函数微分公式word版

合集下载

(完整word版)三角函数公式大全

(完整word版)三角函数公式大全

(完整word版)三⾓函数公式⼤全⾼中三⾓函数公式⼤全[图]1 三⾓函数的定义1.1 三⾓形中的定义图1 在直⾓三⾓形中定义三⾓函数的⽰意图在直⾓三⾓形ABC,如下定义六个三⾓函数:正弦函数余弦函数正切函数余切函数正割函数余割函数1.2 直⾓坐标系中的定义图2 在直⾓坐标系中定义三⾓函数⽰意图在直⾓坐标系中,如下定义六个三⾓函数:正弦函数余弦函数正切函数余切函数正割函数余割函数2 转化关系2.1 倒数关系2.2 平⽅关系2 和⾓公式3 倍⾓公式、半⾓公式3.1 倍⾓公式3.2 半⾓公式3.3 万能公式4 积化和差、和差化积4.1 积化和差公式证明过程⾸先,sin(α+β)=sinαcosβ+sinβcosα(已证。

证明过程见《和⾓公式与差⾓公式的证明》)因为sin(α+β)=sinαcosβ+sinβcosα(正弦和⾓公式)则sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosα于是sin(α-β)=sinαcosβ-sinβcosα(正弦差⾓公式)将正弦的和⾓、差⾓公式相加,得到sin(α+β)+sin(α-β)=2sinαcosβ则sinαcosβ=sin(α+β)/2+sin(α-β)/2(“积化和差公式”之⼀)同样地,运⽤诱导公式cosα=sin(π/2-α),有cos(α+β)=sin[π/2-(α+β)]=sin(π/2-α-β)=sin[(π/2-α)+(-β)]=sin(π/2-α)cos(-β)+sin(-β)cos(π/2-α)=cosαcosβ-sinαsinβ于是cos(α+β)=cosαcosβ-sinαsinβ(余弦和⾓公式)那么cos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβcos(α-β)=cosαcosβ+sinαsinβ(余弦差⾓公式)将余弦的和⾓、差⾓公式相减,得到cos(α+β)-cos(α-β)=-2sinαsinβ则sinαsinβ=cos(α-β)/2-cos(α+β)/2(“积化和差公式”之⼆)将余弦的和⾓、差⾓公式相加,得到cos(α+β)+cos(α-β)=2cosαcosβ则cosαcosβ=cos(α+β)/2+cos(α-β)/2(“积化和差公式”之三)这就是积化和差公式:sinαcosβ=sin(α+β)/2+sin(α-β)/2sinαsinβ=cos(α-β)/2-cos(α+β)/2cosαcosβ=cos(α+β)/2+cos(α-β)/24.2 和差化积公式部分证明过程:sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosαcos(α+β)=sin[90-(α+β)]=sin[(90-α)-β]=sin(90-α)cosβ-sinβcos(90-α)=cosαcosβ-sinαsinβcos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβtan(α+β)=sin(α+β)/cos(α+β)=(sinαcosβ+sinβcosα)/(cosαcosβ-sinαsinβ)=(cosαtanαcosβ+cosβtanβcosα)/(cosαcosβ-cosαtanαcosβtanβ)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=tan[α+(-β)]=[tanα+tan(-β)]/[1-tanαtan(-β)]=(tanα-tanβ)/(1+tanαtanβ)诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(pi/2-a)=cos(a)cos(pi/2-a)=sin(a)sin(pi/2+a)=cos(a)cos(pi/2+a)=-sin(a)sin(pi-a)=sin(a)cos(pi-a)=-cos(a)sin(pi+a)=-sin(a)cos(pi+a)=-cos(a)tgA=tanA=sinA/cosA两⾓和与差的三⾓函数si n(a+b)=sin(a)cos(b)+cos(α)sin(b)cos(a+b)=cos(a)cos(b)-sin(a)sin(b)sin(a-b)=sin(a)cos(b)-cos(a)sin(b)cos(a-b)=cos(a)cos(b)+sin(a)sin(b)tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b))tan(a-b)=(tan(a)-tan(b))/(1+tan(a)tan(b))三⾓函数和差化积公式sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2)sin(a)sin(b)=2cos((a+b)/2)sin((a-b)/2)cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2)cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2)积化和差公式sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]⼆倍⾓公式sin(2a)=2sin(a)cos(a)cos(2a)=cos^2(a)-sin^2(a)=2cos^2(a)-1=1-2sin^2(a)半⾓公式sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))其它公式a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a] a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]1+sin(a)=(sin(a/2)+cos(a/2))^21-sin(a)=(sin(a/2)-cos(a/2))^2其他⾮重点三⾓函数csc(a)=1/sin(a)sec(a)=1/cos(a)双曲函数sinh(a)=(e^a-e^(-a))/2cosh(a)=(e^a+e^(-a))/2tgh(a)=sinh(a)/cosh(a)常⽤公式表(⼀)1。

完整word高数微积分公式三角函数公式考研

完整word高数微积分公式三角函数公式考研

高等数学微积分公式大全一、基本导数公式⑴ c⑵ x x1⑶ sin x cos x⑷ cosx sin x⑸ tan xsec 2 x⑹ cot xcsc 2 x⑺ sec x sec x tan x⑻ csc xcsc x cot x⑼ e xe x⑽ a xa x ln a⑾ ln x1x⑿ log a x1 ⒀ arcsin x1 x2 ⒁ arccos x1x ln a11 x 2⒂ arctan x1 ⒃ arccot x1 2⒄x1⒅x1 1 x 21 x2 x二、导数的四则运算法规u vuvuvu v uvu u v uvvv2三、高阶导数的运算法规( 1) u x v xnnv x nncu n xu x(2) cu xnnn( 3) u ax ba n u n ax b( 4) u x v xc n k u n k x v ( k ) xk 0四、基本初等函数的 n 阶导数公式( 1) xnnn!( 2) eaxbnaneax b (3) axna x ln na(4) sin ax bna nsin axb n(5)cos axb naxb n2a n cos21nna nn!nn 1a n n 1 !(6)(7)1 ax b1ax n 1ln ax baxnbb五、微分公式与微分运算法规⑴ d c 0⑵ d xx1dx⑶ d sin x cosxdx⑷ d cosx sin xdx ⑸ d tan xsec 2 xdx⑹ dcot xcsc 2 xdx⑺ d secx secx tan xdx⑻ d cscx cscx cot xdx⑼ dexe xdx⑽ daxa xln adx⑾ d ln x1dxx⑿ dlog a x1 dx ⒀ d arcsin x1 dx ⒁ d arccos x1 dxx ln a1 x 21 x 2⒂ d arctan x12 dx⒃ darccot x1dx1x 1 x 2六、微分运算法规⑴ du v du dv⑵d cu cdu⑶ duv vdu udv⑷ d uvdu udvvv 2七、基本积分公式⑴kdx kx c⑵ x dxx 1c⑶dx ln xc1x⑷a xdx a xc⑸ e x dxe x c⑹ cosxdxsin x cln a⑺sin xdxcosx c⑻1 dxsec 2 xdx tan x ccos 2 x ⑼ 12xdxcot xc⑽ 1 2 dx arctan x csin 2xcsc x1⑾1dxarcsin x c1x 2八、补充积分公式tan xdx ln cos x ccot xdx ln sin x csecxdx ln secx tan x ccscxdx ln cscx cot x c11x1 a 2dx1 x aa2x 2 dx a arctan a cx22a l n x ac1dx arcsinxc1dx ln xx 2 a 2ca 2 x 2ax 2 a 2九、以下常用凑微分公式积分型换元公式f axb dx1 f ax b d ax bu ax baf x x 1dx 1 f x d xu xf ln x1dxfln x d ln xu ln xxf e x e x dx f e x d e xf a x a x dx 1 f a x d a xln af sin x cosxdx f sin x d sin x f cos x sin xdx f cosx d cosx f tan x sec2 xdx f tan x d tan x f cot x csc2 xdx f cot x d cot xf12 dx f arcta n x d arc ta n x arctan xx1f arcsin x 1 dx f arcsin x d arcsin x1 x2十、分部积分法公式⑴形如x n e ax dx ,令u x n, dv e ax dx形如x n sin xdx 令u x n,dv sin xdx形如x n cos xdx 令u x n,dv cosxdx⑵形如x n arctanxdx ,令 u arctan x ,dv x n dx形如x n ln xdx ,令 u ln x ,dv x n dx⑶形如e ax sin xdx,e ax cos xdx令u e ax ,sin x,cos x 均可。

(完整word)高数微积分公式+三角函数公式考研

(完整word)高数微积分公式+三角函数公式考研

高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x xμμμ-= ⑶()sin cos x x '=⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅⑼()xxee'= ⑽()ln xxaaa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arccot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑ 四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则 ⑴()0d c = ⑵()1d xxdx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅ ⑼()xxd ee dx = ⑽()ln xxd a aadx = ⑾()1ln d x dx x=⑿()1logln xad dx x a =⒀()arcsin d x =⒁()arccos d x = ⒂()21arctan 1d x dx x =+ ⒃()21arccot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dxx c x=+⎰ ⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan xdx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsinxc a=+ ln x c =+十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,axdv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx = ⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。

《导数与微分》word版

《导数与微分》word版

第二章 导数与微分教学要求:正确理解导数概念及其几何意义.知道导数值与导数的联系与区别.熟练掌握求导方法,记住求导的基本公式及求导法那么(四那么运算法那么,反函数、复合函数、隐函数、参数式函数的求导法那么,对数求导法).知道利用定义求导数的方法,会求分段函数分界点处的导数.会计算较简单的导数应用题.会求曲线在某点的切线和法线方程;会求一些物理量的变化率;会计算一些简单的相关变化率问题.理解高阶导数的定义,熟练掌握求二阶导数的方法.会求一些简单的初等函数(如1,,sin ,ln ,ln(1)x e x x x x). 正确理解微分的定义及其与导数的关系.理解微分与函数增量的关系,会用微分近似计算函数改变量和函数值的近似值.理解一阶微分形式不变性.明确可微(可导)与连续之间的关系.教学重点:导数与微分的概念;导数的几何意义和作为变化率的各种实际意义及其应用;函数连续、可导、 可微相互之间的关系;各类函数的求导法那么与求导方法;基本初等函数的导数与微分公式. 教学难点:复合函数求导法那么与高阶导数求导方法的应用.数学中研究导数、微分及其应用的部分称为微分学,研究不定积分、定积分及其应用的部分称为积分学. 微分学与积分学统称为微积分学.微积分学是高等数学最基本、最重要的组成部分,是现代数学许多分支的基础,是人类认识客观世界、探索宇宙奥秘乃至人类自身的典型数学模型之一.恩格斯(1820-1895)曾指出:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发明那样被看作人类精神的最高胜利了”. 微积分的发展历史曲折跌宕,撼人心灵,是培养人们正确世界观、科学方法论和对人们进行文化熏陶的极好素材(本部分内容详见光盘).积分的雏形可追溯到古希腊和我国魏晋时期,但微分概念直至16世纪才应运萌生. 本章及下一章将介绍一元函数微分学及其应用的内容.第一节 导数概念从15世纪初文艺复兴时期起,欧洲的工业、农业、航海事业与商贾贸易得到大规模的发展,形成了一个新的经济时代. 而十六世纪的欧洲,正处在资本主义萌芽时期,生产力得到了很大的发展. 生产实践的发展对自然科学提出了新的课题,迫切要求力学、天文学等基础科学的发展,而这些学科都是深刻依赖于数学的,因而也推动了数学的发展. 在各类学科对数学提出的种种要求中,下列三类问题导致了微分学的产生:(1) 求变速运动的瞬时速度;(2) 求曲线上一点处的切线;(3) 求最大值和最小值.这三类实际问题的现实原型在数学上都可归结为函数相对于自变量变化而变化的快慢程度,即所谓函数的变化率问题. 牛顿从第一个问题出发,莱布尼茨从第二个问题出发,分别给出了导数的概念.内容分布图示★ 引言★ 变速直线运动的瞬时速度★ 平面曲线的切线★ 导数的定义 ★ 关于导数的几点说明★利用定义求导数与求极限 ★例1★例2★ 例3★ 例4★ 例5 ★ 例6 ★ 例7★ 左右导数★ 例8 ★ 例9★ 导数的几何意义 ★ 例10 ★ 例11★ 导数的物理意义★ 可导与连续的关系★ 例12 ★ 例13 ★ 例14★ 内容小结★ 课堂练习★返回内容要点:一、引例: 引例1: 变速直线运动的瞬时速度; 引例2: 平面曲线的切线二、导数的定义:xx f x x f x y x f x x ∆-∆+=∆∆='→∆→∆)()(lim lim )(00000 注:导数概念是函数变化率这一概念的精确描述,它撇开了自变量和因变量所代表的几何或物理等方面的特殊意义,纯粹从数量方面来刻画函数变化率的本质: 函数增量与自变量增量的比值x y ∆∆是函数y 在以0x 和x x ∆+0为端点的区间上的平均变化率,而导数0|x x y ='那么是函数y 在点0x 处的变化率,它反映了函数随自变量变化而变化的快慢程度.根据导数的定义求导,一般包含以下三个步骤:1. 求函数的增量: );()(x f x x f y -∆+=∆2. 求两增量的比值:x x f x x f x y ∆-∆+=∆∆)()(; 3. 求极限 .lim0xy y x ∆∆='→∆ 三、左右导数定理1 函数)(x f y =在点0x 处可导的充要条件是:函数)(x f y =在点0x 处的左、右导数均存在且相等.四、用定义计算导数五、导数的几何意义六、函数的可导性与连续性的关系定理2 如果函数)(x f y =在点0x 处可导,那么它在0x 处连续.注:上述两个例子说明,函数在某点处连续是函数在该点处可导的必要条件,但不是充分条件. 由定理2还知道,若函数在某点处不连续,那么它在该点处一定不可导.在微积分理论尚不完善的时候,人们普遍认为连续函数除个别点外都是可导的. 1872年得多数学家魏尔斯特拉构造出一个处处连续但处处不可导的例子,这与人们基于直观的普遍认识大相径庭,从而震惊了数学界和思想界. 这就促使人们在微积分研究中从依赖于直观转向理性思维,大大促进了微积分逻辑基础的创建工作.例题选讲:导数概念的应用例1 求函数3x y =在1=x 处的导数)1(f '.例2试按导数定义求下列各极限(假设各极限均存在).(1);)2()2(lim ax a f x f a x --→ (2) ,)(lim 0xx f x → 其中.0)0(=f 用定义计算导数例3 求函数C x f =)((C 为常数)的导数.例4设函数,sin )(x x f = 求)(sin 'x 及4|)(sin π='x x . 例5 求函数n x y =(n 为正整数)的导数.例6 求函数)1,0()(≠>=a a a x f x 的导数.例7 求函数)1,0(log ≠>=a a x y a 的导数.左右导数例8 求函数⎩⎨⎧=,,sin )(x x x f 00≥<x x 在0=x 处的导数. 例9 设)(x f 为偶函数,且)0(f '存在. 证明.0)0(='f例10求等边双曲线x y 1=在点⎪⎭⎫ ⎝⎛2,21处的切线的斜率, 并写出在该点处的切线方程和法线方程. 例11 求曲线x y =在点)2,4(处的切线方程.例12 讨论函数||)(x x f =在0=x 处的连续性与可导性.例13 讨论⎪⎩⎪⎨⎧=≠=0,00,1sin )(x x x x x f 在0=x 处的连续性与可导性. 例14设函数⎩⎨⎧<≤+<=,10,10,)(2x x x a x f 问a 取何值时,)(x f 为可导函数. 注:上述两个例子说明,函数在某点处连续是函数在该点处可导的必要条件,但不是充分条件. 由定理2还知道,若函数在某点处不连续,那么它在该点处一定不可导.在微积分理论尚不完善的时候,人们普遍认为连续函数除个别点外都是可导的. 1872年得多数学家魏尔斯特拉构造出一个处处连续但处处不可导的例子(如第十一章第一节的Koch 雪花曲线描述的函数),这与人们基于直观的普遍认识大相径庭,从而震惊了数学界和思想界. 这就促使人们在微积分研究中从依赖于直观转向理性思维,大大促进了微积分逻辑基础的创建工作.课堂练习1. 函数)(x f 在某点0x 处的导数)(0x f '与导函数)(x f '有什么区别与联系?2. 设)(x ϕ在a x =处连续, )()()(22x a x x f ϕ-=, 求)(a f '.3. 求曲线32x x y -=上与x 轴平行的切线方程.莱布尼茨 (Friedrich , Leibniz ,1597~1652)-----博学多才的数学符号大师出生于书香门第的莱布尼兹是德国一们博学多才的学者。

二阶常系数线性微分方程的解法word版

二阶常系数线性微分方程的解法word版

第八章 讲第四节 二阶常系数线性微分方程一、二阶常系数线形微分方程的概念形如 )(x f qy y p y =+'+'' 1的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数.如果0)(≡x f ,则方程式 1变成0=+'+''qy y p y 2我们把方程2叫做二阶常系数齐次线性方程,把方程式1叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法.二、二阶常系数齐次线性微分方程1.解的叠加性定理1 如果函数1y 与2y 是式2的两个解, 则2211y C y C y +=也是式2的解,其中21,C C 是任意常数.证明 因为1y 与2y 是方程2的解,所以有0111=+'+''qy y p y 0222=+'+''qy y p y 将2211y C y C y +=代入方程2的左边,得)()()(221122112211y C y C q y C y C p y C y C ++'+'+''+'' =0)()(22221111=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程2的解.定理1说明齐次线性方程的解具有叠加性.叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式2的通解.2.线性相关、线性无关的概念设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n个函数在区间I 内线性相关,否则称线性无关.例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为0sin cos 122≡--x x又如2,,1x x 在任何区间a,b 内是线性无关的,因为在该区间内要使 02321≡++x k x k k必须0321===k k k .对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠21y y 常数, 则1y ,2y 线性无关.3.二阶常系数齐次微分方程的解法定理 2 如果1y 与2y 是方程式2的两个线性无关的特解,则212211,(C C y C y C y +=为任意常数是方程式2的通解.例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且≠=x y y tan 21常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+=21,C C 是任意常数是方程0=+''y y 的通解.由于指数函数rxe y =r 为常数和它的各阶导数都只差一个常数因子,根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r ,使rxe y =满足方程2.将rx e y =求导,得 rx rx e r y re y 2,=''='把y y y ''',,代入方程2,得0)(2=++rx eq pr r 因为0≠rx e , 所以只有 02=++q pr r 3只要r 满足方程式3,rx e y =就是方程式2的解.我们把方程式3叫做方程式2的特征方程,特征方程是一个代数方程,其中r r ,2的系数及常数项恰好依次是方程2y y y ,,'''的系数. 特征方程3的两个根为 2422,1q p p r -±-=, 因此方程式2的通解有下列三种不同的情形. (1) 当042>-q p 时,21,r r 是两个不相等的实根. 2421q p p r -+-=,2422q p p r ---= x r x r e y e y 2121,==是方程2的两个特解,并且≠=-x r r e y y )(2121常数,即1y 与2y 线性无关.根据定理2,得方程2的通解为 x r x r e C e C y 2121+=(2) 当042=-q p 时, 21,r r 是两个相等的实根. 221p r r -==,这时只能得到方程2的一个特解x r e y 11=,还需求出另一个解2y ,且≠12y y 常数,设)(12x u y y =, 即 )(12x u e y x r =)2(),(21121211u r u r u e y u r u e y x r x r +'+''=''+'='. 将222,,y y y '''代入方程2, 得 []0)()2(12111=++'++'+''qu u r u p u r u r u e x r 整理,得0])()2([12111=+++'++''u q pr r u p r u e x r由于01≠x r e , 所以 0)()2(1211=+++'++''u q pr r u p r u 因为1r 是特征方程3的二重根, 所以02,01121=+=++p r q pr r从而有 0=''u因为我们只需一个不为常数的解,不妨取x u =,可得到方程2的另一个解 x r xe y 12=.那么,方程2的通解为x r x r xe C e C y 1121+=即 xr e x C C y 1)(21+=.(3) 当042<-q p 时,特征方程3有一对共轭复根 βαβαi r i r -=+=21, 0≠β于是 x i x i e y ey )(2)(1,βαβα-+== 利用欧拉公式 x i x e ix sin cos +=把21,y y 改写为)sin (cos )(1x i x e e e e y x x i x x i ββαβαβα+=⋅==+)sin (cos )(2x i x e e e e y x x i x xi ββαβαβα-=⋅==-- 21,y y 之间成共轭关系,取-1y =x e y y x βαcos )(2121=+, x e y y i y x βαsin )(2121_2=-= 方程2的解具有叠加性,所以-1y ,-2y 还是方程2的解,并且≠==--x x e x e y y x x βββααtan cos sin 12常数,所以方程2的通解为 )sin cos (21x C x C e y x ββα+=综上所述,求二阶常系数线性齐次方程通解的步骤如下:1写出方程2的特征方程02=++q pr r2求特征方程的两个根21,r r3根据21,r r 的不同情形,按下表写出方程2的通解.例1求方程052=+'+''y y y 的通解.解: 所给方程的特征方程为0522=++r ri r i r 21,2121--=+-=所求通解为 )2sin 2cos (21x C x C e y x +=-.例 2 求方程0222=++S dt dS dtS d 满足初始条件2,400-='===t t S S 的特解.解 所给方程的特征方程为0122=++r r121-==r r通解为 te t C C S -+=)(21 将初始条件40==t S 代入,得 41=C ,于是 t e t C S -+=)4(2,对其求导得te t C C S ---=')4(22 将初始条件20-='=t S 代入上式,得 22=C所求特解为t e t S -+=)24(例3求方程032=-'+''y y y 的通解.解 所给方程的特征方程为 0322=-+r r其根为 1,321=-=r r所以原方程的通解为 x x e C e C y 231+=-二、二阶常系数非齐次方程的解法1.解的结构定理3 设*y 是方程1的一个特解,Y 是式1所对应的齐次方程式2的通解,则*+=y Y y 是方程式1的通解.证明 把*+=y Y y 代入方程1的左端:)()()(*++*'+'+*''+''y Y q y Y p y Y=)()(*+*'+*''++'+''qy py y qY Y p Y=)()(0x f x f =+*+=y Y y 使方程1的两端恒等,所以*+=y Y y 是方程1的解. 定理4 设二阶非齐次线性方程1的右端)(x f 是几个函数之和,如 )()(21x f x f qy y p y +=+'+'' 4 而*1y 与*2y 分别是方程 )(1x f qy y p y =+'+''与 )(2x f qy y p y =+'+''的特解,那么**+21y y 就是方程4的特解, 非齐次线性方程1的特解有时可用上述定理来帮助求出.2.)()(x P e x f m x λ=型的解法 )()(x P e x f m x λ=,其中λ为常数,)(x P m 是关于x 的一个m 次多项式. 方程1的右端)(x f 是多项式)(x P m 与指数函数x e λ乘积的导数仍为同一类型函数,因此方程1的特解可能为x e x Q y λ)(=*,其中)(x Q 是某个多项式函数.把 x e x Q y λ)(=*x e x Q x Q y λλ)]()(['+=*'x e x Q x Q x Q y λλλ)]()(2)([2''+'+=*''代入方程1并消去xe λ,得)()()()()2()(2x P x Q q p x Q p x Q m =+++'++''λλλ 5以下分三种不同的情形,分别讨论函数)(x Q 的确定方法:1 若λ不是方程式2的特征方程02=++q pr r 的根, 即02≠++q p λλ,要使式5的两端恒等,可令)(x Q 为另一个m 次多项式)(x Q m :m m m x b x b x b b x Q ++++= 2210)(代入5式,并比较两端关于x 同次幂的系数,就得到关于未知数m b b b ,,,10 的1+m 个方程.联立解方程组可以确定出),,1,0(m i b i =.从而得到所求方程的特解为x m e x Q y λ)(=*2 若λ是特征方程02=++q pr r 的单根, 即02,02≠+=++p q p λλλ,要使式5成立, 则)(x Q '必须要是m 次多项式函数,于是令)()(x xQ x Q m =用同样的方法来确定)(x Q m 的系数),,1,0(m i b i =.3 若λ是特征方程02=++q pr r 的重根,即,02=++q p λλ 02=+p λ.要使5式成立,则)(x Q ''必须是一个m 次多项式,可令)()(2x Q x x Q m =用同样的方法来确定)(x Q m 的系数.综上所述,若方程式1中的x m e x P x f λ)()(=,则式1的特解为x m k e x Q x y λ)(=*其中)(x Q m 是与)(x P m 同次多项式,k 按λ不是特征方程的根,是特征方程的单根或是特征方程的重根依次取0,1或2.例4 求方程x e y y 232-='+''的一个特解.解 )(x f 是x m e x p λ)(型, 且2,3)(-==λx P m对应齐次方程的特征方程为 022=+r r ,特征根根为2,021-==r r . λ=-2是特征方程的单根, 令xe xb y 20-=*,代入原方程解得230-=b故所求特解为 xxe y 223--=* .例5 求方程x e x y y )1(2-='-''的通解.解 先求对应齐次方程02=+'-''y y y 的通解.特征方程为 0122=+-r r , 121==r r齐次方程的通解为 xe x C C Y )(21+=.再求所给方程的特解1)(,1-==x x P m λ由于1=λ是特征方程的二重根,所以x e b ax x y )(2+=*把它代入所给方程,并约去x e 得126-=+x b ax比较系数,得61=a 21-=b于是 xe x x y )216(2-=*所给方程的通解为 x e x x x C C y y y )6121(3221+-+=+=* 3.x B x A x f ϖϖsin cos )(+=型的解法 ,sin cos )(x B x A x f ωω+=其中A 、B 、ω均为常数.此时,方程式1成为x B x A q y p y ωωsin cos +=+'+'' 7这种类型的三角函数的导数,仍属同一类型,因此方程式7的特解*y 也应属同一类型,可以证明式7的特解形式为)sin cos (x b x a x y k ωω+=*其中b a ,为待定常数.k 为一个整数.当ω±i 不是特征方程02=++q pr r 的根, k 取0;当ω±i 不是特征方程02=++q pr r 的根, k 取1;例6 求方程x y y y sin 432=-'+''的一个特解.解 1=ω,ω±i i ±=不是特征方程为0322=-+r r 的根,0=k .因此原方程的特解形式为x b x a y sin cos +=* 于是 x b x a y cos sin +-=*'x b x a y sin cos --=*''将*''*'*y y y ,,代入原方程,得⎩⎨⎧=--=+-442024b a b a 解得 54,52-=-=b a原方程的特解为: x x y sin 54cos 52--=* 例7 求方程x e y y y x sin 32+=-'-''的通解.解 先求对应的齐次方程的通解Y .对应的齐次方程的特征方程为0322=--r r3,121=-=r rx x e C e C Y 321+=-再求非齐次方程的一个特解*y .由于x e x x f -+=2cos 5)(,根据定理4,分别求出方程对应的右端项为,)(1x e x f =x x f sin )(2=的特解*1y 、*2y ,则 **+=*21y y y 是原方程的一个特解.由于1=λ,ω±i i ±=均不是特征方程的根,故特解为)sin cos (21x c x b ae y y y x ++=+=*** 代入原方程,得x e x c b x c b ae x x sin sin )42(cos )24(4=-++--比较系数,得14=-a 024=+c b 142=-c b解之得 51,101,41-==-=c b a . 于是所给方程的一个特解为 x x e y x sin 51cos 10141-+-=* 所以所求方程的通解为x x e e C e C y Y y x x x sin 51cos 10141321-+-+=+=-*.。

数学公式大全(word版-)

数学公式大全(word版-)

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμxxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。

(完整word版)高数公式大全

(完整word版)高数公式大全

高等数学公式·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1—tanα·tanβ)tan(α-β)=(tanα—tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=s inα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ—sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1—tanα·tanβ-tanβ·tanγ—tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:·三倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα) sin(3α)=3sinα—4sin^3(α)cos(2α)=cos^2(α)—sin^2(α)=2cos^2(α)-1=1—2sin^2(α)cos(3α)=4cos^3(α)-3cosαtan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin(α/2)=±√((1—cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)—sin(α—β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=—(1/2)[cos(α+β)-cos(α—β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α—β)/2]sinα—sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα—cosβ=—2sin[(α+β)/2]sin[(α—β)/2]·推导公式tanα+cotα=2/sin2αtanα—cotα=—2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n—1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)—e^(-ix)]/(2i) cosx=[e^(ix)+e^(—ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(—ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。

04第四讲_微分方程word精品文档12页

04第四讲_微分方程word精品文档12页

第四讲 微分方程考纲要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列微分方程:()()n y f x =,(,)y f x y '''=和(,)y f y y '''=.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.问题1 何谓微分方程、微分方程的阶、解、通解、初始条件、特解、初值问题和微分方程的积分曲线?答 微分方程:含有自变量、未知函数、未知函数的导数的等式. 微分方程的阶(order):微分方程中出现的未知函数的导数的最高阶数.微分方程的解:满足微分方程的函数.微分方程的通解:微分方程的解中含有任意常数,且独立的任意常数的个数等于微分方程的阶数.初始条件:确定微分方程通解中任意常数的值的条件. 微分方程的特解:确定了通解中任意常数的值后所得到的解. 初值问题(Cauchy 问题):微分方程连同初始条件. 一阶微分方程初值问题:(,,)0F x y y '=,00()y x y =.二阶微分方程初值问题:(,,,)0F x y y y '''=,00()y x y =,00()y x y ''=. 微分方程的积分曲线:微分方程的解的图形(通解的图形是一族曲线).问题2 如何求解一阶微分方程?答 一阶微分方程的一般形式是:(,,)0F x y y '=,解出y ':(,)dyf x y dx=,考纲要求掌握变量可分离的微分方程、一阶线性微分方程、.齐次微分方程、伯努利方程的解法.1可分离变量的微分方程:()()dyg x h y dx= 解法 分离变量:()()dy g x dx h y =;两端积分:()()dyg x dx h y =⎰⎰. 2 齐次微分方程:dy y dx x ϕ⎛⎫= ⎪⎝⎭解法 令y u x =,则y xu =,dy du u x dx dx =+,代入方程,得()duu x u dxϕ+=并求解.3 一阶线性微分方程:()()dyP x y Q x dx+= 若()0Q x ≡,则称它是齐次的,否则,称它为非齐次的. 解法(常数变易法) 先解对应齐次线性微分方程()0dyP x y dx+=,求得通解()P x dx y Ce -⎰=; 再令非齐次线性微分方程的解为()()P x dxy C x e -⎰=,代入方程求出()C x .通解公式:()()(())P x dx P x dxy e Q x e dx C -⎰⎰=+⎰ 解的结构:一阶非齐次线性微分方程的通解=对应的齐次线性微分方程的通解+非齐次线性微分方程的特解.4 伯努利方程:()()(0,1)dyP x y Q x y dxαα+=≠.(与一阶线性微分方程比较)解法 方程两边乘以y α-,再令1z y α-=,将方程化为一阶线性微分方程.求解微分方程的步骤是:判断方程的类型并用相应的方法求解. 例 求解下列一阶方程:1.y y x y x +-='22 【C x xy x +=>ln arcsin ,0】 2.)ln (ln x y y y x -=' 【1+=Cx xe y 】3.e e y y x dxdyxy2)(,22=+= 【2ln 2+=x x y 】 4.1)0(,0)cos 2()1(2==-+-y dx x xy dy x 【11sin 2--=x x y 】5.02)(3=--ydx dy y x 【y C y x +-=351】6.ln dy y dx y x=- 7.0)2(2=+-xdy dx y xy 【Cx xy +=2】 问题3 如何求解可降阶的二阶微分方程?答 二阶微分方程(,,,)0F x y y y '''=,解出(,,)y f x y y '''=,考纲要求掌握下列三种类型可降阶方程的解法:1. ()y f x ''=、()()n y f x =型的微分方程 特点:右端仅含x . 解法:积分两次.2. (,)y f x y '''=型的微分方程 特点:右端不显含未知函数y .解法:换元,化为一阶方程求解. 步骤如下: ⑴令y p '=,则dpy p dx'''==,方程化为(,)p f x p '=(这是关于变量x ,p 的一阶方程);⑵解出p ;⑶再由y p '=解出y . 3.(,)y f y y '''=型的微分方程 特点:右端不显含x .解法:换元,化为一阶方程求解. 步骤如下: ⑴令y p '=,则dp dp dy dp y p dx dy dx dy ''===,方程化为(,)dpp f y p dy=(这是关于变量y ,p 的一阶方程);⑵解出p ;⑶再由y p '=解出y . 例1. 解方程20yy y '''-=.【12C x y C e =】2.求微分方程2()y x y y ''''+=满足初始条件(1)(1)1y y '==的特解.3.求初值问题221,(1)1,(1)1yy y y y ''''=+==-的解. 解 令y p '=,则dp dp dy dpy p dx dy dx dy''===, 方程化为221dp ypp dy =+,分离变量,得221pdp dy p y=+,两边积分,得 21ln(1)ln ln p y C +=+,即211p C y +=.将初始条件1,1,1x y y p '====-代入,得12C =,故212p y +=,解得p =p =.再解y '=dx =-,两边积分,得2x C =-+,将初始条件1,1x y ==代入,得22C =,2x =-,即21(45)2y x x =-+.注意 二阶可降阶方程求特解过程中,任意常数出现一个,确定一个,有利于下一步求解.问题4 叙述二阶线性微分方程解的性质、解的结构. 答 二阶线性微分方程的一般形式:()()()y P x y Q x y f x '''++= 若()0f x ≡,则称方程是齐次的,否则称方程是非齐次的. 1.线性微分方程解的性质⑴如果1y 与2y 是齐次方程()()0y P x y Q x y '''++=的两个解,则1122y C y C y =+是此齐次方程的解.⑵如果1y 与2y 是非齐次方程()()()y P x y Q x y f x '''++=的两个解,则12y y -是对应齐次方程()()0y P x y Q x y '''++=的解.⑶(解的叠加原理)设*k y 是线性方程()()()k y P x y Q x y f x '''++=的特解,则*1n k k y =∑是1()()()nk k y P x y Q x y f x ='''++=∑的特解.2线性微分方程解的结构定理1(齐次方程解的结构)如果1y 与2y 是齐次方程()()0y P x y Q x y '''++=的两个线性无关的特解,则1122y C y C y =+是此齐次方程的通解.定理2(非齐次方程解的结构)设*y 是非齐次方程()()()y P x y Q x y f x '''++=的一个特解,1122y C y C y =+是对应的齐次方程()()0y P x y Q x y '''++=的通解,则*1122y y C y C y =++是此非齐次方程的通解.例 设123,,y y y 是)()()(x f y x Q y x P y =+'+''的三个线性无关的解,则其通解为 .【1121231()()y C y y C y y +-+-】问题5 如何求解二阶常系数线性齐次方程0y py qy '''++=?答 先求出它的特征方程20r pr q ++=的两个根,再根据特征根的三种不同情形写出通解(见下表).特征方程20r pr q ++=的根 方程0y py qy '''++=的通解 两个不等实根12,r r 1212e e r x r x y C C =+两个相等实根12r r = 112()e r x y C C x =+两个共轭复根1,2r i αβ=± 12e [cos sin ]x y C x C x αββ=+ 问题6 如何求二阶常系数线性非齐次方程()y py qy f x '''++=的特解?答 考纲要求会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程,由非齐次方程解的结构,只要求出它的一个特解和对应的齐次方程的通解,而齐次方程的通解已经解决,关键是求它的一个特解.1.若()()e x m f x P x λ=,则令*()e k x m y x Q x λ=,其中0,12k λλλ⎧⎪=⎨⎪⎩不是特征根;,是单特征根;,是二重特征根.2.若()e [()cos ()sin ]x m l f x P x x P x x λωω=+,则令**e [()cos ()sin ]k x n n y x Q x x Q x x λωω=+,其中{}max ,n m l =,0,1i k i λωλω+⎧=⎨+⎩不是特征根;,是单特征根.将它们代入非齐次方程,求出多项式中的待定系数,从而求出特解. 例1.求022=-'-''x e y y 满足1)0(,1)0(='=y y 的解.【x e x y 2)21(4143++=】 2.求x x y y cos +=+''的通解.【x x x x C x C y sin 21sin cos 21+++=】3.x x y y sin 12++=+''的特解形式可设为 . 问题7 如何求解欧拉方程2()x y pxy qy f x '''++=? 答 令t x e =,则dy xy Dy dt'==, 222(1)d y dyx y D D y dt dt''=-=-,欧拉方程化为二阶常系数线性方程.例 欧拉方程)0(0242>=+'+''x y y x y x 的通解为 .【221x C x C y +=】 问题8 如何求解含变限积分的方程(积分方程)?答 积分方程通过求导可化为微分方程,这种方程通常含有初始条件(令积分上限等于积分下限).例1.设⎰--=xdt t f t x x x f 0)()(sin )(,)(x f 为连续函数,求)(x f . 解 00()sin ()()xxf x x x f t dt tf t dt =-+⎰⎰,⑴ 两边对求导,得()cos ()()()cos ()xxf x x f t dt xf x xf x x f t dt '=--+=-⎰⎰,⑵两边再对求导,得()sin ()f x x f x ''=--,故)(x f 满足微分方程sin y y x ''+=-,由⑴,⑵得初始条件(0)0,(0)1f f '==.2.函数)(x f 在[0,)+∞上可导,(0)1f =,且满足等式01()()()01xf x f x f t dt x '+-=+⎰, 求()f x '.【e ()1xf x x -'=-+】解 由01()()()01xf x f x f t dt x '+-=+⎰,得 ()1f x '=-,(1)()(1)()()0xx f x x f x f t dt '+++-=⎰,()(1)()()(1)()()0f x x f x f x x f x f x ''''+++++-=, (1)()(2)()0x f x x f x '''+++=,令()f x p '=,(1)(2)0dpx x p dx+++=,21dp x dx p x +=-+, ln ln(1)ln p x x C =--++,即e ()1xC p f x x -'==+, 又()1f x '=-,得1C =-,故e ()1xf x x -'=-+.问题9 如何用微分方程求解应用问题? 答 关键是建立微分方程(包括初始条件). 例题3 应用题1.设)(x f y =是第一象限连接)0,1(),1,0(B A 的一段连续曲线,),(y x M 为该曲线上任意一点,点C 为M 在x 轴上的投影,O 为坐标原点,若梯形OCMA 的面积与曲边三角形CBM 的面积之和为3163+x ,求)(x f 的表达式.【2)1()(-=x x f 】2.设位于第一象限的曲线()y f x =过点1)22,其上任一点(,)P x y 处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.⑴求曲线()y f x =的方程;(2221x y +=)⑵已知曲线sin y x =在[0,]π上的弧长为l ,试用l 表示()y f x =的弧长s .【4l 】 解 ⑴曲线()y f x =在点(,)P x y 处的法线方程为1()Y y X x y -=--', 令0X = ,得x Y y y =+',故点Q 的坐标为(0,)x y y +'. 由题设知,0xy y y ++=',即20xdx ydy +=,解得222x y C +=,将1)22代入上式,得1C =,故曲线()y f x =的方程为2221x y +=. ⑵曲线sin y x =在[0,]π上的弧长2022l πππ-===⎰⎰⎰,()y f x =的参数方程为cos ,,2x y θθ=⎧⎪⎨=⎪⎩弧长s θ==⎰.4===⎰. 3.设)(x f 在[1,)+∞上连续,若由曲线()y f x =,直线1,(1)x x t t ==>与x 轴所围成的平面图形绕x 轴旋转一周所成的旋转体体积为2()[()(1)]3V t t f t f π=-,求()y f x =所满足的微分方程,并求该微分方程满足条件229x y ==的解.【2232x y y xy '=-;3(1)1xy x x=≥+】 4.现有一质量为9000kg 的飞机,着陆的水平速度为700km/h 经测试,飞机所受的总阻力与飞机的速度成正比(比例系数为6100.6⨯=k ),问从着陆点算起,飞机滑行的最长距离是多少?【1.05km 】解 【利用22dv d sF ma m m dt dt===建立方程,关键是受力分析】质量9000kg m =,水平速度()v v t =,(0)700km/h v =,飞机所受的总阻力f kv =-,依题意dv kv mdt -=,dv k dt v m =-,两边积分,得ln ln kv t C m=-+,即ekt mv C -=,将(0)700v =代入上式,得700C =,故700ekt mv -=,飞机滑行的最长距离000700()700e e 1.05k k t t mmms v t dt dt k+∞--+∞+∞===-=⎰⎰(km )问题10(数学三) 何谓差分、差分方程、差分方程的阶?如何求解一阶常系数线性差分方程?答 函数()t y f t =的差分1t t t y y y +∆=-.二阶差分2121()2t t t t t t t y y y y y y y +++∆=∆∆=∆-∆=-+. 差分方程:含有差分的等式. 差分方程的阶:下标差的最大值.第 58 页 求解一阶常系数线性差分方程1()t t y py f t +-=的步骤是:⑴先求对应齐次方程10t t y py +-=通解:求出特征方程0r p -=的根r p =,10t t y py +-=通解为t t y Cp =,⑵再求非齐次方程1()t t t m y py P t b +-=的特解*()k t t m y t Q t b =,0,1,b p k b p ≠⎧=⎨=⎩⑶非齐次方程1()t t t m y py P t b +-=通解为*t t t y Cp y =+,例1.设,2t y t =则差分=∆t y .【21t +】2.设t t a y =则差分=∆t y .【(1)t a a -】3.差分方程t t t t y y 21=-+的通解为 .【(2)2t t y C t =+-】4.差分方程1t t y y t +-=的通解为 .【(2)2t t y C t =+-】5.差分方程051021=-++t y y t t 的通解为 .【51(5)()126t t y C t =-+-】 6.某公司每年的工资总额在比上一年增加20%的基础上再追加2百万元,若以t W 表示第t 年的工资总额,则t W 满足的差分方程是 .【1 1.22t t W W +=+】希望以上资料对你有所帮助,附励志名言3条:1、理想的路总是为有信心的人预备着。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【大小】【打印】【关闭】启航考研数学系列精讲之二
一元函数积分的计算(一)
一元函数积分包括不定积分与定积分,以及作为定积分推广的广
义积分.
对于不定积分需要掌握的,除了原函数与不定积分的概念与基本
性质外,就是基本积分公式与两种基本积分方法。

这是因为任何积分过
程最终都要化为基本积分公式中已有的形式,否则就需要再进一步简化,
而两种基本的积分方法,变量替换法(换元积分法)与分部积分法是简化
积分的主要方法。

除此之外,一些特殊的积分方法,如:有理函数积分法、三角函数有理式的积分法、某些简单无理式的积分法等,则是在特
定情况下的特殊方法。

由于不定积分的计算是最基本的,它渗透于一切积分之中,所以
这里将不单独予以讲述,而是将其融合于定积分的计算之中。

为了帮助
读者查找,在分类讲述例题之前将列出基本积分公式。

借助于牛顿—莱布尼兹(Newton—Leibniz)公式,定积分可化为被积
函数的任一原函数在积分上限与下限两点函数值的差。

这样,只要能求
出原函数就解决了定积分的计算问题,而求原函数则是不定积分所解决
的问题。

然而,定积分的计算过程并不是分为求原函数与求原函数在上、
下限函数值的差两个步骤,而是把两者结合起来。

这样,如同不定积分
一样,定积分也有两个基本方法,那就是变量替换法与分部积分法。

牛顿—莱布尼兹公式的基础是关于变限积分求导数的定理,同时
在如何求极限的部分也涉及到,这里就不再重复了。

一、定积分的变量替换法
定理设f(x)在区间[a,b]上连续,代换x=Ф(t)满足条件:
(1)Ф’(t)在[α,β]上连续;
(2)Ф(α)=a,Ф(β)=b,并且当α≤t≤β时,a≤Ф(t)≤b,

(1)
注 (1)在定理的叙述中,,,定义于区间[α,β],说明呈上升趋势.实际上,呈下降趋势也是一样的,亦即定理中的区间[α,β],刖改为[β,α]。

(2)在定积分作变量替换时,一定要同时更换积分限,而且积分限的更换可以采用表格形式表示。

(3)不定积分的变量替换有第一与第二换元法之分。

相应于第二换元积分法就是公式(1)中左端的x换成右端的t;相应于第一换元积分法(凑微分法)就是把右端的t换成左端的x。

几种常用的凑微分形式:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
特别的
(8)
(9)
二、定积分得分步积分法
定理设u(x)与v(x)在区间[a,b]上有连续的一阶导函数,则
使用分步积分法的常见题型被积函数的形式所用方法
,,其中的为n次多项式,a为常数进行n次分步积分法,每次均取e ax,sinax,cosax为v’(x),多项式部分为u(x)
,,
等即多项式与对数函数或反三角函数的乘积取为v’(x),lnx,arcsinx,arctanx等为u(x),分步积分一次后被积函数的形式发生变化
,取e ax为v’(x),sinbx,cosbx为u(x),
进行两次分步积分
三、几种特殊形式的定积分
下述几种特殊形式的定积分在计算中要予以注意。

1.分段函数与含绝对值的定积分
分段函数的定积分要分段进行计算,而且重要的是搞清积分限与分段函数的分界点之间的位置关系,以便对定积分进行正确的分段。

被积函数中含有绝对值可以作为分段函数处理。

2.对称区间上奇偶函数的定积分
对称区间上的定积分,首先要注意被积函数的奇偶性,这是因为有如下结论:
定理假定f(x)在[-a,a](a>0)上连续,则有:
当f(x)为偶函数时;
当f(x)为奇函数时。

注 (1)类似的性质重积分与第一类曲线(或曲面)积分也有,只是第二类曲线(或曲面)积分因为涉及方向问题要特别注意。

(2)关于奇、偶函数的导函数与原函数也有一些值得注意的性质,其中重要的是:偶函数的导函数是奇函数;奇函数的导函数为偶函数;奇函数的原函数为偶函数,但是,偶函数的原函数不一定是奇函数。

3.周期函数的积分
定理假定连续函数f(x)以T为周期,即对于任意的实数x:f (x+T)=f(x),那么
,即在任何长度为了的区间上的积分值是相等的。

4.某些不易求原函数的定积分
依照牛顿—莱布尼兹公式计算定积分,就必须先求原函数,然而有的原函数不易求,却能够通过变量替换使被积函数变形,并从中找到解决问题的途径。

四、广义积分
广义积分是定积分的推广,这个推广是针对定积分的两个基本约定作出的。

这就是取消积分区间有限的约定,则为无穷限的广义积分;取消被积函数有界的约定,则为无界函数的广义积分
(即瑕积分)。

1.无穷限广义积分的概念
(1)若f(x)在[a,+∞)上连续,则
(7)
(2)若f(x)在(-∞,b]上连续,则
I (8)
(3)若f(x)在(-∞,+∞)上连续,则
(9 )
右端极限存在,则称广义积分收敛,否则称为发散。

(9)式要求右端两个广义积分同时收敛,有一个发散则称发散。

2.无界函数广义积分的概念
(1)若f(x)在[a,b)上连续,在b点的左邻域无界,则
(10)
(2)若f(x)在(a,b]上连续,在a点的右邻域无界,则
(11)
(3)若f(x)在[a,b]上除点c外均连续,在点c的邻域内无界,则
(1 2)
与无穷限的广义积分一样,右端的极限存在称为收敛,否则为发散。

(12)式要求右端两个广义积分均收敛。

无界函数的广义积分也称为瑕积分,被积函数在其邻域内无界的点称为瑕点。

3.四个常见的收敛广义积分
(1) (a>0,p>1) (2)
(a>1,p>1)
(3)(k≥0,λ>0) (4)
(a>0,p<0)
前面两个广义积分,若p≤1,则发散;第(3)个广义积分,若λ≤0,则发散;第(4)个广义积分,若p≥1,则发散。

总之,广义积分首先是收敛和发散的问题。

(注:本资料素材和资料部分来自网络,仅供参考。

请预览后才下载,期待您的好评与关注!)。

相关文档
最新文档