6.4_线段的和差

合集下载

6.4 线段的和差 浙教版数学七年级上册同步练习(解析版)

6.4 线段的和差 浙教版数学七年级上册同步练习(解析版)

第6章 图形的初步知识6.4 线段的和差基础过关全练知识点1 线段的和、差、倍、分1.如图,点A、B、C在同一直线上,下列关系式与图形不符合的是( )A.AB+BC=ACB.AC-AB=BCC.AC-BC=ABD.AB=AC+BC2.如图,点C,B在线段AD上,且AB=CD,则AC与BD的大小关系是( )A.AC>BDB.AC=BDC.AC<BDD.不能确定知识点2 画线段的和差3.如图,已知线段a、b,画一条线段c,使它的长度等于已知线段的长度的和.4.已知线段a、b(如图),画出线段AB,使AB=3a-b,并写出画法.知识点3 线段的中点5.点O为AB的中点,若OA=5 cm,则AB的长为( )A.2.5 cmB.5 cmC.10 cmD.20 cm6.如图,CB=4 cm,DB=7 cm,点D为AC的中点,则AB的长为( )A.7 cmB.8 cmC.9 cmD.10 cm7.如图,已知线段AB=10 cm,点N在AB上,NB=2 cm,M是AB的中点,求线段MN的长.能力提升全练8.如图,线段AB=DE,点C为线段AE的中点,下列式子中不正确的是( )A.BC=CDB.CD=AC-ABC.CD=AD-CED.CD=DE9.(2022浙江新昌期末)已知,点C是线段AB的中点,点D是线段BC 的中点,且AB=12,则线段AD的长为( )A.3B.6C.9D.1210.如图,点C、B是线段AD上的两点,若AB=CD,BC=2AC,则AC与CD 的关系是 .11.如图,点M、N都在线段AB上,且M分AB为2∶3的两部分,N分AB为3∶4的两部分,若MN=2 cm,求AB的长.12.(2020浙江杭州期末)如图,某建筑物的立柱AB=6 m,底座BD与中段CD的比为2∶3,中段CD是上沿AC的3倍.求AC,CD,BD的长.素养探究全练13.[数学运算]如图,已知点O在线段AB上,点C、D分别是AO、BO 的中点.(1)AO= CO,BO= DO;(2)若CO=3 cm,DO=2 cm,求线段AB的长度;(3)若线段AB=10 cm,小明很轻松地求得CD=5 cm.他在反思过程中突发奇想:若点O在线段AB的延长线上,原有的结论“CD=5 cm”是不是仍然成立呢?请帮小明画出图形分析,并说明理由.14.[数学建模]如图,O为原点,A是数轴上表示-30的点,B是数轴上表示10的点,C是数轴上表示18的点,点A、B、C在数轴上同时向数轴的正方向移动,点A移动的速度是6个单位长度/秒,点B和点C移动的速度都是3个单位长度/秒.设三个点移动的时间为t秒.(1)当t为何值时,AC=6?(2)当t≠5时,设线段OA的中点为P,线段OB的中点为M,线段OC的中点为N,求2PM-PN=2时,t的值.答案全解全析基础过关全练1.D AB=AC-BC.2.B ∵AB=CD,∴AB-BC=CD-BC,∴AC=BD.3.解析 如图,线段AC=c.4.解析 ①画射线AM,并在射线AM上顺次截取AC=CD=DE=a;②在线段EA上截取EB=b,则线段AB就是要画的线段(如图).5.C ∵点O为AB的中点,OA=5 cm,∴AB=2OA=10 cm.6.D ∵CB=4 cm,DB=7 cm,∴DC=BD-BC=3 cm.∵点D为AC的中点,∴AD=DC=3 cm,∴AB=AD+DB=10 cm.7.解析 ∵M是AB的中点,AB=10 cm,AB=5 cm.∴AM=BM=12∵NB=2 cm,MN+BN=BM,∴MN=BM-BN=5-2=3(cm).能力提升全练8.D ∵点C为线段AE的中点,∴AC=CE,∵AB=DE,∴AC-AB=CE-DE, ∴BC=CD,∴A中的式子正确;∵CD=BC,BC=AC-AB,∴CD=AC-AB,∴B 中的式子正确;∵CD=AD-AC, AC=CE,∴CD=AD-CE,∴C 中的式子正确;由已知不能得出CD=DE,∴D 中的式子错误.故选D.9.C 根据题意画图如下:∵点C 是线段AB 的中点,AB=12,∴AC=CB=12AB=6.∵点D 是线段BC 的中点,∴CD=12BC=3.∴AD=AC+CD=6+3=9.10.CD=3AC解析 ∵AB=CD,∴AC+BC=BC+BD,即AC=BD.又∵BC=2AC,∴BC=2BD,∴CD=3BD=3AC.11.解析 设AB=x cm,∴AM=25x cm,AN=37x cm,∴MN=AN-AM,∴37x-25x=2,解得x=70,∴AB=70 cm.12.解析 ∵底座BD 与中段CD 的比为2∶3,中段CD 是上沿AC 的3倍,∴BD ∶CD ∶AC=2∶3∶1,∵AB=6 m,∴AC=6×12+3+1=1(m),CD=6×32+3+1=3(m),BD=6×22+3+1=2(m).素养探究全练13.解析 (1)∵点C 、D 分别是AO 、BO 的中点,∴AO=2CO,BO=2DO.故答案为2;2.(2)∵点C 、D 分别是AO 、BO 的中点,CO=3 cm,DO=2 cm,∴AO=2CO=6 cm,BO=2DO=4 cm,∴AB=AO+BO=6+4=10(cm).(3)仍然成立.理由如下:如图:∵点C 、D 分别是AO 、BO 的中点,∴CO=12AO,DO=12BO,∴CD=CO-DO=12AO-12BO=12(AO-BO)=12AB=12×10=5(cm).14.解析 (1)A 、B 、C 三点在数轴上同时向正方向移动.当点A 在点C 的左侧时,因为线段AC=6,所以6+6t=30+18+3t,解得t=14;当点A 在点C 的右侧时,因为AC=6,所以6t-6=30+18+3t,解得t=18.综上,当t=14或18时,AC=6.(2)当A 、B 、C 三个点在数轴上同时向数轴的正方向移动t 秒时,A 、B 、C 三个点在数轴上表示的数分别为6t-30、10+3t 、18+3t,所以OA=|6t-30|,OB=10+3t,OC=18+3t.因为P 、M 、N 分别是OA 、OB 、OC 的中点,所以OP=|6t -30|2,OM=10+3t 2,ON=18+3t 2,所以MN=ON-OM=4.当P 在点M 的左侧时,由2PM-PN=2,得PM=2+(PN-PM)=2+MN=6.①当t<5时,PM=OP+OM=|6t -30|2+10+3t 2=30-6t 2+10+3t 2=20-3t 2=6,解得t=283.因为283>5,所以当t<5时,不存在满足条件2PM-PN=2的t 值;②当t>5时,PM=OM-OP=10+3t 2-|6t -30|2=10+3t 2-6t -302=-3t +402=6,解得t=283.当P 在M 、N 之间时,2PM-PN=2(OP-OM)-(ON-OP)=3OP-2OM- ON=9t-45-10-3t-18+3t 2=9t 2-64=2,解得t=443.当P 在点N 的右侧时,由2PM-PN=2,得PM=2+(PN-PM)=2-(PM-PN)=2- MN=2-4=-2.因为线段PM 的长不能为负数,所以P 在点N 的右侧时,不存在满足条件2PM-PN=2的t 值.综上,当t=283或443时,2PM-PN=2.。

浙教版数学七年级上册《6.4 线段的和差》教学设计

浙教版数学七年级上册《6.4 线段的和差》教学设计

浙教版数学七年级上册《6.4 线段的和差》教学设计一. 教材分析《6.4 线段的和差》是浙教版数学七年级上册的教学内容。

这部分内容主要让学生掌握线段的和差运算,理解线段长度之间的关系。

教材通过具体的例题和练习,帮助学生掌握线段加减法的运算方法,并能够运用到实际问题中。

二. 学情分析学生在学习本节课之前,已经掌握了线段的基本概念,如线段的表示方法、长度等。

同时,学生也学习了实数的加减法运算,这为本节课的学习提供了基础。

但是,学生可能对于线段的和差运算理解不够深入,需要通过实例和练习来进一步巩固。

三. 教学目标1.知识与技能目标:学生能够理解线段的和差概念,掌握线段的和差运算方法,能够运用线段的和差解决实际问题。

2.过程与方法目标:通过小组合作、讨论交流的方式,培养学生的团队协作能力和问题解决能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的耐心和细心。

四. 教学重难点1.重点:线段的和差概念,线段的和差运算方法。

2.难点:理解线段的和差实质,能够灵活运用线段的和差解决实际问题。

五. 教学方法1.情境教学法:通过生活实例和实际问题,引发学生对线段和差运算的兴趣和思考。

2.小组合作学习:通过小组讨论和交流,培养学生的团队协作能力和问题解决能力。

3.引导发现法:教师引导学生发现线段和差运算的规律和方法,培养学生的自主学习能力。

六. 教学准备1.教学PPT:制作相关的教学PPT,展示线段的和差运算的例题和练习。

2.练习题:准备一些线段和差运算的练习题,用于巩固和拓展学生的知识。

3.教学工具:准备直尺、量角器等工具,帮助学生更好地理解线段的长度。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的内容,如“小明家和学校之间的距离是8km,小红家和学校之间的距离是6km,小明和小红一起上学,他们之间的距离是多少?”让学生思考并讨论,引出线段的和差概念。

2.呈现(10分钟)教师通过PPT展示线段的和差运算的例题,如“已知线段AB的长度是5cm,线段BC的长度是3cm,求线段AC的长度。

线段的和差- 2022-2023学年七年级上册数学同步培优题库(浙教版)(解析卷)

线段的和差- 2022-2023学年七年级上册数学同步培优题库(浙教版)(解析卷)

专题6.4 线段的和差模块一:知识清单1.线段的和与差:如下图,有AB +BC =AC ,或AC =a +b ;AD =AB -BD .2.线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点. 如下图,有:12AM MB AB ==.①线段中点的等价表述:如上图,点M 在线段上,且有12AM AB =,则点M 为线段AB 的中点. ②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等. 如下图,点M ,N ,P 均为线段AB 的四等分点,则有AB PB NP MN AM 41====. PNMBA模块二:同步培优题库全卷共24题 测试时间:80分钟 试卷满分:100分一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022·江苏·盐城市大丰区实验初级中学七年级阶段练习)已知点M 在线段AB 上,在①AB =2AM ;②BM =12AB ;③AM =BM ;④AM +BM =AB 四个式子中,能说明M 是线段AB 的中点的式子有( ) A .1个 B .2个 C .3个 D .4个【答案】C【分析】根据线段中点的定义,借助图形逐一判断即可. 【详解】解:如图:∵AB =2AM ,∴点M 是线段AB 的中点, ∵BM =12AB ,∴点M 是线段AB 的中点, ∵AM =BM ,∴点M 是线段AB 的中点, 故①②③都能说明点M 是线段AB 的中点,根据:④AM +BM =AB ,不能判断点M 是线段AB 的中点,故选:C .【点睛】本题考查了线段中点的定义,借助图形分析是解题的关键.2.(2022·安徽合肥·七年级期末)如图,已知线段AB=4 cm,延长AB至点C,使AC=11 cm.点D 是AB的中点,点E是AC的中点,则DE的长为()A.3 cm B.3.5 cm C.4 cm D.4.5 cm【答案】B【分析】根据线段中点得出AD=2cm,AE=5.5cm,结合图形即可得出结果.【详解】解:∵AB=4 cm,点D是AB的中点,∴AD=12AB=2cm.∵AC=11cm,点E是AC的中点,∴AE=12AC=5.5 cm.∴DE=AE-AD=5.5-2=3.5cm故选:B.【点睛】题目主要考查线段中点的计算,找准线段间的数量关系是解题关键.3.(2022·浙江·七年级期末)如图,已知A B C D E、、、、五点在同一直线上,点D是线段AB的中点,点E是线段BC的中点,若线段12AC=,则线段DE等于()A.6 B.7 C.8 D.9【答案】A【分析】首先根据D点是线段AB的中点,点E是线段BC的中点,可得AD=BD,BE=CE;然后根据线段AC=12,可得BD+CD=12,据此求出CE+CD=6,即可判断出线段DE等于6.【详解】解:∵D点是线段AB的中点,∴AD=BD,∵点E是线段BC的中点,∴BE=CE,∵AC=12,∴AD+CD=12,∴BD+CD=12,又∵BD=2CE+CD,∴2CE+CD+CD=12,即2(CE+CD)=12,∴CE+CD=6,即线段DE等于6.故选:A.【点睛】此题主要考查了两点间的距离的求法,要熟练掌握,解答此题的关键是要明确线段的中点的性质,并能推得AD=BD,BE=CE.4.(2022·安徽·桐城市第二中学七年级期末)已知线段AB=10cm,线段AC=16cm,且AB、AC在同一条直线上,点B在A、C之间,此时AB、AC的中点M、N之间的距离为()A.13cm B.6cm C.3cm D.1.5cm【答案】C【分析】首先根据题意,结合中点的性质,分别算出AN、AM的长,然后再根据线段之间的数量关系进行计算,即可得出结果.【详解】解:如图,∵16AC=cm,又∵AC 的中点为N ,∴8cm AN =, ∵10AB =cm ,∵AB 的中点为M ,∴5cm AM =,∴853cm MN AN AM =-=-=.故选:C【点睛】本题考查中点的性质、线段的和、差关系,解本题的关键在充分利用数形结合思想解决问题. 5.(2022·浙江·七年级期中)如图,点M 为线段AB 的中点,C 为线段MB 上的任意一点(不与点M ,B 重合).在同一直线上有一点N ,若1223CN AC <<,则( )A .点N 不能在射线AP 上B .点N 不能在线段AM 上C .点N 不能在线段MB 上D .点N 不能在射线BQ 上【答案】A【分析】当N 在C 点的左侧时,根据题意,可知CN AC <,结合图排除B , 当N 在C 点的右侧时,当C 点接近M 点时,111222AC AM MB <=,可排除C ;当C 点接近B 点时,1122AC AB MB <=,则可排除D . 【详解】213CN AC <<,CN AC ∴<, ①当N 在C 点的左侧时,结合图则,点N 不能在射线AP 上,故A 符合题意; N ∴在线段AM 上,故B 错误;②当N 在C 点的右侧时,当C 点接近M 点时,111222AC AM MB <=,此时点N 在线段MB 上;故C 错误;当C 点接近B 点时,1122AC AB MB <=,此时点N 在射线BQ 上,故D 错误故选A . 【点睛】本题考查了线段的和差关系,比例关系,根据C 是动点,分情况讨论是解题的关键. 6.(2022·河北唐山·七年级期末)如图所示,长为12cm 的线段AB 的中点为M ,C 将线段MB 分为MC 和CB ,且:1:3MC MB =,则线段AC 的长为( )A .10B .9C .8D .7【答案】C【分析】根据中点的定义,可求出AM 和BM 的长度,根据MC 和MB 的比例关系,可求出MC 的长度,最后用AM 加上CM 即可求出AC 的长.【详解】∵点M 为AB 中点,∴AM =BM =12AB =6cm , ∵:1:3MC MB =,∴13MC MB ==2cm ,∴AC =AM +MC =8cm ;故选:C【点睛】本题主要考查了中点的定义和成比例线段,熟练地根据中点的定义和线段间的比例关系求出需要线段的长度是解题的关键.7.(2022·重庆·西南大学附中七年级期末)如图,点D 为线段AB 的中点,点C 为DB 的中点,若16AB =,13DE AE =,则线段EC 的长( )A .7B .203C .6D .5【答案】C【分析】应用一条线上的线段和差关系进行计算即可得出答案. 【详解】解:∵点D 为线段AB 的中点, ∴AD =BD =12AB =12×16=8,∵AD =AE +DE ,DE =13AE ,∴AE +13AE =8,∴AE =6,DE =2,∵点C 为DB 的中点,∴CD =12BD =12×8=4, ∴CE =DE +CD =2+4=6,故选:C .【点睛】本题主要考查了一条线上各个线段关系,看清图中线段关系,熟练掌握两点间的距离计算方法进行求解是解决本题的关键.8.(2022·浙江·)定义:当点C 在线段AB 上,AC nAB =时,我们称n 为点C 在线段AB 上的点值,记作A C B d n =※.甲同学猜想:点C 在线段AB 上,若2AC BC =,则23C AB d =※.乙同学猜想:点C 是线段AB 的三等分点,则13C AB d =※ 关于甲乙两位同学的猜想,下列说法正确的是( ) A .甲正确,乙不正确 B .甲不正确,乙正确 C .两人都正确D .两人都不正确【答案】A【分析】本题根据题目所给A C B d n =※的定义对两人的猜想分别进行验证即可得到答案,对于乙的猜想注意进行分类讨论.【详解】解:甲同学:点C 在线段AB 上,且2AC BC =, ∴23AC AB =,∴23C AB d =※,∴甲同学正确.乙同学:点C 在线段AB 上,且点C 是线段AB 的三等分点,∴有两种情况, ①当13AC AB =时,13C AB d =※,②当23AC AB =时,23C AB d =※,∴乙同学错误.故选:A .【点睛】本题主要考查对于新定义和线段的等分点的理解,对于线段的三等分点注意分类讨论即可. 9.(2022·绍兴市柯桥区七年级开学考试)如图,线段 CD 在线段 AB 上,且 CD =1,若线段AB 的长度是一个正整数,则图中以A ,B ,C ,D 这四点中任意两点为端点的所有线段长度之和可能是( )A .4B .3C .2D .1【答案】A【分析】根据数轴和题意可知,所有线段的长度之和是AC +CD +DB +AD +CB +AB ,然后根据CD =1,线段AB 的长度是一个正整数,可以解答本题.【详解】解:由题意可得,图中以A ,B ,C ,D 这四点中任意两点为端点的所有线段长度之和是: AC +CD +DB +AD +CB +AB =(AC +CD +DB )+(AD +CB )+AB =AB +AB +CD +AB =3AB +CD ,∵CD =1,线段AB 的长度是一个正整数,AB >CD ,∴长度之和减1是3的倍数,而只有4-1=3是3的倍数,故选A .【点睛】本题考查两点间的距离,线段的和差,解题的关键是数形结合,找出所求问题需要的条件. 10.(2022•松江区期末)如图,已知点C 为线段AB 的中点,D 为CB 上一点,下列关系表示错误的是( )A .CD =AC ﹣DB B .BD +AC =2BC ﹣CD C .2CD =2AD ﹣ABD .AB ﹣CD =AC ﹣BD【思路点拨】根据图形可以明确线段之间的关系,对线段CD 、BD 、AD 进行和、差转化,即可发现错误选项.【答案】解:∵C 是线段AB 的中点, ∴AC =BC ,AB =2BC =2AC ,∴CD =BC ﹣BD =AB ﹣BD =AC ﹣BD ; ∵BD +AC =AB ﹣CD =2BC ﹣CD ; ∵CD =AD ﹣AC ,∴2CD =2AD ﹣2AC =2AD ﹣AB ;∴选项A 、B 、C 均正确. 而答案D 中,AB ﹣CD =AC +BD ; ∴答案D 错误符合题意.故选:D .【点睛】本题考查的是线段的长度计算,熟练进行线段的和、差、倍、分计算是解决本题的关键. 二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)11.(2022·湖北·老河口市第四中学七年级阶段练习)C 是线段AB 上一点,D 是BC 的中点,若12cm AB =,2cm =AC ,则BD 的长为______.【答案】5cm【分析】根据题意画出图形,先求出BC ,再根据线段中点的定义详解. 【详解】解:如图,12cm AB =,2cm =AC ,12210(cm)BC AB AC ∴=-=-=.D 是BC 的中点,11105(cm)22BD BC ∴==⨯=.故答案是:5cm .【点睛】本题考查了两点间的距离,主要利用了线段中点的定义,熟记概念是解题的关键,作出图形更形象直观.12.(2022·浙江丽水·七年级期末)如图,P 是线段MN 上一点,Q 是线段PN 的中点.若MN =10,MP =6,则MQ 的长是____.【答案】8【分析】首先求得NP =4,根据点Q 为NP 中点得出PQ =2,据此即可得出MQ 的长. 【详解】解:∵MN =10,MP =6,∴NP = MN- MP =4, ∵点Q 为NP 中点,∴PQ =QN =12NP =2,∴MQ =MP +PQ =6+2=8,故答案为:8.【点睛】此题主要考查了两点之间的距离,根据中点的定义得出PQ =2是解题关键.13.(2022·宁夏·景博中学七年级期末)如图,点C 为线段AB 的中点,点D 在线段CB 上,AB =10,DB =4,则CD =________.【答案】1【分析】先根据线段中点的定义可得5BC =,再根据CD BC DB =-即可得.【详解】解:点C 为线段AB 的中点,且10AB =,152BC AB ∴==, 4DB =,541CD BC DB =∴=--=,故答案为:1.【点睛】本题考查了与线段中点有关的计算,熟练掌握线段之间的运算是解题关键.14.(2022·陕西渭南·七年级期末)如图,AD =12BD ,E 是BC 的中点,BE =15AC =2cm ,则线段DB的长为_______cm .【答案】4【分析】根据BE =15AC =2cm 可以求得AC 长,进而得出AB 、BC 的长,即可求得DB 的长.【详解】解:∵BE =15AC =2(cm),∴AC =5BE =10(cm),∵E 是BC 的中点,∴BC =2BE =2×2=4(cm),∴AB =AC -BC =10-4=6(cm), ∵AD =12DB ,∴AD +DB =AD +2AD =6(cm),∴AD =2cm ,∴DB =4cm ,故答案为:4.【点睛】本题主要考查的是线段的和差倍分计算和线段中点的概念,找出线段间的数量关系是解决此类问题的关键.15.(2022·山东威海·期末)如图,点C ,点D 在线段AB 上,点E ,点F 分别为AC ,BD 的中点.若AB m =,CD n =,则EF 的长为________.【答案】12m +12n【分析】先根据中点的定义可得EC =12AC 、DF =12BD ,再根据线段的和差可得AC +BD =AB -CD =m -n ,最后根据EF =EC +CD +DF 求解即可.【详解】解:∵点E 、点F 分别为AC 、BD 的中点∴EC =12AC ,DF =12BD ∵AB m =,CD n =∴AC +BD =AB -CD =m -n∴EF =EC +CD +DF =12AC +CD +12BD =12(AC +BD )+CD =12( m -n )+n =12m +12n .故答案为12m +12n . 【点睛】本题主要考查了中点的定义、线段的和差等知识点,通过识图、明确线段间的关系成为解答本题的关键.16.(2022·浙江·)已知 A B C 、、三点在同一条直线上,且线段4cm,6cm AB BC ==,点D E 、分别是线段AB BC 、的中点点F 是线段DE 的中点,则BF =_______cm .【答案】12或52【分析】根据中点定义求出BD 、BE 的长度,然后分①点C 在AB 的延长线上时,求出DE 的长度,再根据中点定义求出EF 的长,然后根据BF =BE -EF 代入数据进行计算即可得解;②点C 在AB 的反向延长线上时,求出DE 的长度,再根据中点定义求出EF 的长,然后根据BF =BE -EF 代入数据进行计算即可得解. 【详解】解:D 、E 分别是线段AB 、BC 的中点,4AB cm =,6BC cm =,114222BD AB cm ∴==⨯=,116322BE BC cm ==⨯=, ①如图1,点C 在AB 的延长线上时,235DE BD BE cm =+=+=,点F 是线段DE 的中点,1155222EF DE cm ∴==⨯=,此时,51322BF BE EF cm =-=-=; ②如图2,点C 在AB 的反向延长线上时,321DE BE BD cm =-=-=,点F 是线段DE 的中点,1111222EF DE cm ∴==⨯=,此时,15322BF BE EF =-=-=, 综上所述,12BF =或52cm .故答案为:12或52.【点睛】本题考查了两点间的距离,线段中点的定义,难点在于要分情况讨论,作出图形更形象直观. 17.(2022•和平区期末)已知线段AB =12,M 是AB 的中点,点C 是直线AB 上一点,且AC =5BC ,则C 、M 两点间的距离为 .【思路点拨】根据线段中点的性质推出AM =BM =AB =×12=6,并分点C 在点B 左侧和点C 在点B 左侧两种情况进行讨论,由题意作出相关的图形,结合图形当点C 在点B 左侧时,MC =BM ﹣BC ;当点C 在点B 右侧时,MC =BM +BC ,利用线段之间的和差关系进行求解即可. 【答案】解:∵AB =12,M 是AB 的中点, ∴AM =BM =AB =×12=6, 当点C 在点B 左侧时,如图1,∵AC =5BC ,∴AB =AC +BC =6BC ,∴MC=BM﹣BC=AB﹣AB=AB=×12=4;当点C在点B右侧时,如图2,∵AC=5BC,∴AB=AC﹣BC=4BC=12,∴BC=3,∴MC=BM+BC=6+3=9,综上所述,C、M两点间的距离为4或9.故答案为:4或9.【点睛】本题考查两点间的距离及线段的和差,解题的关键是根据题意进行分类讨论(点C在点B 左侧时和点C在点B左侧时),注意结合图形联系线段中点的性质和线段之间的和差关系进行求解.18.(2022·北京海淀区·七年级期末)已知线段6cmAB=,若M是AB的三等分点,N是AM的中点,则线段MN的长度为________.【答案】1cm或2cm【分析】分两种情况考虑点M是AB的三等分点,求出AM的长,由中点定义求出MN即可.【详解】当M是AB的左三等分点,∵AB=6cm,∴AM=11AB=6=233⨯cm,∵N是AM的中点,∴AN=NM=11AM=2=1 22⨯,当M是AB的右三等分点,∵AB=6cm,∴AM=22AB=6=433⨯cm,∵N是AM的中点,∴AN=NM=11AM=4=2 22⨯,线段MN的长度为1cm或2cm.故答案为:1cm或2cm.【点睛】本题考查线段的三等分点,线段的中点计算,掌握线段三等分的性质,线段的中点的性质,会利用分类思想求线段AM是解题关键.三、解答题(本大题共6小题,共46分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(2022·山东郓城县·七年级期末)某摄制组从A市到B市有一天的路程,由于堵车中午才赶到一个小镇(D ),只行驶了原计划的三分之一(原计划行驶到C 地),过了小镇,汽车赶了400千米,傍晚才停下来休息(休息处E ),司机说:再走从C 地到这里路程的二分之一就到达目的地了,问:A ,B 两市相距多少千米.【答案】A ,B 两市相距600千米.【分析】根据题意可知DE 的距离且可以得到12AD DC =,12EB CE =,11()22AD EB DC CE DE +=+=,由1=2AB AD EB DE DE DE =+++计算即可得出结果.【详解】如图,由题意可知,400DE =千米,12AD DC =,12EB CE =, ∴ 111()400200222AD EB DC CE DE +=+==⨯=(千米)∴ 200400600AB AD EB DE =++=+=(千米) 答:A ,B 两市相距600千米.【点睛】本题考查了求解线段长度在实际生活中的应用,能够找出线段之间的等量关系是解题关键. 20.(2022·辽宁大连市·)已知点D 为线段AB 的中点,点C 在线段AB 上.(1)如图1,若8cm,6cm AC BC ==,求线段CD 的长;(2)如图2,若2BC CD =,点E 为BD 中点,18cm AE =,求线段AB 的长. 【答案】(1)1cm ;(2)24cm【分析】(1)先求出AB 的长,再根据中点定义求出BD 的长,进而可求CD 的长; (2)设cm CD x =,用含x 的代数式表示出AE ,然后列方程求出x ,进而可求AB 的长. 【详解】解:(1)∵8cm,6cm AC BC ==,∴8614cm AB AC BC =+=+=, ∵点D 为线段AB 的中点,∴11147cm 22BD AB ==⨯=. ∵CD BD BC =-,∴761cm CD =-=.∴线段CD 的长为1cm . (2)设cm CD x =.∵2BC CD =,∴2cm BC x =∵BD CD BC =+,∴23cm BD x x x =+=.∵E 为BD 中点,∴13cm 22DE BD x ==. 又∵D 为AB 中点,∴3cm AD BD x ==.∵AE AD DE =+,∴393cm 22AE x x x =+=. ∵18cm AE =,∴918,42x x ==,∴2624cm AB BD x ===,∴线段AB 的长为24cm .【点睛】本题考查了线段中点的有关计算,如果点C 把线段AB 分成相等的两条线段AC 与BC ,那么点C 叫做线段AB 的中点,这时AC =BC =12AB ,或AB =2AC =2BC . 21.(2022·浙江·七年级期末)如图,线段8cm AB C =,是线段AB 上一点,M 是AB 的中点,N 是AC 的中点.(1)3cm AC =,求线段CM NM 、的长;(2)若线段AC m =,线段BC n =,求MN 的长度(m n <用含,m n 的代数式表示).【答案】(1)CM =1cm ,NM =2.5cm ;(2)12n【分析】(1)求出AM 长,代入CM =AM -AC 求出即可;分别求出AN 、AM 长,代入MN =AM -AN 求出即可;(2)分别求出AM 和AN ,利用AM -AN 可得MN . 【详解】解:(1)8AB cm =,M 是AB 的中点,142AM AB cm ∴==, 3AC cm =,431CM AM AC cm ∴=-=-=;8AB cm =,3AC cm =,M 是AB 的中点,N 是AC 的中点, 142AM AB cm ∴==,11.52AN AC cm ==,4 1.52.5MN AM AN cm ∴=-=-=;(2)AC m =,BC n =,AB AC BC m n ∴=+=+,M 是AB 的中点,N 是AC 的中点,11()22AM AB m n ∴==+,1122AN AC m ==,111()222MN AM AN m n m n ∴=-=+-=.【点睛】本题考查了两点之间的距离,线段中点的定义的应用,解此题的关键是求出AM 、AN 的长. 22.(2022·平山县七年级期末)已知点A ,B ,C 在同一条直线上,点M ,N 分别是AC ,BC 的中点.(1)如图1,若点C 在线段AB 上,AC =6cm ,CB =4cm ,则线段MN 的长为 cm ; (2)若点C 在线段AB 上,且AC +CB =acm ,则线段MN 的长度为 cm ;(3)如图2,若点C 在线段AB 的延长线上,且AC -BC =bcm ,猜测MN 的长度,写出你的结论,并说明理由.【答案】(1)5,(2)12a ,(3)MN =12b .理由见解析.【分析】(1)根据中点的定义求解;(2)与(1)同理,根据中点的定义求解;(3)根据MN=CM-CN 求解.【详解】解:(1)由题意可得:113222MC AC CN CB====,,∴MN=MC+CN=3+2=5,故答案为5;(2)与(1)同理有:1122MC AC CN CB==,,∴()11112222MC CN AC CB AC CB a+=+=+=,故答案为12a,(3)结论为:MN=12b,理由如下:当点C在线段AB的延长线时,如图:则AC>BC,因为M是AC的中点,所以CM=12AC,因为点N是BC的中点,所以CN=12BC,所以MN=CM-CN=12(AC-BC)=12b.【点睛】本题考查中点的应用,熟练掌握中点的意义、线段的四则运算及准确画图是解题关键.23.(2022·杭州市七年级月考)已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧,(1)若AB=18,DE=8,线段DE在线段AB上移动,①如图1,当E为BC中点时,求AD的长;②当点C是线段DE的三等分点时,求AD的长;(2)若AB=2DE,线段DE在直线上移动,且满足关系式32AD ECBE+=,则CDAB=.【答案】(1)①AD=7;②AD=203或243;(2)1742或116【分析】(1)根据已知条件得到BC=6,AC=12,①由线段中点的定义得到CE=3,求得CD=5,由线段的和差得到AD=AC﹣CD=12﹣5=7;②当点C线段DE的三等分点时,可求得CE=13 DE=83或CE=23DE=163,则CD=163或83,由线段的和差即可得到结论;(2)当点E在线段BC之间时,,设BC=x,则AC=2BC=2x,求得AB=3x,设CE=y,得到AE=2x+y,BE=x﹣y,求得y=27x,当点E在点A的左侧,设BC=x,则DE=1.5x,设CE=y,求得DC=EC+DE=y+1.5x,得到y=4x,于是得到结论.【详解】解:(1)∵AC=2BC,AB=18,∴BC=6,AC=12,①∵E为BC中点,∴CE=3,∵DE=8,∴CD=5,∴AD=AC﹣CD=12﹣5=7;②∵点C是线段DE的三等分点,DE=8,∴CE=13DE=83或CE=23DE=163,∴CD=163或CD=83,∴AD=AC﹣CD=12﹣163=203或12-83=243;(2)当点E在线段BC之间时,如图,设BC=x,则AC=2BC=2x,∴AB=3x,∵AB=2DE,∴DE=1.5x,设CE=y,∴AE=2x+y,BE=x﹣y,∴AD=AE﹣DE=2x+y﹣1.5x=0.5x+y,∵32AD ECBE+=,∴0.532x y yx y++=-,∴y=27x,∴CD=1.5x﹣27x=1714x,∴171714342==xCDAB x;当点E在点A的左侧,如图,设BC=x,则DE=1.5x,设CE=y,∴DC=EC+DE=y+1.5x,∴AD=DC﹣AC=y+1.5x﹣2x=y﹣0.5x,∵32AD ECBE+=,BE=EC+BC=x+y,∴0.532y x yx y-+=+,∴y=4x,∴CD=y+1.5x=4x+1.5x=5.5x,BD=DC+BC=y+1.5x+x=6.5x,∴AB=BD﹣AD=6.5x﹣y+0.5x=6.5x﹣4x+0.5x=3x,∴5.51136==CD xAB x,当点E在线段AC上及点E在点B右侧时,无解,综上所述CDAB的值为1742或116.故答案为:1742或116.【点睛】本题考查了两点间的距离,利用了线段中点的性质、线段的和差、准确识图分类讨论DE的位置是解题的关键.24.(2022·浙江·七年级课时练习)小明在学习了比较线段的长短时对下面一道问题产生了探究的兴趣:如图1,点C在线段AB上,M,N分别是AC,BC的中点.若AB=12,AC=8,求MN的长.(1)根据题意,小明求得MN=___________;(2)小明在求解(1)的过程中,发现MN的长度具有一个特殊性质,于是他先将题中的条件一般化,并开始深入探究.设AB=a,C是线段AB上任意一点(不与点A,B重合),小明提出了如下三个问题,请你帮助小明解答.①如图1,M,N分别是AC,BC的中点,则MN=______________;②如图2,M,N分别是AC,BC的三等分点,即13AM AC=,13BN BC=,求MN的长;③若M,N分别是AC,BC的n等分点,即1AM ACn=,1BN BCn=,则MN=___________;∴MN=12 a;故答案为:12 a;②∵AM=13AC,BN=13BC,∴CM=23AC,CN=23BC,∴MN=CM+CN=23AC+23BC=23AB,∵AB=a,∴MN=23 a;③∵AM=1nAC,BN=1nBC,∴CM=1nn-AC,CN=1nn-BC,∴MN=CM+CN=1nn-AC+1nn-BC=1nn-AB,∵AB=a,∴MN=1nn-a,故答案为:1nn-a.【点睛】本题考查了线段的中点、线段的和差,解题的关键是掌握线段中点的定义及线段和差运算.25.(2022·深圳市高级中学初一期末)如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B 出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为t.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.【答案】(1)4cm;(2)4cm;(3)4cm;(4)4cm或12cm分析:(1) 观察图形可以看出,图中的线段PC和线段BD的长分别代表动点C和D的运动路程. 利用“路程等于速度与时间之积”的关系可以得到线段PC和线段BD的长,进而发现BD=2PC. 结合条件PD=2AC,可以得到PB=2AP. 根据上述关系以及线段AB的长,可以求得线段AP的长.(2) 利用“路程等于速度与时间之积”的关系结合题目中给出的运动时间,可以求得线段PC和线段BD的长,进而发现BD=2PC. 根据BD=2PC和PD=2AC的关系,依照第(1)小题的思路,可以求得线段AP 的长.(3) 利用“路程等于速度与时间之积”的关系可知,只要运动时间一致,点C 与点D 运动路程的关系与它们运动速度的关系一致. 根据题目中给出的运动速度的关系,可以得到BD =2PC . 这样,本小题的思路就与前两个小题的思路一致了. 于是,依照第(1)小题的思路,可以求得线段AP 的长. (4) 由于题目中没有指明点Q 与线段AB 的位置关系,所以应该按照点Q 在线段AB 上以及点Q 在线段AB 的延长线上两种情况分别进行求解. 首先,根据题意和相关的条件画出相应的示意图. 根据图中各线段之间的关系并结合条件AQ -BQ =PQ ,得到AP 和BQ 之间的关系,借助前面几个小题的结论,即可求得线段PQ 的长.【解析】(1) 因为点C 从P 出发以1(cm/s)的速度运动,运动的时间为t =1(s),所以111PC =⨯=(cm). 因为点D 从B 出发以2(cm/s)的速度运动,运动的时间为t =1(s),所以212BD =⨯=(cm).故BD =2PC. 因为PD =2AC ,BD =2PC ,所以BD +PD =2(PC +AC ),即PB =2AP .故AB =AP +PB =3AP . 因为AB =12cm ,所以1112433AP AB ==⨯=(cm). (2) 因为点C 从P 出发以1(cm/s)的速度运动,运动的时间为t =2(s),所以122PC =⨯=(cm). 因为点D 从B 出发以2(cm/s)的速度运动,运动的时间为t =2(s),所以224BD =⨯=(cm).故BD =2PC. 因为PD =2AC ,BD =2PC ,所以BD +PD =2(PC +AC ),即PB =2AP .故AB =AP +PB =3AP . 因为AB =12cm ,所以1112433AP AB ==⨯=(cm). (3) 因为点C 从P 出发以1(cm/s)的速度运动,运动的时间为t (s),所以PC t =(cm).因为点D 从B 出发以2(cm/s)的速度运动,运动的时间为t (s),所以2BD t =(cm).故BD =2PC. 因为PD =2AC ,BD =2PC ,所以BD +PD =2(PC +AC ),即PB =2AP .故AB =AP +PB =3AP . 因为AB =12cm ,所以1112433AP AB ==⨯=(cm). (4) 本题需要对以下两种情况分别进行讨论.(i) 点Q 在线段AB 上(如图①).因为AQ -BQ =PQ ,所以AQ =PQ +BQ .因为AQ =AP +PQ ,所以AP =BQ .因为13AP AB =,所以13BQ AP AB ==. 故13PQ AB AP BQ AB =--=.因为AB =12cm ,所以1112433PQ AB ==⨯=(cm).(ii) 点Q 不在线段AB 上,则点Q 在线段AB 的延长线上(如图②). 因为AQ -BQ =PQ ,所以AQ =PQ +BQ .因为AQ =AP +PQ ,所以AP =BQ . 因为13AP AB =,所以13BQ AP AB ==.故1433AQ AB BQ AB AB AB =+=+=.因为AB=12cm,所以411233PQ AQ AP AB AB AB=-=-==(cm).综上所述,PQ的长为4cm或12cm.点睛:本题是一道几何动点问题. 分析图形和题意,找到代表动点运动路程的线段是解决动点问题的重要环节. 利用速度、时间和路程的关系,常常可以将几何问题与代数运算结合起来,通过运算获得更多的线段之间的关系,从而为解决问题提供有利条件. 另外,分情况讨论的思想也是非常重要的,在思考问题时要注意体会和运用.。

浙教版数学七年级上册6.4《线段的和差》课件1

浙教版数学七年级上册6.4《线段的和差》课件1
6.4 线段的和差
慧眼识图形ABC NhomakorabeaD
AC _A__B_ _B_C___ _A_D___ _C__D__
BC _A__C__ AB
如图所示,C、D在直线AB上,则下列关系
错误的是( C )
A、AB-AC=BD+CD
B、AB-CB=AD-CD
AC
C、AC+CD=AB-CB
DB
D、AD-AC=BC-BD
解:
∵ 点P是线段AB的中点,
∴ AP = 1 AB
A
C PD
B
2
∵ 点 C、D把线段AB三等分,
∴ AC = 1 AB 3
∵ CP=AP -AC
∴ CP = 1 AB - 1 AB 23
=
1 6
AB
∴ AB=6CP=6×1.5=9
即 AB的长是9cm
已知线段AC=1,BC=3 则线段AB的长度
是(D )
A .4 B.2 C. 2或4 D.非以上答案
则AC=BC=
1
2AB
AB=2AC=2CB
A
CB
任意画一条线段,你能画出它的中点吗?
做一做
1、AC如=图8c,m点, C则是B线C=段A8B的cm中,点,A
C
B
AB= 16 cm.
2 、已知线段AB的长度为2cm,延长线段AB 至点C,使BC=AB.
则AC= 4cm
2
A
B
C
点B是线段AC的 中点
P1521如图,已知点C是线段AB的中点,点 D是线段AC的中点,完成下列填空:
2 2 (1)AB=_______BC,BC=________AD 3 (2)BD=_______AD

《6.4线段的和差》作业设计方案-初中数学浙教版12七年级上册

《6.4线段的和差》作业设计方案-初中数学浙教版12七年级上册

《线段的和差》作业设计方案(第一课时)一、作业目标通过本节课的学习,学生应掌握线段和差的基本概念,理解线段和差的计算方法,并能够运用所学知识解决实际问题。

本作业设计旨在巩固学生对线段和差的理解,提高其计算能力和解题技巧。

二、作业内容本节课的作业内容主要包括以下几个方面:1. 基础练习:包括线段和差的计算题,如已知两线段长度,求其和或差等。

这些题目旨在帮助学生巩固线段和差的基本概念和计算方法。

2. 实际应用:设计一些与日常生活相关的线段和差问题,如测量物体长度、计算路程等。

通过解决这些问题,使学生能够更好地理解线段和差的实际应用。

3. 拓展提高:设置一些稍具难度的题目,如涉及多个线段和差的计算、利用线段和差解决几何问题等。

这些题目旨在提高学生的思维能力和解题技巧。

三、作业要求1. 认真审题:学生在完成作业前应认真阅读题目,明确题目要求,避免因理解错误导致答案错误。

2. 规范计算:学生在计算过程中应遵循数学规范,注意单位换算、进位等细节问题,确保计算结果准确无误。

3. 独立思考:学生在完成作业时应独立思考,尝试多种解题方法,培养自己的思维能力和解决问题的能力。

4. 及时订正:学生在完成作业后应认真检查答案,及时订正错误,确保作业质量。

四、作业评价1. 评价标准:根据学生的完成情况、计算准确性、解题思路等方面进行评价。

对于完成情况好、计算准确、解题思路清晰的学生给予表扬和鼓励。

2. 评价方式:采取教师评价和学生互评相结合的方式,教师对学生的作业进行批改和点评,学生之间可以互相交流解题方法和思路,提高学习效果。

五、作业反馈1. 教师反馈:教师根据学生的作业情况,对全班学生的掌握情况进行总结和分析,针对普遍存在的问题进行讲解和指导。

2. 学生反馈:学生应及时向教师反映自己在完成作业过程中遇到的问题和困难,以便教师及时给予帮助和指导。

同时,学生之间也可以互相交流学习心得和解题方法,共同提高学习效果。

作业设计方案(第二课时)一、作业目标本作业设计旨在巩固学生对线段和差概念的理解,通过实际操作练习,提高学生的计算能力和空间想象能力,为后续学习打下坚实的基础。

七年级数学上册:6.4 线段的和差 (共18张PPT)

七年级数学上册:6.4 线段的和差 (共18张PPT)
第6章 图形的初步知识
6.4 线段的和差
1
2
知识点1:线段的和、差 1.如图,下列各式中错误的是( )
D
A.AB=AD+DB B.CB=AB-AC C.CD=CB-DB D.AC=CB-DB
3
2.下列说法不正确的是( A ) A.若点C在线段BA的延长线上,则BA=AC-BC B.若点C在线段AB上,则AB=AC+BC C.若AC+BC>AB,则点C一定在线段AB外 D.若A,B,C三点不在同一条直线上,则AB<AC+BC 3.若A,B,C三点在同一直线上,且AB=5 cm,BC=3 cm,那么AC=________cm.
18
好好学习 天天向上
19
12
13.已知点B在直线AC上,AB=8 cm,AC=18 cm, P,Q分别是AB,AC的中点,则PQ=_________cm.
13或5
12
14.(课内练习1变式)已知线段a,b,c,如图所 示,画一条线段AB,使它等于2a-b+c. 解:略.
13
15.如图,已知线段 CD,按要求画出图形并计 算:延长线段 CD 到点 B,使 DB=21CB,延长 DC 到点 A,使 AC=2DB.若 AB=8,求出 CD 与 AD 的长. 解:如图:∵DB=21CB,∴CD=DB,∵AC=2DB,
解:(1)∵AB=a,BC=12AB,∴BC=12a,∵AC=AB +BC,∴AC=a+12a=32a.(2)∵AD=DC=12AC,AC= 32a,∴DC=34a,∵DB=3,BC=12a,DB=DC-BC, ∴3=34a-12a,∴a=12.
15
16
17.(1)如图,已知点C在线段AB上,线段AC=12,BC=8, 点M,N分别是AC,BC的中点,求线段MN的长度. (2)根据(1)的计算过程与结果,设AC+BC=a,其他条件不 变,你能猜出MN的长度吗?请写出你发现的规律. (3)若点C在线段AB的延长线上时,(1)中其他条件不变,线 段MN的长度是否发生变化?请画出图形并说明理由.

6.4 线段的和差课件 2024—2025学年浙教版数学七年级上册


1
2
3
4
5
6
7
8
9
10
11
12
13
.

14
15
16
返回目录
14.
1
延长线段 AB 至点 C ,使 BC = AB ,延长线段 BC 至点 D ,使 CD =
3
1
BC .
3
如果 BD =8cm,那么 AB 的长为
1
2
3
4
5
6
7
8
9
18
10
cm.

11
12
13
14
15
16
返回目录
15. 如图,线段 MN 的长为2, Q 是线段 MN 的中点,先按要求画图形,
2
7cm,那么 BC 的长为
3
cm.

第12题
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
返回目录
13. 数轴上点 A , B 分别表示数-2和1, C 是线段 AB 的中点,则点 C 表
示的数为
-0.5
;若点 M 从点 A 出发,以每秒2个单位长度的速度运
动,则 t 秒后点 M 表示的数为 -2+2 t 或-2-2 t
=2 AE , CD =2 DF . 所以 AB + CD =2( AE + DF)=2×3=6(cm).
所以 BC = AD -( AB + CD )=10-6=4(cm)
② 能 BC =(2 b - a )cm
1
2
3
4

浙教版初中数学七年级上 线段的和差

比如,线段a是线段c与b的差,记做a=c-b。
练一练1
A
B
C
D
1.点B,C在线段AD上
则AB+BC=_A_C__; AD-CD=_A__C_
BC=A_C__ - A__B_= B__D__ - _C__D_
用尺规画一条线段等于已知线段的和差
例1:已知线段a,b.用直尺和圆规作图:
①使EF=2a+b; ②使MN=b-a;
例3:如图,已知点C将线段AB分为长度之比为 5:7的两部分,点D将线段AB分为长度之比为5:11 的两部分,CD的长为10cm,求AB的长.
A
DC
B
谈谈收获吧
线段的和差概念 用尺规法作已知线段的和差。 会用中点意义求一些简单的线段长度问题 会用转化思想与方程思想求线段的长度
③使AB=2a
a b
中点定义:点C把线段AB分成相等的两条线段AC
与BC,点C叫做线段AB的中点
练一练2
1、M是线段AB上的一点,其中不能判定点M是 线段AB中点的是( A ) A、AM+BM=AB B、AM=BM
C、AB=2BM
D、AM= 1 AB 2
2、已知线段MN,取MN中点P,PN的中
点Q,QN的中点R,由中点的定义可知,
MN = 8 RN。
利用线段中点的意义求线段长
例2: 如图,点P是线段AB的中点,点C、D把线段AB
三等分。若AC=n, 则:A n C P D B
⑴CD=BD=AC= __n___,AB=__3_n___; ⑵点C是线段__A_D___的中点,线段BC的中点是点___D__。
⑶在上述条件下,若点P是线段AB的中点, 则AP=_____, CP=______

线段的和差(53张PPT)数学


答案
解析
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
CD
CB
解析 由题图可知:BD=BC+CD,AD=AC+BD-CB.
(2)如果CD=4 cm,BD=7 cm,B是AC的中点,那么AB的长为_____cm.
答案
解析
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
3
解析 如果CD=4 cm,BD=7 cm,B是AC的中点,则BC=BD-CD=7-4=3 cm,∴AB=BC=3 cm.
∴点O是线段AB的中点;∵AB=2OB,∴点O是线段AB的中点.故选C.
答案
解析
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
4.如图,C是线段AB上的一点,点D是线段BC的中点,若AB=10,AC=6,则AD等于( )A.4 B.6 C.7.5 D.8
D
解析 ∵BC=AB-AC=4,点D是线段BC的中点,∴CD=DB= BC=2,∴AD=AC+CD=6+2=8.故选D.
中点
知识点2 与中点有关的计算
答案
自我检测2.点C是线段AB的中点,则下列结论不成立的是( )A.AC=BC B.AC= ABC.AB=2AC D.BC= AB
B
答案
返回

6.4 线段的和差教学设计2024-2025学年浙教版数学七年级上册

最后,在课后作业布置方面,我布置了一些计算题和应用题,但缺少一些探究题,以激发学生的思考和创造力。我应该在未来的作业中增加一些探究题,让学生能够运用所学的知识解决更复杂的问题,提高他们的数学素养。
2. 简洁明了:
- 板书设计应避免冗长复杂的句子,尽量用简洁的词语或短语来表达关键知识点。
- 每个重点内容下方,列出相应的例题或公式,帮助学生理解和记忆。
3. 艺术性和趣味性:
- 板书设计可以采用彩色粉笔或不同字体来区分重点和非重点内容,使板书更具视觉冲击力。
- 在板书的空白处,可以插入一些与线段和差相关的趣味图片或卡通,如线段跳舞、线段变魔术等,以激发学生的学习兴趣。
2. 能够运用线段的和差解决实际问题,提高学生的数学应用能力。
3. 培养学生的逻辑思维能力,提高学生的数学素养。
三、教学内容
1. 线段的和差定义及性质
2. 线段加减法的运算规则
3. 线段的和差在实际问题中的应用
四、教学过程
1. 导入(5分钟)
1.1 复习线段的基本概念,如线段的起点、终点、长度等。
1.2 引入线段的和差概念,通过图形展示,让学生直观理解。
3. 实践操作法:让学生通过画图、计算等实践操作,加深对线段和差概念及运算规则的理解,提高学生的动手操作能力。
教学手段:
1. 多媒体设备:利用多媒体设备展示线段的和差图形,让学生直观地理解线段的和差概念及运算规则,提高学生的学习兴趣。
2. 教学软件:运用教学软件设计一些互动环节,如线段和差计算游戏等,激发学生的学习主动性,提高学生的参与度。
- 线段GH的长度为10cm,线段HI的长度为2cm,求线段GH+HI的长度。
2. 应用题:让学生运用线段的和差知识解决以下实际问题:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 AD .
2、如图,点C、D把线段AB三等分,AC=6, 则: ⑴BD= 6 ,AB= 18 ;
⑵点C是线段 AD 的中点,线段BC的中点是点 D
⑶在上述条件下,若点P是线段AB的中点, 则AP = 9 , CP =
.
3 .
6
A
C
P
D
B
掌握方法
例2.如图,P是线段AE的中点,点C,D把 线段AE三等分.已知线段CP的长为1.5 cm, 求线段AE的长.
3 3 ∵ CP=AP ∴ x=6PC=6 × 1.5=9(cm) AB=6× 1.5=9(cm)
即 AB的长是9cm
线段的和差尺规作图
知识的应用
线段的和差
三个概念
求线段的长度
涉及数学思想
数形结合 方程思想 分类讨论
a
b
线段OB就是所求做的线段c = a - b
已知线段a, b, 画一条线段c,使它的长度等于3a-b
(利用直尺和圆规).
画法: 1.画射线AF. a
A
a
b ba
C
D D
a
B
E
F
2.用圆规在射线AF上依次截取AB=BC=CD=a. 3. 在线段AD上截取DE=b. 线段AE就是所求的线段c.
从宾馆A出发去景点B有A→C →B, A →D →B
长度 的和差。 线段的和差从数量上看实质是两条线段的_____ 部分与整体 的关系。 线段的和差从图形上看反映了线段之间__________
掌握方法
例1.已知线段a,b.用直尺和圆规,求作: ( 1 ) a+ b ( 2 ) b- a.
画法: 1. 任意画一条射线AD. 2. 用圆规在射线AD上截取AB=a. a b
两条道路。你有哪些方法判别哪条路更近些?
如果工具只有没有刻度的直尺和圆规呢?
C
A
D
B
已知:如图,直线l上有A、B、C三点,且线段 AB=8cm,线段BC=5cm,求线段AC的长。 l A B C
AC=AB+BC =8+5=13cm
A C
B l
AC=AB-BC =8-5=3cm
变式
已知: 直线l上有A、B、C三点,且线段 AB=8cm,线段BC=5cm,求线段AC的长。 l A
(3)如图,图中线段满足什么样的关系时, 可以说明从C是线段的中点?
A C B
线段中点的定义的理解:
A C B
1.如图:
∵AC=BC ∴点C是线段AB的中点.
2.如图:
∵点C是线段AB的中点, ∴AC=BC.
几 何 语 言
∵AB=2AC =2BC ∴点C是线段AB的中点.
∵点C是线段AB的中点,
∴AB=2AC=2BC.
线段c的长度是线段a与b的长度的和, 记作:c = a+b 我们就说线段c是线段a与b的和,
∵ 4-2.5=1.5
线段a的长度是线段c与b的长度的差, 记作:a = c-b 我们就说线段a是线段c与b的差, 两条线段的和或差,仍是一条线段。
课本151页做一做
如图,点C是线段AB上的一点,请完成下面填空。 AB (1)AC+CB=__________ AC (2)AB-CB=___________ A C B AB (3) BC =__________-AC
B
C
AC=AB+BC =8+5=13cm
A C
分 类 讨 论
B
l
AC=AB-BC =8-5=3cm
请阅读书本第151页线段中点的概念。 把一条线段分成两条相等的线段的点,叫做这条线 段的中点。 要求:试着理解这部分内容,并完成下面三个思考题。 (1)你能用什么方法找到一条线段的中点? ①用刻度尺度量②通过折纸寻找线段中点 (2)如图,若C是线段AB的中点, A C B 你能写出图中线段的倍、分关系吗?
方 程 思 想
例3、如图,点P是线段AB的中点,点C、D把线段 AB三等分。已知线段CP=1.5cm,求线段AB的长。
解: 设AB= x
A ∵ 点P是线段AB的中点,
C P D
B
∴ AC =
1 1 1 1 ∴ CP = AB - AB 1 1 ∴ CP = 2x - 3 x ∴ AP = AB x 2 3 2 1 2 = 1AB ∵ 点 C、D把线 段AB三等分点, =6 x 6 1 1
∵AC=BC= AB. ∴点C是线段AB的中点.
1 2
∵点C是线段AB的中点, ∴AC=BC= AB.
1 2
选一选
如图,下列说法 ,不能判断点 C 是线段 AB的中点的是( C )
A、AC=CB
C、AC+CB=AB
B、AB=2AC
1 D、CB= AB 2
已知:如图,点B是线段AC的中点,
A
B
C
如果AC=4,求AB、BC.
3. 用圆规在射线BD上截取BC=b. c
A a B b
C
D
线段AC就是所求的线段.
合作探究:
已知线段a,b,(如图)用尺和圆规画一条线段c,使 它的长度等于b-a。 你会画吗?画法如何? 画法: 1、画射线OP; 2、用圆规截取OA=b; 3、用圆规截取AB=a;
O B A P 还有另外的截法吗? 比较尺规作线段的和与差的不同之处?
复习
比较线段长短的两种方法:
1、度量法——从“数值”的角度比较 2、叠合法——从“形”的角度比较
用直尺、圆规 画一条线段等于已知线段。
第一步:先用直尺画一条射线AB.
第二步:用圆规截取已知线段的长度a.
第三步:在射线AB上点A以为圆心,截取AC=a.
a A C B
∴线段AC就是所求作的线段
三步骤:
解:∵点B是线段AC的中点, 1 ∴AB=BC= 2 AC. ∵AC=4, 1 ∴AB=BC= 2 ×4=2.
练习:如果AB=4,求BC、AC.
1.如图,已知C是线段AB的中点,点D是线段AC的中点. 请完成下列填空. (1) AB = 2 BC .
1 (2) AD = 2 AC .
(3) BD =
1、画射线 2、度量已知线段(复制) 3、移到射线上(粘贴)
从宾馆A出发去景点B有A→C →B, A →D →B
两条道路。你有哪些方法判别哪条路更近些?
如果工具只有没有刻度的直尺和圆规呢?
C
A
D
B
6.4 线段的和差
如图,已知线段a=1.5cm,b=2.5cm,c=4cm
a b c
a,b,c三条线段之间的 长度有什么关系? ∵ 1.5+2.5=4
相关文档
最新文档