =+,=2222m k =+,……6分联立()22222122202y x k x kmx m y kx m ⎧-=⎪⇒----=⎨⎪=+⎩, 则12222kmx x k+=-,212222m x x k --=-,()()()222222442282k m k m m k ∆=+-+=+-.……8分 由对称性知,若以MN 为直径的圆过定点,则定点必为原点.……9分1212OM ON x x y y ⋅=+……10分()()()()22121212121x x kx m kx m k x x mk x x m =+++=++++……11分 ()2222222122m km kmk m k k--=+++-- 222222m k k --=-.……12分又2222m k =+,所以0OM ON ⋅=,所以OM ON ⊥,故以MN 为直径的圆过原点.……13分②当直线斜率不存在时,直线方程x =(222x y ±+=,恒过原点.综上所述,以MN 为直径的圆过原点.……15分 方法二:(1)同方法一;(2)设()11,M x y ,()22,N x y ,①当切线斜率存在时,设直线方程为y kx m =+,=2222m k =+,……6分联立()22222122202y x k x kmx m y kx m ⎧-=⎪⇒----=⎨⎪=+⎩, 则12222km x x k+=-,212222m x x k --=-,()()()222222442282k m k m m k ∆=+-+=+-.……8分 以()11,M x y ,()22,N x y 为直径的圆的方程为()()()()12120x x x x y y y y --+--=, 即()()22121212120x x x x x x y y y y y y -+++-++=,……9分因为()()()()221212*********x x y y x x kx m kx m k x x km x x m +=+++=++++,所以()222221212222222210222m km m k x x y y k km m k k k ----+=+⋅+⋅+==---,……11分 且()121222242222km my y k x x m k m k k +=++=⋅+=--, 所以所求的圆的方程为222224022km m x x y y k k -+-=--,……12分所以MN 为直径的圆过原点.……13分②当直线斜率不存在时,直线方程x =(222x y ±+=,恒过原点.综上所述,以MN 为直径的圆过原点.……15分⑦18.(1)证明见解析;(2)证明见解析【分析】(1)先有两点间距离公式求出圆心的轨迹方程,再由斜率的定义表示出斜率,利用轨迹方程化简斜率之差即可证明;(2)先设直线MN 的方程为y kx b =+,直曲联立,用韦达定理表示出线段MN 中点坐标()22,21Q k k --+进而得到Q 的轨迹方程是222x y =-+,再与动圆P 的方程联立,得到C 、D 、G 的横坐标分别为c ,d ,g ,最后利用()()()0x c x d x g ---=的展开式系数与3(42)40x b x a +-+=相同,得到2x 系数为零即可. 【详解】(1)设点(,)P x y ,|3|y =-, 化简并整理成248x y =-+, 圆心P 的轨迹E 的方程为248x y =-+1211,22y y k k x x --==+-,122114(1)224y y y k k x x x -----=-=+--, 又248x y =-+, 所以24(1)4(1)1444y y x y ,所以121k k -=.(2)显然直线MN 的斜率存在,设直线MN 的方程为y kx b =+,由248x y y kx b ⎧=-+⎨=+⎩,消y 并整理成24480x kx b ++-=, 在判别式大于零时,1248x x b =-, 又124x x =-,所以1b =, 所以2440x kx +-=,1y kx =+,()21212124,242x x k y y k x x k +=-+=++=-+,所以线段MN 的中点坐标为()22,21Q k k --+,设(,)Q x y ,则2221x k y k =-⎧⎨=-+⎩,消k 得222x y =-+, 所以Q 的轨迹方程是222x y =-+,圆P 过定点(0,1)F ,设其方程为22(1)(1)0x y ax b y +-++-=,由222(1)(1)022x y ax b y x y ⎧+-++-=⎨=-+⎩,得42(42)40x b x ax +-+=, 设C 、D 、G 的横坐标分别为c ,d ,g ,因为C 、D 、G 异于F ,所以c ,d ,g 都不为零, 故3(42)40x b x a +-+=的根为c ,d ,g , 令()()()0x c x d x g ---=,即有32()()0x c d g x cd dg gc x cdg -+++++-=, 所以0c d g ++=,故CDG 的重心的横坐标为定值.【点睛】关键点点睛:本题第二问关键是圆P 过定点(0,1)F ,设其方程为22(1)(1)0x y ax b y +-++-=,然后与Q 的轨迹方程联立,表示出重心横坐标的方程,然后利用待定系数法求出结果.⑧17.(1)221.124x y +=(2)92【分析】(1)根据椭圆的简单几何性质知a =2224b a c =-=,写出椭圆的方程;(2)先斜截式设出直线y x m =+,联立方程组,根据直线与圆锥曲线的位置关系,可得出AB 中点为00(,)E x y 的坐标,再根据ⅰPAB 为等腰三角形知PE AB ⊥,从而得PE 的斜率为241334mk m -==--+,求出2m =,写出AB :20x y -+=,并计算||AB = 【详解】(1)由已知得c =ca=a =2224b ac =-=, 所以椭圆G 的方程为221124x y +=.(2)设直线l 的方程为y x m =+,由22,{1124y x m x y ,=++=得22463120x mx m ++-=,ⅰ设A 、B 的坐标分别为11(,)x y ,22(,)x y (12x x <),AB 中点为00(,)E x y , 则120324x x m x +==-,004my x m =+=, 因为AB 是等腰ⅰPAB 的底边,所以PE AB ⊥.所以PE 的斜率为241334mk m-==--+,解得2m =,此时方程ⅰ为24120x x +=. 解得13x =-,20x =,所以11y =-,22y =,所以||AB =, 此时,点(3,2)P -到直线AB :20x y -+=的距离d =所以ⅰPAB 的面积1922S AB d =⋅=. 考点:1、椭圆的简单几何性质;2、直线和椭圆的位置关系;3、椭圆的标准方程;4、点到直线的距离. 【思路点晴】本题主要考查的是椭圆的方程,椭圆的简单几何性质,直线与椭圆的位置关系,点到直线的距离,属于难题.解决本类问题时,注意使用椭圆的几何性质,求得椭圆的标准方程;求三角形的面积需要求出底和高,在求解过程中要充分利用三角形是等腰三角形,进而知道定点与弦中点的连线垂直,这是解决问题的关键.⑨19.(1)证明见解析,4x =(2)12【分析】(1)由题得出椭圆方程,设直线AB 方程为()()()()112210,,,,y k x k A x y B x y =-≠,写出,A B 两点处的切线方程,由对称性得,点Q 处于与x 轴垂直的直线上,法一:两切线方程联立得Q x ,再代入()()1122=1,=1y k x y k x --即可证明;法二:由点(),Q Q Q x y 在两切线上得直线AB 的方程143Q Q x y x y +=,结合直线AB 过点()1,0F ,即可得出Q x ;(2)由(1)得出直线OQ 的方程,设直线AB 和OQ 交于点P ,得出P 为线段AB 的中点,由弦长公式得出AB 进而得出AP ,由两直线夹角公式得出tan APM ∠,得出243k AM AP k+=⋅,根据基本不等式求解即可.【详解】(1)由题意可知,231a -=, 所以24a =,所以椭圆方程为22143x y +=, 设直线AB 方程为()()()()112210,,,,y k x k A x y B x y =-≠, 联立()221431x y y k x ⎧+=⎪⎨⎪=-⎩,消y 可得,()22223484120k x k x k +-+-=, 所以221212228412,3434k k x x x x k k -+==++, 因为过点A 的切线为11143x x y y+=,过点B 的切线为22143x x y y +=, 由对称性可得,点Q 处于与x 轴垂直的直线上, 法一:联立1122143143x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩,消去y 得,()2112214Q y y x x y x y -=-,将()()1122=1,=1y k x y k x --代入上式得()()()()212112211244411Q k x x k x x x kx x kx x kx kx --===----+,所以Q 点在直线4x =上.法二:因为点(),Q Q Q x y 在两切线上,所以1122114343Q QQ Q x x y y x x y y+=+=,, 所以直线AB 的方程为143Q Q x y x y +=,又直线AB 过点()1,0F ,所以10143QQ x y ⨯+⨯=,解得4Q x .(2)将4x =代入11143x x y y+=得,()()()1111313131Q x x y y k x k --===--,直线OQ 的方程为34y x k =-, 设直线AB 和OQ 交于点P ,联立()134y k x y x k ⎧=-⎪⎨=-⎪⎩,解得22434P kx k =+, 又221222418342342P k k x x x k k +==⋅=++,所以P 为线段AB 的中点,因为()212212134k AB x k +=-==+, 所以()226134k AP k +=+,又因为23434tan 314k AM k kAPM k AP k k ++∠===⎛⎫+⋅- ⎪⎝⎭,所以()2222614343161234k k k AM AP k k k k k +⎛⎫++=⋅=⋅=+≥ ⎪ ⎪+⎝⎭, 当且仅当1k =±时,等号成立, 故AM 的最小值为12.⑩18.(1)2212x y +=;(2)550x y ++=.【分析】(1)根据给定条件,求出,,a b c 即得椭圆E 的标准方程.(2)根据给定条件,借助倾斜角的关系可得1MP NP k k ⋅=,设出直线l 的方程,与椭圆方程联立,利用韦达定理结合斜率的坐标公式求解即得. 【详解】(1)令(,0)F c -,由c e a ==,得,a b c ==,则直线FB 的斜率1k =, 由直线FB 过点(1,2)P ,得直线FB 的方程为1y x =+,因此1,b c a ===所以椭圆C 的标准方程为2212x y +=.(2)设MPF NPF θ∠=∠=,直线MP 的倾斜角为β,直线NP 的倾斜角为α,由直线FP 的斜率1k =知直线FP 的倾斜角为π4,于是ππ,44αθβθ=+=+,即有π2αβ+=,显然,αβ均不等于π2, 则πsin()sin 2tan tan 1πcos cos()2αααβαα-=⋅=-,即直线,MP NP 的斜率满足1MP NP k k ⋅=, 由题设知,直线l 的斜率不为0,设直线l 的方程为1,1x my m =-≠,由22122x my x y =-⎧⎨+=⎩,消去x 并整理得,22(2)210m y my +--=,显然0∆>, 设1122(,),(,)M x y N x y ,则12122221,22m y y y y m m +==-++, 由1MP NP k k ⋅=,得121222111y y x x --⋅=--,即1212(1)(1)(2)(2)0x x y y -----=, 则1212(2)(2)(2)(2)0my my y y -----=,整理得21212(1)(22)(0)m y y m y y ---+=,即2221(22)2022m m m m m --⋅--=++,于是25410m m --=,而1m ≠,解得,15m =-, 所以直线l 的方程为115x y =--,即550x y ++=.【点睛】关键点点睛:本题第2问,由MPF NPF =∠∠,结合直线倾斜角及斜率的意义求得1MP NP k k ⋅=是解题之关键.1116.(1)22143x y +=(2)10x y -=或10x y -=【分析】(1)利用椭圆焦半径公式及性质计算即可;(2)设直线l 方程,B、C坐标,根据平行关系得出两点纵坐标关系,联立椭圆方程结合韦达定理解方程即可.【详解】(1)设焦距为2c ,由椭圆对称性不妨设椭圆上一点()()000,0P x y a x ≥≥,易知()2,0F c ,则2PF =00c c x a a x a a =-=-,显然0x a =时2min PF a c =-,由题意得222121c a a c a b c⎧=⎪⎪⎨-=⎪⎪=+⎩解得2,1,a c b ===所以椭圆C 的方程为22143x y +=; (2)设()()1122,,,C x y B x y ,因为AB //1CF ,所以1122::2:1CF AB F F F A == 所以122y y =-ⅰ设直线l 的方程为1x my =+,联立得221431x y x my ⎧+=⎪⎨⎪=+⎩,整理得()2234690m y my ++-=, 由韦达定理得()122122634934m y y m y y m ⎧+=-⎪+⎪⎨=-⎪+⎪⎩, 把ⅰ式代入上式得222226349234m y m y m ⎧-=-⎪⎪+⎨⎪-=-⎪-+⎩,得()()22222236923434m y m m ==++, 解得m =, 所以直线l 的方程为:10x y +-=或10x y -=.1218.(1)0,⎛ ⎝⎭(2)221924x y ⎛⎫-+= ⎪⎝⎭(3)【分析】(1)化简椭圆的标准方程,根据,,a b c 的关系即可求得焦点坐标;(2)先联立方程求得()1,3M -,()1,3N --,求出直线MT 的方程,然后利用待定系数法求得内切圆的方程;(3)设过P 作圆Q 的切线方程为()13y k x =-+,利用相切关系求得点A ,B 坐标,进而结合内切圆的半径利用三角形中等面积法求解即可.【详解】(1)椭圆的标准方程为2218198x y +=,因为819988-=,所以焦点坐标为0,⎛ ⎝⎭. (2)将=1x -代入椭圆方程229881x y +=得3=±y ,由对称性不妨设()1,3M -,()1,3N --, 直线MT 的方程为()3313y x =---,即3490x y +-=, 设圆Q 方程为()222x t y r -+=,由于内切圆Q 在TMN △的内部,所以1t >-, 则Q 到直线MN 和直线MT的距离相等,即1t r +=,解得12t =,32r =,所以圆Q 方程为221924x y ⎛⎫-+= ⎪⎝⎭.(3)显然直线PA 和直线PB 的斜率均存在, 设过P 作圆Q 的切线方程为()13y k x =-+,其中k 有两个不同的取值1k 和2k 分别为直线PA 和PB 的斜率. 由圆Q32=,化简得:2812270k k +-=,则121232278k k k k ⎧+=-⎪⎪⎨⎪=-⎪⎩,由()122139881y k x x y ⎧=-+⎨+=⎩得()()222111119816384890k x k k x k k ++-+--=, 可得21121848989A P A k k x x x k --==+,所以()221111112211848924182713138989A A k k k k y k x k k k ⎛⎫----+=-+=-+= ⎪++⎝⎭ ()()()111113271218271833271291232k k k k k ---+-===--+-.同理22222848989B k k x k --=+,32B y =-,所以直线AB 的方程为32y =-, 所以AB 与圆Q 相切,将32y =-代入229881x y +=得x =所以AB =P 到直线AB 的距离为92,设PAB 的周长为m ,则PAB的面积13192222ABC S m =⨯=⨯△,解得m =所以PAB的周长为.1316.(1)2212x y +=;(2)【分析】(1)设出椭圆上的点00(,)M x y ,求出||MF 的最值,进而求出,a c 即可. (2)利用椭圆的对称性及椭圆定义求解即得.(3)设出直线AB 的方程,与椭圆方程联立求出三角形面积的表达式,再求出最大值即得.【详解】(1)令(,0)F c -,设00(,)M x y 是椭圆22221x y a b+=上的点,则22220002(),b y a x a x a a =--≤≤,则0||c MF a x a===+,显然当0x a =-时,min ||MF a c =-,当0x a =时,max ||MF a c =+,则11a c a c ⎧-=⎪⎨+=⎪⎩,解得1a c ⎧=⎪⎨=⎪⎩所以椭圆的方程为2212x y +=.(2)记椭圆的右焦点为F ',由椭圆对称性知,||||P F PF ''=,所以2PF P F PF PF a +=+==''(3)显然直线AB 不垂直于y 轴,设直线AB 的方程为2x my =+,1122(,),(,)A x y B x y ,由22222x my x y =+⎧⎨+=⎩消去x 得22(2)420m y my +++=,222168(2)8(2)0m m m ∆=-+=->,则12122242,22m y y y y m m +=-=++,12||y y -=因此12|1|||2ABFS QF y y =-=,令0t =>,于是ABFS=≤=,当且仅当2t =,即m =所以FAB1418.(1)y =(2)10,2⎡⎫⎪⎢⎣⎭【分析】(1)由两曲线有公共的焦点F ,且4p b =,得2c b =,3a b ,可求渐近线方程;(2)通过设直线方程,联立方程组,借助韦达定理,表示出11||||OP OQ +和11||||AF BF -,由1111OP OQ AF BF λ⎛⎫+=- ⎪⎪⎝⎭求λ的取值范围. 【详解】(1)抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,设双曲线E 的焦距为2c ,则有2pc =,又4p b =,则2c b =. 由222+=a b c ,得3ab ,所以E的渐近线的方程为y = (2)设:l x my c =+,()()1122,,,P x y Q x y ,1与E 的两条近线交于P ,Q 两点均位于y 轴右侧,有23m <,由x my cy x =+⎧⎪⎨=⎪⎩,解得1y =2y =,12111122OP OQ y y +=+===设()()3344,,,A x y B x y , 由22x my cy px=+⎧⎨=⎩,消去x 得2220y pmx p --=,则有234342,y y pm y y p +==-,343411y y AF BFy y --=3423422y y pm y y p p +== 由1111OP OQ AF BF λ⎛⎫+=- ⎪ ⎪⎝⎭,2pc =,有2p λ==由23m <⎡∈⎢⎣⎭,所以10,2λ⎡⎫∈⎪⎢⎣⎭.【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.1519.(1)28y x =(3)4(),4a d a a a ≥=<⎪⎩【分析】(1)根据抛物线的定义即得动圆圆心M 的轨迹方程; (2)将直线方程与抛物线方程联立,求出交点坐标,再由12AOBA B SOP y y =-计算可得; (3)根据题设先求出MN 的解析式,可将距离最小值问题转化为二次函数最小值问题,分类讨论即得. 【详解】(1)因为动圆M (M 为圆心)过定点(2,0)P ,且与定直线:2l x =-相切,即点M 到定点(2,0)P 的距离与到直线:2l x =-的距离相等,且点(2,0)P 不在直线:2l x =-上, 所以由抛物线定义知:圆心M 的轨迹是以定点()2,0P 为焦点,定直线:2l x =-为准线的抛物线,抛物线方程形如()220y px p =>,又22p=,则4p =, 故圆心M 的轨迹方程为28y x =.(2)如图,由题知,直线AB的方程为)2y x =-,由)228y x y x ⎧=-⎪⎨=⎪⎩,解得6x y =⎧⎪⎨=-⎪⎩23x y ⎧=⎪⎪⎨⎪=⎪⎩23A ⎛ ⎝⎭,(6,B -, 所以()11222AOBA B SOP y y =-=⨯-=(3)设(),M x y ,则28y x =()0x ≥,又(,0)N a ,则MN ==)0x =≥,因二次函数()24816y x a a =-++-的对称轴为4x a =-,故当40a -≥,即4a ≥时,min 816y a =-,此时min ()MN d a =当40a -<,即4a <时,2min y a=,此时min ||()MN d a a ==.所以4(),4a d a a a ≥=⎨<⎪⎩.1615.(1)22143x y +=【分析】(1)由椭圆的离心率可得a ,b 的关系,设椭圆的方程,将点T 的坐标代入椭圆的方程,可得参数的值,即可得a ,b 的值,求出椭圆的方程;(2)设与2y x =平行的直线的方程,与椭圆的方程联立,由判别式为0,可得参数的值,进而求出两条直线的距离,即求出椭圆上的点到直线的最大距离.【详解】(1)由椭圆的离心率为12,可得12c e a=,可得2234a b =,设椭圆的方程为:2222143x y t t+=,20t >,又因为椭圆经过点3(1,)2T ,所以2213144t t +=,解得21t =,所以椭圆的方程为:22143x y +=;(2)设与直线2y x =平行的直线的方程为()20y x m m =+≠,联立222143y x mx y =+⎧⎪⎨+=⎪⎩,整理可得:2219164120x mx m ++-=,22216419(412)0m m ∆=-⨯⨯-=,可得219m =,则m =所以直线2y x m =+到直线2y x =的距离d ==所以椭圆C 上的点到直线:2l y x =1721.(1)24y x = (2)649【分析】(1)首先利用勾股定理求出QF ,PF ,再由等面积法求出p ,即可得解;(2)设直线AB 的解析式为x ky b =+,()11,A x y ,()22,B x y ,联立直线与抛物线方程,消元、列出韦达定理,依题意0FA FB ⋅=,即可得到22614b b k -+=,再由129S S =得到线段的比例关系,从而求出b ,再计算出12y y -,最后根据P Q PQ y y =-及韦达定理计算可得. 【详解】(1)方法一:5PQ =,PF QF ⊥,2PF QF =,22225QF PF PQ ∴+==,解得QF =PF = ∴在PQF △中,根据等面积法1122PQ MF PF QF ⋅=⋅,5p ⨯=2p =,∴抛物线的标准方程为24y x =;方法二:设x 轴与准线的交点为M .,PF QF ⊥∴当2PF QF =时,tan 2tan PQF AFM ∠==∠,2PM MF ∴=,2MF MQ =.552PQ PM MQ MF ∴=+==,2MF p ∴==, ∴抛物线C 的标准方程为24y x =;(2)由(1)可得抛物线的焦点()1,0F ,准线为=1x -, 依题意,直线AB 的斜率不为0,∴设直线AB 的解析式为x ky b =+,()11,A x y ,()22,B x y .联立24y x x ky b⎧=⎨=+⎩,消去x 得2440y ky b --=,显然0∆>,124y y k ∴+=,124y y b =-.由PF QF ⊥,则0FA FB ⋅=,可得()()11221,1,0x y x y -⋅-=,()()1212110x x y y ∴--+=,整理得22614b b k -+=.ⅰ易知直线AF 的解析式为()1111y y x x =--,令=1x -,可得1121P y y x -=-, 同理可得2221Q y y x -=-. 129S S =,9PF QF AF BF ∴⋅=⋅,即9PF BFAFQF =⨯,219P Qy y y y ∴=.129P Q y y y y ∴=,12121222119y y x x y y --⋅--∴=,()()124911x x ∴=--,即1249y y -=,19b ∴=.12169y y ∴-=. 所以()()1212211212122222221111P Q y y x y x y y y PQ y y x x x x ---+-=-=-=---- ()121212121264249y y y y y y y y ⎛⎫-- ⎪⎝⎭==-=-.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.1817.(2)10x-=或10x -=【分析】(1)由椭圆方程,即可求出椭圆右焦点坐标,根据直线的点斜式,联立直线方程和椭圆方程,求得交点,A B 的坐标,根据两点之间距离公式可求得AB ;(2)联立直线方程和椭圆方程,根据椭圆的弦长公式可求得|AB |,计算AB 的中点,G MG ,利用AMB ∠最大求得直线方程【详解】(1)由题意可得()1,0F ,因为直线l 的倾斜角为π4,所以πtan 14k ==,因此,l 的方程为1y x =-,联立方程22121x y y x ⎧+=⎪⎨⎪=-⎩,消去y 得2340x x -=解得1240,3x x ==所以()410,1,,33A B ⎛⎫- ⎪⎝⎭因此,AB =(2)设()()1122,,,A x y B x y ,由题意得,直线l 的斜率不为0,故设l 为1x my =+, 联立方程22121x y x my ⎧+=⎪⎨⎪=+⎩消去x 得,()222210m y my ++-=,0∆>,因此12122221,22m y y y y m m -+==-++, 所以)2212m AB m +==+,设线段AB 的中点为G , 则12222,1222G G G y y m y x my m m +==-=+=++,所以()22242122m MG m m +=-=++,所以12tan 2ABAMB MG∠==设t =,则tan 2AMB t t ∠===≤+,当且仅当t =m = 当2AMB∠最大时,AMB ∠也最大,此时直线l 的方程为1x =+, 即10x-=或10x -=1918.(1)2213x y -=(2)1【分析】(1)先求出焦点坐标,再根据渐近线方程可求基本量,从而可得双曲线的方程. (2)利用点差法可求直线的斜率,注意检验.【详解】(1)椭圆2215x y +=的焦点为()2,0±,故224a b +=,由双曲线的渐近线为y x =,故b a =1,b a == 故双曲线方程为:2213x y -=.(2)设()()1122,,,A x y B x y ,AB 的中点为M , 因为M 在直线1:3l y x =,故13M M y x =,而121231y x -=,222231y x -=,故()()()()1212121203x x x x y y y y -+--+=, 故()()121203M M x x xy y y ---=,由题设可知AB 的中点不为原点,故0M M x y ≠,所以121213M My y xx x y -==-, 故直线AB 的斜率为1.此时12:33M M M AB y x x x x x =-+=-,由222333M x y x x y ⎧=-⎪⎨⎪-=⎩可得222333M x x x ⎛⎫--= ⎪⎝⎭,整理得到:22424303M M x x x x -++=, 当222416Δ168324033M M M x x x ⎛⎫=-+=-> ⎪⎝⎭即M x <M x >即当M x <M x >AB 存在且斜率为1.2018.(1)22143x y +=(2)(ⅰ)2212 7x y+=;(ⅰ)48,7⎡⎢⎣.【分析】(1)利用题意列出两个方程,联立求解得,a b的值,即得椭圆方程;(2)(ⅰ)设AB方程,与椭圆方程联立,写出韦达定理,利用菱形对角线互相垂直得到()221217km+=,再由题意推出22212||17mOPk==+,即得点P的轨迹方程;(ⅰ)利用弦长公式求出AB =算出AOB的面积表达式S=t的函数S=图象即可求其取值范围.【详解】(1)根据题意设椭圆C的标准方程为22221x ya b+=,由已知得,1222a b⨯⨯==ab1c=可得,221a b-=,联立解得,2a=,b=故椭圆C的标准方程为:22143x y+=.(2)ⅰ 如图,当直线AB的斜率存在时,设其方程为y kx m=+,由22143y kx mx y=+⎧⎪⎨+=⎪⎩,得()2223484120k x kmx m+++-=,由题意()()()222222Δ6443441248430k m k m k m=-+-=-+>,设1122(,),(,)A x yB x y,则122834kmx xk+=-+,212241234mx xk-=+,于是,()()2212121212()y y kx m kx m k x x km xx m=++=+++。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(22)(本小题满分13分)垂直于x 轴的直线被椭圆C 截得的线段长为l.(Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1、PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M (m ,0),求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点p 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个这个定值.(21)(本小题满分13分)在平面直角坐标系xOy 中,F 是抛物线2:2(0)C x py p =>的焦点,M 是抛物线C 上位于第一象限内的任意一点,过,,M F O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为34. (Ⅰ)求抛物线C 的方程;(Ⅱ)是否存在点M ,使得直线MQ 与抛物线C 相切于点M ?若存在,求出点M 的坐标;若不存在,说明理由;(Ⅲ)若点M 直线1:4l y kx =+与抛物线C 有两个不同的交点,A B ,l 与圆Q 有两个不同的交点,D E ,求当122k ≤≤时,22AB DE +的最小值.(22)(本小题满分14分) 已知直线l 与椭圆C: 22132x y +=交于P ()1x y ⋅.Q ()1x y ⋅两不同点,且△OPQ 的面积其中Q 为坐标原点。

(Ⅰ)证明X 12+X 22和Y 12+Y 22均为定值(Ⅱ)设线段PQ 的中点为M ,求OM PQ ⋅的最大值;(Ⅲ)椭圆C 上是否存在点D,E,G ,使得S △ODE =S △ODG =S △OEG 若存在,判断△DEG 的形状;若不存在,请说明理由。

(21)(本小题满分12分)如图,已知椭圆22221(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得·AB CD AB CD λ+=恒成立?若存在,求λ的值;若不存在,请说明理由.(22)(本小题满分14分)设椭圆E: 22221x y a b+=(a,b>0)过M (2 ,两点,O 为坐标原点, (I )求椭圆E 的方程;(II )是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A,B,且OA OB ⊥ ?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。

答案:204x ≠,将向量坐标代入并化简得:m (23000416)312x x x -=-,因为204x ≠,21.2011.22.解析:(Ⅰ)当直线l 的斜率不存在时,,P Q 两点关于x 轴对称,则1212,x x y y ==-, 由()11,P x y 在椭圆上,则2211132x y +=,而11OPQ S x y ∆==,则111x y == 于是22123x x +=,22122y y +=.当直线l 的斜率存在,设直线l 为y kx m =+,代入22132x y +=可得 2223()6x kx m ++=,即222(23)6360k x km m +++-=,0∆>,即2232k m +>2121222636,2323km m x x x x k k-+=-=++12PQ x =-==d =,1122POQ S d PQ ∆=⋅⋅==则22322k m +=,满足0∆>222221212122263(2)()2()232323km m x x x x x x k k -+=+-=--⨯=++, 222222*********(3)(3)4()2333y y x x x x +=-+-=-+=, 综上可知22123x x +=,22122y y +=.(Ⅱ))当直线l的斜率不存在时,由(Ⅰ)知122OM x PQ =⋅== 当直线l 的斜率存在时,由(Ⅰ)知12322x x k m+=-, 2121231()222y y x x k k m m m m++=+=-+=, 222212122229111()()(3)2242x x y y k om m m m ++=+=+=- 22222222224(32)2(21)1(1)2(2)(23)k m m PQ k k m m +-+=+==++22221125(3)(2)4OM PQ m m =-+≤,当且仅当221132m m -=+,即m =时等号成立,综上可知OM PQ ⋅的最大值为52。

(Ⅲ)假设椭圆上存在三点,,D E G ,使得ODE ODG OEG S S S ∆∆∆===由(Ⅰ)知2222223,3,3D E E G G D x x x x x x +=+=+=, 2222222,2,2D E E G G D y y y y y y +=+=+=. 解得22232D E G x x x ===,2221D E G y y y ===,因此,,D E G x x x 只能从2±中选取,,,D E G y y y 只能从1±中选取,因此,,D E G 只能从(1)±中选取三个不同点,而这三点的两两连线必有一个过原点,这与ODE ODG OEG S S S ∆∆∆===故椭圆上不存在三点,,D E G ,使得ODE ODG OEG S S S ∆∆∆===2010.22【解析】(Ⅰ)由题意知,椭圆离心率为c a =2,得a =,又22a c +=4(,所以可解得a =2c =,所以2224b a c =-=,所以椭圆的标准方程为22184x y +=;所以椭圆的焦点坐标为(2±,0),因为双曲线为等轴双曲线,且顶点是该椭圆的焦点,所以该双曲线的标准方程为22144x y -=。

【命题意图】本题考查了椭圆的定义、离心率、椭圆与双曲线的标准方程、直线与圆锥曲线的位置关系,是一道综合性的试题,考查了学生综合运用知识解决问题的能力。

其中问题(3)是一个开放性问题,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力,2009解:(1)因为椭圆E: 22221x y a b+=(a,b>0)过M (2 ,两点,所以2222421611a b a b +=+=⎧⎪⎪⎨⎪⎪⎩解得22118114a b ⎧=⎪⎪⎨⎪=⎪⎩所以2284a b ⎧=⎨=⎩椭圆E 的方程为22184x y += (2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A,B,且OA OB ⊥ ,设该圆的切线方程为y kx m =+解方程组22184x y y kx m +==+⎧⎪⎨⎪⎩得222()8x kx m ++=,即222(12)4280k x kmx m +++-=,则△=222222164(12)(28)8(84)0k m k m k m -+-=-+>,即22840k m -+> 12221224122812km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩,22222222212121212222(28)48()()()121212k m k m m k y y kx m kx m k x x km x x m m k k k --=++=+++=-+=+++要使O A O B ⊥ ,需使12120x x y y +=,即2222228801212m m k k k --+=++,所以223880m k --=,所以223808m k -=≥又22840k m -+>,所以22238m m ⎧>⎨≥⎩,所以283m ≥,即3m ≥或3m ≤-,因为直线y kx m =+为圆心在原点的圆的一条切线,所以圆的半径为r =,222228381318m m r m k ===-++,r =所求的圆为2283x y +=,此时圆的切线y kx m =+都满足3m ≥或3m ≤-,而当切线的斜率不存在时切线为3x =±与椭圆22184x y +=的两个交点为(,)33±或(满足OA OB ⊥ ,综上, 存在圆心在原点的圆2283x y +=,使得该圆的任意一条切线与椭圆E 恒有两个交点A,B,且OA OB ⊥ . 因为12221224122812km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩, 所以22222212121222224288(84)()()4()41212(12)km m k m x x x x x x k k k --+-=+-=--⨯=+++,||AB ===== ①当0k ≠时||AB =因为221448k k ++≥所以221101844k k <≤++, 所以2232321[1]1213344k k<+≤++,||AB≤2k =±时取”=”. ② 当0k =时,||AB =③ 当AB 的斜率不存在时,两个交点为或(,所以此时||3AB =, 综上, |AB |||AB ≤≤: ||AB ∈ 【命题立意】:本题属于探究是否存在的问题,主要考查了椭圆的标准方程的确定,直线与椭圆的位置关系直线与圆的位置关系和待定系数法求方程的方法,能够运用解方程组法研究有关参数问题以及方程的根与系数关系.。

相关文档
最新文档