数学建模常用模型及代码
数学建模python代码

数学建模python代码数学建模是一种通过数学方法解决实际问题的过程,而Python 是一种强大的编程语言,可以用于数学建模中的数据分析、模型构建和可视化等方面。
本文将介绍数学建模中常用的Python代码。
1. 数据读取和处理在数学建模中,数据的处理是非常重要的一步。
Python有丰富的数据处理库,如Pandas和Numpy,可以非常方便地进行数据读取和处理。
例如,如下代码可以将csv文件读取为Pandas的DataFrame 对象。
import pandas as pddata = pd.read_csv('data.csv')2. 统计分析在数据处理完之后,我们需要对数据进行统计分析,以便更好地理解问题。
Python的Scipy和Statsmodels库提供了各种统计分析工具,如假设检验、方差分析和回归分析等。
例如,如下代码可以进行线性回归分析。
from scipy import statsx = [1, 2, 3, 4, 5]y = [2, 4, 6, 8, 10]slope, intercept, r_value, p_value, std_err =stats.linregress(x, y)3. 数学建模在统计分析的基础上,我们可以开始进行数学建模。
Python有很多数学建模库,如SymPy和Matplotlib。
SymPy提供了符号计算和求解方程的工具,而Matplotlib则可以用于绘制数据和模型的可视化图形。
例如,如下代码可以绘制一个三角函数的图像。
import numpy as npimport matplotlib.pyplot as pltx = np.linspace(0, 2*np.pi, 100)y = np.sin(x)plt.plot(x, y)plt.show()以上是一些常用的数学建模Python代码,当然,数学建模的过程非常复杂,需要综合运用多种技术和工具。
数学建模代码

y<=9.96;
数学建模6
model:
min=50*x1+0.2*x1^2+4*(x1-40)+50*x2+0.2*x2^2+4*(x1+x2-40-60)+50*x3+0.2*x3^2;
x1>=40;
x1<=180;
x2+x1-40<=180-40;
x2+x1-40>=60;
x3=180-x1-x2;
r=600 1000 800 1400 1200 700 600 800 1000 1200 1000 1100;
enddata min=@sum(s:r*@sqrt((x-x0)^2+(y-y0)^2));
end
数学建模5
model:
min=((x^2+y^2))^0.5*600+((x-8.20)^2+(y-0.50)^2)^0.5*1000+((x-0.5)^2+(y-4.90)^2)^0.5*800+((x-5.7)^2+(y-5)^2)^0.5*1400+((x-0.77)^2+(y-6.49)^2)^0.5*1200+((x-2.87)^2+(y-8.76)^2)^0.5*700+
数学建模代码 longo代码第一题: model: min=66.8*x11+57.2*x12+78*x13+70*x14+67.4*x15+75.6*x21+66*x22+67.8*x23+74.2*x24+7 1*x25+87*x31+66.4*x32+84.6*x33+69.6*x34+ 83.8*x35+58.6*x41+53*x42+59.4*x43+57.2*x44+62.4*x45; x11+x21+x31+x41+x51<=1; x12+x22+x32+x42+x52<=1; x13+x23+x33+x43+x53<=1; x14+x24+x34+x44+x54<=1; x15+x25+x35+x45+x55<=1; x11+x12+x13+x14+x15=1; x21+x22+x23+x24+x25=1; x31+x32+x33+x34+x35=1; x41+x42+x43+x44+x45=1; model: min=2*b11+3*b21+5*b31+3*b12+3*b22+6*b32; b11+b12=70; b31+b32=20; b21+b22=50; b11+2*b21+3*b31<80; b12+b22+3*b32<100;数学建模3.1 model: (9*a+15*b+4*c+3*d+2*e)/(a+b+c+d+e)<=5;@gin(a); @gin(b); @gin(c); @gin(d); @gin(e); end数学建模3.2 model: (9*a+15*b+4*c+3*d+2*e)/(a+b+c+d+e)<=5;@gin(a); @gin(b); @gin(c); @gin(d); @gin(e); end数学建模331 model: (9*a+15*b+4*c+3*d+2*e)/(a+b+c+d+e)<=5;@gin(a); @gin(b); @gin(c); @gin(d); @gin(e); end数学建模332 model: (9*a+15*b+4*c+3*d+2*e)/(a+b+c+d+e)<=5;@gin(a); @gin(b); @gin(c); @gin(d); @gin(e); end数学建模4 model: min=x12+x23+x34+x45+x56+x61; x12+x61>=60; x12+x23>=70; x23+x34>=60; x34+
数学建模常用的30个常用算法(python代码)

数学建模常用的30个常用算法(python代码) 数学建模中使用的算法涉及多个领域,包括优化、统计、机器学习等。
以下是一些在数学建模中常用的30个算法的简要说明和Python代码示例。
请注意,这只是一小部分,具体应用场景和需求可能需要使用其他算法。
1.线性规划(Linear Programming):from scipy.optimize import linprog2.整数规划(Integer Programming):from scipy.optimize import linprog3.非线性规划(Nonlinear Programming):from scipy.optimize import minimize4.蒙特卡洛模拟(Monte Carlo Simulation):import numpy as np5.差分方程(Difference Equations):import numpy as np6.梯度下降法(Gradient Descent):import numpy as np7.贪心算法(Greedy Algorithm):def greedy_algorithm(values, weights, capacity):n = len(values)ratio = [(values[i] / weights[i], i) for i in range(n)]ratio.sort(reverse=True)result = [0] * ntotal_value = 0current_weight = 0for _, i in ratio:if weights[i] + current_weight <= capacity: result[i] = 1current_weight += weights[i]total_value += values[i]return result, total_value8.动态规划(Dynamic Programming):def dynamic_programming(weights, values, capacity): n = len(values)dp = [[0] * (capacity + 1) for _ in range(n + 1)]for i in range(1, n + 1):for w in range(capacity + 1):if weights[i - 1] <= w:dp[i][w] = max(dp[i - 1][w], values[i - 1] + dp[i - 1][w - weights[i - 1]])else:dp[i][w] = dp[i - 1][w]return dp[n][capacity]9.遗传算法(Genetic Algorithm):import numpy as np10.模拟退火算法(Simulated Annealing):import numpy as np11.马尔可夫链(Markov Chains):import numpy as np12.蒙特卡洛树搜索(Monte Carlo Tree Search):import numpy as np13.K均值聚类(K-means Clustering):from sklearn.cluster import KMeans14.主成分分析(Principal Component Analysis):from sklearn.decomposition import PCA15.支持向量机(Support Vector Machine):from sklearn.svm import SVC16.朴素贝叶斯分类器(Naive Bayes Classifier):from sklearn.naive_bayes import GaussianNB17.决策树(Decision Tree):from sklearn.tree import DecisionTreeClassifier18.随机森林(Random Forest):from sklearn.ensemble import RandomForestClassifier19.K最近邻算法(K-Nearest Neighbors):from sklearn.neighbors import KNeighborsClassifier20.多层感知器(Multilayer Perceptron):from sklearn.neural_network import MLPClassifier21.梯度提升机(Gradient Boosting):from sklearn.ensemble import GradientBoostingClassifier22.高斯混合模型(Gaussian Mixture Model):from sklearn.mixture import GaussianMixture23.时间序列分析(Time Series Analysis):import statsmodels.api as sm24.马尔科夫链蒙特卡洛(Markov Chain Monte Carlo):import pymc3 as pm25.局部最小二乘回归(Local Polynomial Regression):from statsmodels.nonparametric.kernel_regression import KernelReg26.逻辑回归(Logistic Regression):from sklearn.linear_model import LogisticRegression27.拉格朗日插值法(Lagrange Interpolation):from scipy.interpolate import lagrange28.最小二乘法(Least Squares Method):import numpy as np29.牛顿法(Newton's Method):def newton_method(f, df, x0, tol=1e-6, max_iter=100):x = x0for i in range(max_iter):x = x - f(x) / df(x)if abs(f(x)) < tol:breakreturn x30.梯度下降法(Gradient Descent):def gradient_descent(f, df, x0, learning_rate=0.01, tol=1e-6, max_iter=100):x = x0for i in range(max_iter):x = x - learning_rate * df(x)if abs(df(x)) < tol:breakreturn x以上代码只是简单示例,实际应用中可能需要根据具体问题进行调整和扩展。
matlab数学建模常用模型及编程

matlab数学建模常用模型及编程摘要:一、引言二、MATLAB 数学建模的基本概念1.矩阵的转置2.矩阵的旋转3.矩阵的左右翻转4.矩阵的上下翻转5.矩阵的逆三、MATLAB 数学建模的常用函数1.绘图函数2.坐标轴边界3.沿曲线绘制误差条4.在图形窗口中保留当前图形5.创建线条对象四、MATLAB 数学建模的实例1.牛顿第二定律2.第一级火箭模型五、结论正文:一、引言数学建模是一种将现实世界中的问题抽象成数学问题,然后通过数学方法来求解的过程。
在数学建模中,MATLAB 作为一种强大的数学软件,被广泛应用于各种数学问题的求解和模拟。
本文将介绍MATLAB 数学建模中的常用模型及编程方法。
二、MATLAB 数学建模的基本概念在使用MATLAB 进行数学建模之前,我们需要了解一些基本的概念,如矩阵的转置、旋转、左右翻转、上下翻转以及矩阵的逆等。
1.矩阵的转置矩阵的转置是指将矩阵的一行和一列互换,得到一个新的矩阵。
矩阵的转置运算符是单撇号(’)。
2.矩阵的旋转利用函数rot90(a,k) 将矩阵a 旋转90 的k 倍,当k 为1 时可省略。
3.矩阵的左右翻转对矩阵实施左右翻转是将原矩阵的第一列和最后一列调换,第二列和倒数第二列调换,依次类推。
matlab 对矩阵a 实施左右翻转的函数是fliplr(a)。
4.矩阵的上下翻转matlab 对矩阵a 实施上下翻转的函数是flipud(a)。
5.矩阵的逆对于一个方阵a,如果存在一个与其同阶的方阵b,使得:a·bb·a=|a|·|b|·I,则称矩阵b 是矩阵a 的逆矩阵。
其中,|a|表示矩阵a 的行列式,I 是单位矩阵。
在MATLAB 中,我们可以使用函数inv(a) 来求解矩阵a 的逆矩阵。
三、MATLAB 数学建模的常用函数在MATLAB 数学建模过程中,我们经常需要使用一些绘图和数据处理函数,如绘图函数、坐标轴边界、沿曲线绘制误差条、在图形窗口中保留当前图形、创建线条对象等。
数学建模比赛前准备的Matlab和lingo代码

Matlab和lingo代码Matlab 0基础知识 .............................................................. 错误!未定义书签。
Polyval (2)Polyfit (3)interrep1 (3)回归分析 (4)牛顿迭代法求解非线性方程组 (5)建模课上的代码 (11)lingo求解部分 (20)目标规划 (24)第10章数据的统计描述和分析 (29)!7个工人,7个工作的分配问题; (30)案例分析 (31)差分方程 (34)!三阶段面试模型; (36)装配线平衡模型 (38)露天矿生产的车辆安排(CMCM2003B) (40)Matlab基础知识相关系数矩阵的方式,通过Matlab 软件进行相关性分析,得到主成分种类与重要指标的线性组合:4321375.0395.0398.0375.01x x x x z +++= (10)prod 连乘积for k=1:100p(k)=1-prod(365-k+1:365)/365^k;endfplot('f(x)',[xmin,xmax,ymin,ymax]) syms xint(f(x), x,a,b)Polyval 计算对多项式p(x)=1+2*x+3*x^2,计算在x=5,7,9的值。
>> p = [3 2 1];>> x=[5,7,9];>> polyval(p,[5 7 9])%结果为ans =86 162 262Polyfit 拟合曲线x=[1,2,4,7,9,12,13,15,17]';F=[1.5,3.9,6.6,11.7,15.6,18.8,19.6,20.6,21.1]';plot(x,F,'.')%从图像上我们发现:前5个数据应与直线拟合,后5个数据应与二次曲线拟合。
于是键入 : a=polyfit(x(1:5),F(1:5),1); a=polyfit(x(5:9),F(5:9),2)生日概率模型for n=1:100p(n)=1-prod(365-n+1:365)/365^n;endplot(p)c5=polyfit(n,p,5)c5 =-0.0000 0.0000 -0.0001 0.0023 -0.0046 -0.0020该多项式即为:0020.00046.00023.00001.00023456524334251--+-+=+++++x x x x x c x c x c x c x c x c 在Matlab 环境下继续键入下列指令:>> p5=polyval(c5,n); ////////用多项式近似计算100个概率值>> plot(n,p,n,p5,'.') ////////画出拟合多项式的图象与概率曲线作比较interrep1x0=[0,3,5,7,9,11,12,13,14,15]';y0=[0,1.2,1.7,2.0,2.1,2.0,1.8,1.2,1.0,1.6]'plot(x0,y0) %完成第一步工作x=0:0.1:15;y=interp1(x0,y0,’x'); %用分段线性插值完成第二步工作plot(x,y)y=spline(x0,y0,’x');←plot(x,y) %用三次样条插值完成第二步工作指数模型t=1790:10:1980;x(t)=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92.0 106.5 123.2 131.7 150.7 179.3 204.0 226.5 ];y=log(x(t));a=polyfit(t,y,1)r=a(1),x0=exp(a(2))x1=x0.*exp(r.*t);plot(t,x(t),'r',t,x1,'b')%%%%%%阻滞增长模型(或 Logistic 模型)%%%%%%%%%%建立函数文件curvefit_fun2.mfunction f=curvefit_fun2 (a,t)f=a(1)./(1+(a(1)/3.9-1)*exp(-a(2)*(t-1790)));在命令文件main.m中调用函数文件curvefit_fun2.m% 定义向量(数组)x=1790:10:1990;y=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76 ...92 106.5 123.2 131.7 150.7 179.3 204 226.5 251.4];plot(x,y,'*',x,y); % 画点,并且画一直线把各点连起来hold on;a0=[0.001,1]; % 初值% 最重要的函数,第1个参数是函数名(一个同名的m文件定义),第2个参数是初值,第3、4个参数是已知数据点a=lsqcurvefit('curvefit_fun2',a0,x,y);disp(['a=' num2str(a)]); % 显示结果% 画图检验结果xi=1790:5:2020;yi=curvefit_fun2(a,xi);plot(xi,yi,'r');% 预测2010年的数据x1=2010;y1=curvefit_fun2(a,x1)hold off回归分析←设回归模型为 y=β0+β1x,←在MATLAB命令窗口中键入下列命令进行回归分析(px_reg11.m)x=0.1:0.01:0.18;x=[x,0.2,0.21,0.23]';y=[42,41.5,45,45.5,45,47.5,49,55,50,55,55.5,60.5]';X=[ones(12,1),x]; %一元回归[b,bint,r,rint,stats]=regress(y,X,0.05);b,bint,stats,rcoplot(r,rint)←得结果和图←b =← 27.0269← 140.6194←bint =← 22.3226 31.7313← 111.7842 169.4546←stats =← 0.9219 118.0670 0.0000 3.1095←结果含义为←β0=27.0269 β1=140.6194←β0的置信区间是 [22.3226,31.7313]←β1的置信区间是 [111.7842,169.4546]←R2=0.9219 F=118.0670, p<10-4.←R是衡量y与x的相关程度的指标,称为相关系数。
数学建模与数学实验第五版代码

数学建模与数学实验第五版代码数学建模与数学实验是一门重要的学科,它将数学方法应用于实际问题的解决过程中。
通过数学建模与数学实验的学习,我们可以培养创新思维、数学分析能力和计算能力等重要的数学技能。
在数学建模与数学实验第五版中,我们将学习到各种数学建模方法和相关的代码实现。
下面我将介绍一些常用的数学建模方法以及对应的代码示例。
第一种数学建模方法是线性规划,它是一种用于求解线性目标函数的优化问题的方法。
代码示例如下:```pythonfrom scipy.optimize import linprogc = [-1, -1] #目标函数的系数A = [[2, 1], [-1, 2], [0, 1]] #约束条件的系数矩阵b = [6, 4, 3] #约束条件的取值res = linprog(c, A_ub=A, b_ub=b)print(res)```第二种数学建模方法是最小二乘法,它是一种用于拟合实验数据的方法。
代码示例如下:```pythonimport numpy as npx = np.array([1, 2, 3, 4, 5]) #自变量y = np.array([2.1, 3.9, 6.1, 8.2, 9.9]) #因变量#拟合多项式函数coefficients = np.polyfit(x, y, 2)print(coefficients)#拟合指数函数coefficients = np.polyfit(x, np.log(y), 1)print(coefficients)```第三种数学建模方法是蒙特卡洛模拟,它是一种通过随机抽样的方法来估计概率分布或函数值的方法。
代码示例如下:```pythonimport numpy as np#生成服从正态分布的随机数mean = 0std = 1samples = np.random.normal(mean, std, 10000)print(samples)#计算样本均值和方差mean = np.mean(samples)variance = np.var(samples)print(mean, variance)```以上是数学建模与数学实验第五版中介绍的一些数学建模方法和对应的代码示例。
python在数学建模中常见算法及代码

python在数学建模中常见算法及代码在数学建模中,Python 是一种流行的编程语言,有许多用于解决不同数学建模问题的库和算法。
以下是一些在数学建模中常见的算法及其对应的 Python 代码示例:1.线性规划:•使用scipy库中的linprog函数:pythonfrom scipy.optimize import linprog c = [-3, 5] # 目标函数的系数 A = [[-1, 2], [4, 3]] # 不等式约束的系数 b = [8, 15] # 不等式约束的右侧值result = linprog(c, A_ub=A, b_ub=b) print("最小值:", result.fun) print("优化变量:", result.x)2.整数规划:•使用PuLP库:pythonfrom pulp import LpMaximize, LpProblem, LpVariable # 创建问题model = LpProblem(name="integer_programming_example",sense=LpMaximize) # 创建变量 x = LpVariable(name="x", lowBound=0, cat="Integer") y = LpVariable(name="y", lowBound=0, cat="Integer") # 添加目标函数和约束model += (2 * x + 4 * y <= 8, "constraint_1") model+= (5 * x + 3 * y <= 15, "constraint_2") model += (3 * x + 2 * y <= 7, "constraint_3") model += (4 * x + 2 * y <= 8, "constraint_4") model += (x + y >= 3, "constraint_5") model += 4 * x + 6 * y # 目标函数 # 解决问题model.solve() print("最优值:", model.objective.value()) print("最优解:") for var in model.variables(): print(f"{}: {var.value()}")3.数值积分:•使用scipy库中的quad函数:pythonfrom scipy.integrate import quad def integrand(x): return x**2 result, error = quad(integrand, 0, 1) print("数值积分结果:", result)这只是数学建模中一些常见问题的示例,具体问题和应用场景可能需要不同的算法和工具。
数学建模python代码

数学建模python代码下面将介绍几种常用的数学建模方法和对应的Python代码实现:1. 线性规划线性规划是一种通过线性目标函数和一组线性不等式或等式约束条件对决策变量进行优化的方法。
在Python中,可以使用pulp库实现线性规划模型的建立和求解。
例如,下面是一个简单的线性规划模型:```import pulp# 创建问题problem = pulp.LpProblem('linear programming', pulp.LpMaximize)# 创建目标函数problem += 3*x1 + 5*x2# 创建约束条件problem += x1 + x2 <= 100problem += 2*x1 + x2 <= 120# 解决问题status = problem.solve()# 输出结果print('x1 =', pulp.value(x1))print('x2 =', pulp.value(x2))print('最大值为:', pulp.value(problem.objective))``````import numpy as npfrom scipy.optimize import minimize# 定义目标函数def objective(x):return -np.log(x[0]) - np.log(x[1])# 定义初始值x0 = [0.5, 0.5]3. 插值插值是一种通过已知点来构造函数的方法。
在Python中,可以使用scipy库中的interpolate模块来实现插值。
例如,下面是一个简单的插值模型:# 定义已知函数x_known = np.array([0, 1, 2, 3, 4])y_known = np.array([0, 1, 4, 9, 16])# 定义插值函数f = interp1d(x_known, y_known, kind='linear')# 求解问题x_new = np.array([1.5, 2.5])y_new = f(x_new)# 输出结果print('插值结果为:', y_new)```4. 最小二乘法# 定义已知数据x_data = np.linspace(0, 2*np.pi, 50)y_data = 2*np.sin(2*x_data) + np.random.normal(0, 0.1, 50)# 拟合数据popt, pcov = curve_fit(func, x_data, y_data)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模常用模型及代码
一.规划模型
1.线性规划
线性规划与非线性规划问题一般都是求最大值和最小值,都是利用最小的有限资源来求最大利益等,一般都利用lingo工具进行求解。
点击进入传送门
2.整数规划
求解方式类似于线性规划,但是其决策变量x1,x2等限定都是整数的最优化问题。
传送门
3. 0-1规划
决策变量只能为0或者为1的一类特殊的整数规划。
n个人指派n项工作的问题。
传送门
4.非线性规划
目标函数或者存在约束条件函数是决策变量的非线性函数的最优化问题。
传送门
5.多目标规划
研究多于一个的目标函数在给定区域上的最优化。
把求一个单目标,在此单目标最优的情况下将其作为约束条件再求另外一个目标。
传送门
6.动态规划
运筹学的一个分支。
求解决策过程最优化的过程。
传送门
二. 层次分析法
是一种将定性和定量相结合的,系统化的,层次化的分析方法,主要有机理分析法和统计分析法。
传送门
三.主成分分析
指标之间的相关性比较高,不利于建立指标遵循的独立性原则,指标之间应该互相独立,彼此之间不存在联系。
传送门。