三年 (2020-2022 ) 高考数学真题汇编 专题06立体几何(解答题)(文科专用)

合集下载

全国通用2020-2022年三年高考数学真题分项汇编专题06立体几何解答题理

全国通用2020-2022年三年高考数学真题分项汇编专题06立体几何解答题理

06 立体几何(解答题)(理科专用)1.【2022年全国甲卷】在四棱锥P−ABCD中,PD⊥底面ABCD,CD∥AB,AD=DC=CB=1 ,AB=2,DP=√3.(1)证明:BD⊥PA;(2)求PD与平面PAB所成的角的正弦值.【答案】(1)证明见解析;(2)√5.5【解析】【分析】(1)作DE⊥AB于E,CF⊥AB于F,利用勾股定理证明AD⊥BD,根据线面垂直的性质可得PD⊥BD,从而可得BD⊥平面PAD,再根据线面垂直的性质即可得证;(2)以点D为原点建立空间直角坐标系,利用向量法即可得出答案.(1)证明:在四边形ABCD中,作DE⊥AB于E,CF⊥AB于F,因为CD//AB,AD=CD=CB=1,AB=2,所以四边形ABCD为等腰梯形,所以AE=BF=1,2,BD=√DE2+BE2=√3,故DE=√32所以AD2+BD2=AB2,所以AD⊥BD,因为PD⊥平面ABCD,BD⊂平面ABCD,所以PD⊥BD,又PD∩AD=D,所以BD⊥平面PAD,又因PA⊂平面PAD,所以BD⊥PA;(2)解:如图,以点D 为原点建立空间直角坐标系, BD =√3,则A(1,0,0),B(0,√3,0),P(0,0,√3),则AP⃗⃗⃗⃗⃗ =(−1,0,√3),BP ⃗⃗⃗⃗⃗ =(0,−√3,√3),DP ⃗⃗⃗⃗⃗ =(0,0,√3), 设平面PAB 的法向量n⃗ =(x,y,z), 则有{n →⋅AP →=−x +√3z =0n →⋅BP →=−√3y +√3z =0,可取n ⃗ =(√3,1,1), 则cos〈n ⃗ ,DP⃗⃗⃗⃗⃗ 〉=n⃗ ⋅DP ⃗⃗⃗⃗⃗⃗ |n ⃗ ||DP ⃗⃗⃗⃗⃗⃗ |=√55, 所以PD 与平面PAB 所成角的正弦值为√55.2.【2022年全国乙卷】如图,四面体ABCD 中,AD ⊥CD,AD =CD,∠ADB =∠BDC ,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设AB =BD =2,∠ACB =60°,点F 在BD 上,当△AFC 的面积最小时,求CF 与平面ABD 所成的角的正弦值. 【答案】(1)证明过程见解析 (2)CF 与平面ABD 所成的角的正弦值为4√37【解析】 【分析】(1)根据已知关系证明△ABD ≌△CBD ,得到AB =CB ,结合等腰三角形三线合一得到垂直关系,结合面面垂直的判定定理即可证明;(2)根据勾股定理逆用得到BE ⊥DE ,从而建立空间直角坐标系,结合线面角的运算法则进行计算即可. (1)因为AD =CD ,E 为AC 的中点,所以AC ⊥DE ;在△ABD 和△CBD 中,因为AD =CD,∠ADB =∠CDB,DB =DB ,所以△ABD ≌△CBD ,所以AB =CB ,又因为E 为AC 的中点,所以AC ⊥BE ; 又因为DE,BE ⊂平面BED ,DE ∩BE =E ,所以AC ⊥平面BED , 因为AC ⊂平面ACD ,所以平面BED ⊥平面ACD . (2)连接EF ,由(1)知,AC ⊥平面BED ,因为EF ⊂平面BED , 所以AC ⊥EF ,所以S △AFC =12AC ⋅EF , 当EF ⊥BD 时,EF 最小,即△AFC 的面积最小. 因为△ABD ≌△CBD ,所以CB =AB =2, 又因为∠ACB =60°,所以△ABC 是等边三角形, 因为E 为AC 的中点,所以AE =EC =1,BE =√3, 因为AD ⊥CD ,所以DE =12AC =1,在△DEB 中,DE 2+BE 2=BD 2,所以BE ⊥DE . 以E 为坐标原点建立如图所示的空间直角坐标系E −xyz ,则A (1,0,0),B(0,√3,0),D (0,0,1),所以AD ⃗⃗⃗⃗⃗ =(−1,0,1),AB ⃗⃗⃗⃗⃗ =(−1,√3,0), 设平面ABD 的一个法向量为n⃗ =(x,y,z ), 则{n ⃗ ⋅AD ⃗⃗⃗⃗⃗ =−x +z =0n ⃗ ⋅AB⃗⃗⃗⃗⃗ =−x +√3y =0 ,取y =√3,则n ⃗ =(3,√3,3),又因为C (−1,0,0),F (0,√34,34),所以CF⃗⃗⃗⃗⃗ =(1,√34,34),所以cos⟨n ⃗ ,CF ⃗⃗⃗⃗⃗ ⟩=n ⃗ ⋅CF⃗⃗⃗⃗⃗ |n ⃗ ||CF⃗⃗⃗⃗⃗ |=√21×√74=4√37,设CF 与平面ABD 所成的角的正弦值为θ(0≤θ≤π2), 所以sinθ=|cos⟨n ⃗ ,CF⃗⃗⃗⃗⃗ ⟩|=4√37, 所以CF 与平面ABD 所成的角的正弦值为4√37.3.【2022年新高考1卷】如图,直三棱柱ABC −A 1B 1C 1的体积为4,△A 1BC 的面积为2√2.(1)求A 到平面A 1BC 的距离;(2)设D 为A 1C 的中点,AA 1=AB ,平面A 1BC ⊥平面ABB 1A 1,求二面角A −BD −C 的正弦值.【答案】(1)√2 (2)√32【解析】 【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得BC ⊥平面ABB 1A 1,建立空间直角坐标系,利用空间向量法即可得解. (1)在直三棱柱ABC −A 1B 1C 1中,设点A 到平面A 1BC 的距离为h , 则V A−A 1BC =13S △A 1BC ⋅ℎ=2√23ℎ=V A 1−ABC =13S △ABC ⋅A 1A =13V ABC−A 1B 1C 1=43,解得ℎ=√2,所以点A 到平面A 1BC 的距离为√2; (2)取A 1B 的中点E ,连接AE ,如图,因为AA 1=AB ,所以AE ⊥A 1B , 又平面A 1BC ⊥平面ABB 1A 1,平面A 1BC ∩平面ABB 1A 1=A 1B , 且AE ⊂平面ABB 1A 1,所以AE ⊥平面A 1BC , 在直三棱柱ABC −A 1B 1C 1中,BB 1⊥平面ABC ,由BC ⊂平面A 1BC ,BC ⊂平面ABC 可得AE ⊥BC ,BB 1⊥BC , 又AE,BB 1⊂平面ABB 1A 1且相交,所以BC ⊥平面ABB 1A 1,所以BC,BA,BB 1两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得AE =√2,所以AA 1=AB =2,A 1B =2√2,所以BC =2, 则A(0,2,0),A 1(0,2,2),B(0,0,0),C(2,0,0),所以A 1C 的中点D(1,1,1), 则BD⃗⃗⃗⃗⃗⃗ =(1,1,1),BA ⃗⃗⃗⃗⃗ =(0,2,0),BC ⃗⃗⃗⃗⃗ =(2,0,0), 设平面ABD 的一个法向量m ⃗⃗ =(x,y,z),则{m ⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =x +y +z =0m ⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ =2y =0,可取m⃗⃗ =(1,0,−1), 设平面BDC 的一个法向量n ⃗ =(a,b,c),则{m ⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =a +b +c =0m ⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =2a =0, 可取n⃗ =(0,1,−1), 则cos〈m ⃗⃗ ,n ⃗ 〉=m⃗⃗⃗ ⋅n ⃗ |m ⃗⃗⃗ |⋅|n ⃗ |=√2×√2=12,所以二面角A −BD −C 的正弦值为√1−(12)2=√32.4.【2022年新高考2卷】如图,PO 是三棱锥P −ABC 的高,PA =PB ,AB ⊥AC ,E 是PB 的中点.(1)证明:OE//平面PAC ;(2)若∠ABO =∠CBO =30°,PO =3,PA =5,求二面角C −AE −B 的正弦值. 【答案】(1)证明见解析 (2)1113 【解析】 【分析】(1)连接BO 并延长交AC 于点D ,连接OA 、PD ,根据三角形全等得到OA =OB ,再根据直角三角形的性质得到AO =DO ,即可得到O 为BD 的中点从而得到OE//PD ,即可得证; (2)过点A 作Az//OP ,如图建立平面直角坐标系,利用空间向量法求出二面角的余弦值,再根据同角三角函数的基本关系计算可得; (1)证明:连接BO 并延长交AC 于点D ,连接OA 、PD ,因为PO 是三棱锥P −ABC 的高,所以PO ⊥平面ABC ,AO,BO ⊂平面ABC , 所以PO ⊥AO 、PO ⊥BO ,又PA =PB ,所以△POA ≅△POB ,即OA =OB ,所以∠OAB =∠OBA ,又AB ⊥AC ,即∠BAC =90°,所以∠OAB +∠OAD =90°,∠OBA +∠ODA =90°, 所以∠ODA =∠OAD所以AO =DO ,即AO =DO =OB ,所以O 为BD 的中点,又E 为PB 的中点,所以OE//PD , 又OE ⊄平面PAC ,PD ⊂平面PAC , 所以OE//平面PAC(2)解:过点A 作Az//OP ,如图建立平面直角坐标系, 因为PO =3,AP =5,所以OA =√AP 2−PO 2=4,又∠OBA =∠OBC =30°,所以BD =2OA =8,则AD =4,AB =4√3,所以AC =12,所以O(2√3,2,0),B(4√3,0,0),P(2√3,2,3),C (0,12,0),所以E (3√3,1,32), 则AE ⃗⃗⃗⃗⃗ =(3√3,1,32),AB ⃗⃗⃗⃗⃗ =(4√3,0,0),AC ⃗⃗⃗⃗⃗ =(0,12,0), 设平面AEB 的法向量为n ⃗ =(x,y,z ),则{n ⃗ ⋅AE ⃗⃗⃗⃗⃗ =3√3x +y +32z =0n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =4√3x =0 ,令z =2,则y =−3,x =0,所以n ⃗ =(0,−3,2);设平面AEC 的法向量为m⃗⃗ =(a,b,c ),则{m ⃗⃗ ⋅AE ⃗⃗⃗⃗⃗ =3√3a +b +32c =0m ⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =12b =0 ,令a =√3,则c =−6,b =0,所以m ⃗⃗ =(√3,0,−6); 所以cos ⟨n ⃗ ,m ⃗⃗ ⟩=n⃗ ⋅m ⃗⃗⃗ |n ⃗ ||m ⃗⃗⃗ |=√13×√39=−4√313设二面角C −AE −B 为θ,由图可知二面角C −AE −B 为钝二面角, 所以cosθ=−4√313,所以sinθ=√1−cos 2θ=1113故二面角C −AE −B 的正弦值为1113;5.【2021年甲卷理科】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小? 【答案】(1)证明见解析;(2)112B D = 【解析】 【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案; 【详解】(1)[方法一]:几何法 因为1111,//BFA B A B AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,过E 作AB 的平行线分别与AG BC ,交于其中点,M N ,连接11,A M B N , 因为E ,F 分别为AC 和1CC 的中点,所以N 是BC 的中点, 易证1Rt Rt BCF B BN ≅,则1CBF BB N ∠=∠.又因为1190BB N B NB ∠+∠=︒,所以1190CBF B NB BF B N ∠+∠=︒⊥,. 又因为111111,BFA B B N A B B ⊥=,所以BF ⊥平面11A MNB .又因为ED ⊂平面11A MNB ,所以BF DE ⊥. [方法二] 【最优解】:向量法因为三棱柱111ABC A B C -是直三棱柱,1BB ∴⊥底面ABC ,1BB AB ∴⊥11//A B AB ,11BF A B ⊥,BF AB ∴⊥,又1BB BF B ⋂=,AB ∴⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.()()()0,0,0,2,0,0,0,2,0,B A C ∴()()()1110,0,2,2,0,2,0,2,2B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤). 因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥.[方法三]:因为11BF A B ⊥,11//A B AB ,所以BF AB ⊥,故110BF A B ⋅=,0BF AB ⋅=,所以()11BF ED BF EB BB B D ⋅=⋅++()11=BF B D BF EB BB ⋅+⋅+1BF EB BF BB =⋅+⋅11122BF BA BC BF BB ⎛⎫=--+⋅ ⎪⎝⎭11122BF BA BF BC BF BB =-⋅-⋅+⋅112BF BC BF BB =-⋅+⋅111cos cos 2BF BC FBC BF BB FBB =-⋅∠+⋅∠1=2202-=,所以BF ED ⊥.(2)[方法一]【最优解】:向量法 设平面DFE 的法向量为(),,m x y z =, 因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =, 设平面11BCC B 与平面DEF 的二面角的平面角为θ, 则cos m BA m BAθ⋅=⋅==当12a =时,2224a a -+取最小值为272, 此时cos θ=所以()minsin θ=112B D =. [方法二] :几何法如图所示,延长EF 交11A C 的延长线于点S ,联结DS 交11B C 于点T ,则平面DFE平面11BB C C FT =.作1B HFT ⊥,垂足为H ,因为1DB ⊥平面11BB C C ,联结DH ,则1DHB ∠为平面11BB C C 与平面DFE 所成二面角的平面角.设1,B D t =[0,2],t ∈1B T s =,过1C 作111//C G A B 交DS 于点G . 由111113C S C G SA A D ==得11(2)3C G t =-. 又1111BD B T C G C T=,即12(2)3t s s t =--,所以31ts t =+.又111B H B TC F FT =,即11B H =1B H =所以DH === 则11sin B D DHB DH∠===所以,当12t =时,()1min sin DHB ∠= [方法三]:投影法 如图,联结1,FB FN ,DEF 在平面11BB C C 的投影为1B NF ,记面11BB C C 与面DFE 所成的二面角的平面角为θ,则1cos B NF DEFS Sθ=.设1(02)B D t t =≤≤,在1Rt DB F中,DF =在Rt ECF中,EF D作1B N 的平行线交MN 于点Q .在Rt DEQ △中,DE =在DEF 中,由余弦定理得222cos 2DF EF DE DFE DF EF+-∠=⋅sin DFE ∠=1sin 2DFESDF EF DFE =⋅∠13,2B NFS = 1cos B NF DFES Sθ==,sin θ=当12t =,即112B D =,面11BBC C 与面DFE 【整体点评】第一问,方法一为常规方法,不过这道题常规方法较为复杂,方法二建立合适的空间直角坐标系,借助空间向量求解是最简单,也是最优解;方法三利用空间向量加减法则及数量积的定义运算进行证明不常用,不过这道题用这种方法过程也很简单,可以开拓学生的思维. 第二问:方法一建立空间直角坐标系,利用空间向量求出二面角的平面角是最常规的方法,也是最优方法;方法二:利用空间线面关系找到,面11BB C C 与面DFE 所成的二面角,并求出其正弦值的最小值,不是很容易找到;方法三:利用面DFE 在面11BB C C 上的投影三角形的面积与DFE △面积之比即为面11BB C C 与面DFE 所成的二面角的余弦值,求出余弦值的最小值,进而求出二面角的正弦值最小,非常好的方法,开阔学生的思维.6.【2021年乙卷理科】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值. 【答案】(1(2【解析】【分析】(1)以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设2BC a =,由已知条件得出0PB AM ⋅=,求出a 的值,即可得出BC 的长; (2)求出平面PAM 、PBM 的法向量,利用空间向量法结合同角三角函数的基本关系可求得结果. 【详解】(1)[方法一]:空间坐标系+空间向量法PD ⊥平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a , 则()2,1,1PB a =-,(),1,0AM a =-,PB AM ⊥,则2210PB AM a ⋅=-+=,解得a =2BC a == [方法二]【最优解】:几何法+相似三角形法如图,连结BD .因为PD ⊥底面ABCD ,且AM ⊂底面ABCD ,所以PD AM ⊥. 又因为PB AM ⊥,PBPD P =,所以AM ⊥平面PBD .又BD ⊂平面PBD ,所以AM BD ⊥.从而90ADB DAM ∠+∠=︒.因为90∠+∠=︒MAB DAM ,所以∠=∠MAB ADB . 所以∽ADB BAM ,于是=AD BAAB BM.所以2112BC =.所以BC = [方法三]:几何法+三角形面积法 如图,联结BD 交AM 于点N .由[方法二]知⊥AM DB .在矩形ABCD 中,有∽DAN BMN ,所以2==AN DA MN BM,即23AN AM =.令2(0)=>BC t t ,因为M 为BC 的中点,则BM t =,DB AM由1122=⋅=⋅DABSDA AB DB AN ,得=t ,解得212t =,所以2==BC t(2)[方法一]【最优解】:空间坐标系+空间向量法设平面PAM 的法向量为()111,,m x y z =,则AM ⎛⎫= ⎪ ⎪⎝⎭,()AP =-, 由111120220m AMy m AP z ⎧⋅=-+=⎪⎨⎪⋅=-+=⎩,取1x =()2,1,2m =,设平面PBM 的法向量为()222,,n x yz =,BM ⎛⎫=- ⎪ ⎪⎝⎭,()1,1BP =--,由222220220n BM n BP y z ⎧⋅=-=⎪⎨⎪⋅=--+=⎩,取21y =,可得()0,1,1n =,3cos ,7m n m n m n ⋅===⋅⨯ 所以,270sin ,1cos ,14m n m n =-=, 因此,二面角A PM B --[方法二]:构造长方体法+等体积法如图,构造长方体1111ABCD A B C D -,联结11,AB A B ,交点记为H ,由于11AB A B ⊥,1AB BC ⊥,所以AH ⊥平面11A BCD .过H 作1D M 的垂线,垂足记为G .联结AG ,由三垂线定理可知1⊥AG D M , 故AGH ∠为二面角A PM B --的平面角.易证四边形11A BCD 的正方形,联结1D H ,HM . 111111111,2D HMD HMD A HHBMMCD A BCD SD M HG S S SSS=⋅=---正方形,由等积法解得=HG在Rt AHG 中,==AH HG =AG所以,sin AH AGH AG ∠==A PMB -- 【整体点评】(1)方法一利用空坐标系和空间向量的坐标运算求解;方法二利用线面垂直的判定定理,结合三角形相似进行计算求解,运算简洁,为最优解;方法三主要是在几何证明的基础上,利用三角形等面积方法求得.(2)方法一,利用空间坐标系和空间向量方法计算求解二面角问题是常用的方法,思路清晰,运算简洁,为最优解;方法二采用构造长方体方法+等体积转化法,技巧性较强,需注意进行严格的论证.7.【2021年新高考1卷】如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】(1)证明见解析;【解析】 【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可. 【详解】(1)因为AB AD =,O 是BD 中点,所以OA BD ⊥, 因为OA ⊂平面ABD ,平面ABD ⊥平面BCD , 且平面ABD ⋂平面BCD BD =,所以OA ⊥平面BCD . 因为CD ⊂平面BCD ,所以OA CD ⊥. (2)[方法一]:通性通法—坐标法如图所示,以O 为坐标原点,OA 为z 轴,OD 为y 轴,垂直OD 且过O 的直线为x 轴,建立空间直角坐标系O xyz -,则1,0),(0,1,0),(0,1,0)2C D B -,设12(0,0,),(0,,)33A m E m ,所以4233(0,,),(,,0)3322EB m BC =--=,设(),,n x y z =为平面EBC 的法向量,则由00EB n EC n ⎧⋅=⎨⋅=⎩可求得平面EBC 的一个法向量为2(3,1,)n m =--.又平面BCD 的一个法向量为()0,0,OA m=,所以cos ,2n OA ==,解得1m =.又点C 到平面ABD112132A BCD C ABD V V--==⨯⨯⨯=, 所以三棱锥A BCD - [方法二]【最优解】:作出二面角的平面角 如图所示,作EGBD ⊥,垂足为点G .作GF BC ⊥,垂足为点F ,连结EF ,则OA EG ∥.因为OA ⊥平面BCD ,所以EG ⊥平面BCD ,EFG 为二面角E BC D --的平面角.因为45EFG ∠=︒,所以EG FG =. 由已知得1OB OD ==,故1OB OC ==.又30OBC OCB ∠=∠=︒,所以BC =因为24222,,,,133333GD GB FG CD EG OA ======,111122(11)13332A BCD BCDBOCV SO SOA A -==⨯⨯=⨯⨯⨯⨯⨯=[方法三]:三面角公式考虑三面角B EDC -,记EBD ∠为α,EBC ∠为β,30DBC ∠=︒, 记二面角E BC D --为θ.据题意,得45θ=︒. 对β使用三面角的余弦公式,可得cos cos cos30βα=⋅︒,化简可得cos βα=.①使用三面角的正弦公式,可得sin sin sin αβθ=,化简可得sin βα=.② 将①②两式平方后相加,可得223cos 2sin 14αα+=,由此得221sin cos 4αα=,从而可得1tan 2α=±.如图可知π(0,)2α∈,即有1tan 2α=,根据三角形相似知,点G 为OD 的三等分点,即可得43BG =, 结合α的正切值,可得2,13EG OA ==从而可得三棱锥A BCD -【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速.8.【2021年新高考2卷】在四棱锥Q ABCD -中,底面ABCD 是正方形,若2,3AD QD QA QC ====.(1)证明:平面QAD ⊥平面ABCD ; (2)求二面角B QD A --的平面角的余弦值. 【答案】(1)证明见解析;(2)23. 【解析】 【分析】(1)取AD 的中点为O ,连接,QO CO ,可证QO ⊥平面ABCD ,从而得到面QAD ⊥面ABCD . (2)在平面ABCD 内,过O 作//OT CD ,交BC 于T ,则OT AD ⊥,建如图所示的空间坐标系,求出平面QAD 、平面BQD 的法向量后可求二面角的余弦值. 【详解】(1)取AD 的中点为O ,连接,QO CO . 因为QA QD =,OA OD =,则QO ⊥AD ,而2,AD QA ==2QO ==.在正方形ABCD 中,因为2AD =,故1DO =,故CO =因为3QC =,故222QC QO OC =+,故QOC 为直角三角形且QO OC ⊥, 因为OCAD O =,故QO ⊥平面ABCD ,因为QO ⊂平面QAD ,故平面QAD ⊥平面ABCD .(2)在平面ABCD 内,过O 作//OT CD ,交BC 于T ,则OT AD ⊥, 结合(1)中的QO ⊥平面ABCD ,故可建如图所示的空间坐标系.则()()()0,1,0,0,0,2,2,1,0D Q B -,故()()2,1,2,2,2,0BQ BD =-=-. 设平面QBD 的法向量(),,n x y z =,则00n BQ n BD ⎧⋅=⎨⋅=⎩即220220x y z x y -++=⎧⎨-+=⎩,取1x =,则11,2y z ==,故11,1,2n ⎛⎫= ⎪⎝⎭.而平面QAD 的法向量为()1,0,0m =,故12cos ,3312m n ==⨯.二面角B QD A --的平面角为锐角,故其余弦值为23.9.【2020年新课标1卷理科】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC 是底面的内接正三角形,P 为DO上一点,PO .(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值. 【答案】(1)证明见解析;(2. 【解析】 【分析】(1)要证明PA ⊥平面PBC ,只需证明PA PB ⊥,PA PC ⊥即可;(2)方法一:过O 作ON ∥BC 交AB 于点N ,以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如图所示的空间直角坐标系,分别算出平面PCB 的一个法向量n ,平面PCE 的一个法向量为m ,利用公式cos ,||||n mm n n m ⋅<>=计算即可得到答案. 【详解】(1)[方法一]:勾股运算法证明由题设,知DAE △为等边三角形,设1AE =, 则DO =,1122CO BO AE===,所以PO ==PC PB PA ====又ABC 为等边三角形,则2sin 60BA OA =,所以BA = 22234PA PB AB +==,则90APB ∠=,所以PA PB ⊥, 同理PA PC ⊥,又PC PB P =,所以PA ⊥平面PBC ;[方法二]:空间直角坐标系法 不妨设AB =4sin 60==︒=ABAE AD ,由圆锥性质知DO ⊥平面ABC ,所以==DO ==PO O 是ABC 的外心,因此AE BC ⊥.在底面过O 作BC 的平行线与AB 的交点为W ,以O 为原点,OW 方向为x 轴正方向,OE 方向为y 轴正方向,OD 方向为z 轴正方向,建立空间直角坐标系O xyz -,则(0,2,0)A -,B ,(C ,(0,2,0)E ,P .所以(0,AP =,(=--BP ,(3,=-CP . 故0220⋅=-+=AP BP ,0220⋅=-+=AP CP . 所以AP BP ⊥,AP CP ⊥.又BP CP P =,故AP ⊥平面PBC .[方法三]:因为ABC 是底面圆O 的内接正三角形,且AE 为底面直径,所以AE BC ⊥. 因为DO (即PO )垂直于底面,BC 在底面内,所以PO BC ⊥. 又因为PO ⊂平面PAE ,AE ⊂平面PAE ,PO AE O =,所以BC ⊥平面PAE .又因为PA ⊂平面PAE ,所以PA BC ⊥.设AEBC F =,则F 为BC 的中点,连结PF .设DO a =,且PO ,则AF =,PA =,12PF a =. 因此222+=PA PF AF ,从而PA PF ⊥. 又因为PFBC F =,所以PA ⊥平面PBC .[方法四]:空间基底向量法如图所示,圆锥底面圆O 半径为R ,连结DE ,AE AD DE ==,易得OD =,因为=PO ,所以=PO . 以,,OA OB OD 为基底,OD ⊥平面ABC ,则66=+=-+AP AO OP OA OD , 66=+=-+BP BO OP OB OD ,且212OA OB R ⋅=-,0OA OD OB OD ⋅=⋅=所以6666⎛⎫⎛⎫⋅=-+⋅-+= ⎪ ⎪⎝⎭⎝⎭AP BP OA OD OB OD26610666⋅-⋅-⋅+=OA OB OA OD OB OD OD . 故0AP BP ⋅=.所以AP BP ⊥,即AP BP ⊥. 同理AP CP ⊥.又BP CP P =,所以AP ⊥平面PBC . (2)[方法一]:空间直角坐标系法过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 为x轴,ON 为y 轴建立如图所示的空间直角坐标系,则111(,0,0),((,244EP B C ---,1(,44PC =--,1()44PB =-,1(,0,24PE =--,设平面PCB 的一个法向量为111(,,)n x y z =,由00n PC n PB ⎧⋅=⎨⋅=⎩,得11111100x x ⎧-=⎪⎨-=⎪⎩,令1x 111,0z y =-=,所以(2,0,1)n =-,设平面PCE 的一个法向量为222(,,)m x y z =由00m PC m PE ⎧⋅=⎨⋅=⎩,得22222020x x ⎧-=⎪⎨-=⎪⎩,令21x =,得22z y ==所以3(1,3m =故2cos ,||||3n mmn n m ⋅<>===⋅⨯设二面角B PC E --的大小为θ,由图可知二面角为锐二面角,所以cos θ=[方法二]【最优解】:几何法 设=BCAE F ,易知F 是BC 的中点,过F 作∥FG AP 交PE 于G ,取PC 的中点H ,联结GH ,则∥HF PB .由PA ⊥平面PBC ,得FG ⊥平面PBC . 由(1)可得,222BC PB PC =+,得PB PC ⊥. 所以FH PC ⊥,根据三垂线定理,得GH PC ⊥. 所以GHF ∠是二面角B PC E --的平面角. 设圆O 的半径为r ,则3sin602︒==AF AB r ,2AE r =,12=EF r ,13EF AF =,所以14=FG PA ,1122==FH PB PA ,12=FG FH . 在Rt GFH 中,1tan 2∠==FG GHF FH ,cos ∠=GHF . 所以二面角B PC E --.[方法三]:射影面积法如图所示,在PE 上取点H ,使14HE PE =,设BC AE N =,连结NH .由(1)知14NE AE =,所以∥NH PA .故NH ⊥平面PBC . 所以,点H 在面PBC 上的射影为N .故由射影面积法可知二面角B PC E --的余弦值为cos PCN PCHS θS=.在PCE中,令==PC PE 1CE =,易知=PCES .所以335416PCH PCES S ==.又1328PCNPBCSS ==,故3cos PCN PCHS θS ===所以二面角BPC E --.【整体点评】本题以圆锥为载体,隐含条件是圆锥的轴垂直于底面,(1)方法一:利用勾股数进行运算证明,是在给出数据去证明垂直时的常用方法;方法二:选择建系利用空间向量法,给空间立体感较弱的学生提供了可行的途径;方法三:利用线面垂直,结合勾股定理可证出;方法四:利用空间基底解决问题,此解法在解答题中用的比较少;(2)方法一:建系利用空间向量法求解二面角,属于解答题中求角的常规方法;方法二:利用几何法,通过三垂线法作出二面角,求解三角形进行求解二面角,适合立体感强的学生;方法三:利用射影面积法求解二面角,提高解题速度.10.【2020年新课标2卷理科】如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【答案】(1)证明见解析;(2【解析】 【分析】(1)由,M N 分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1MN AA //,要证平面11EB C F ⊥平面1A AMN ,只需证明EF ⊥平面1A AMN 即可;(2)连接NP ,先求证四边形ONPA 是平行四边形,根据几何关系求得EP ,在11B C 截取1B Q EP =,由(1)BC ⊥平面1A AMN ,可得QPN ∠为1B E 与平面1A AMN 所成角,即可求得答案. 【详解】 (1),M N 分别为BC ,11B C 的中点,1//MN BB ∴,又11//AA BB , 1//MN AA ∴,在ABC 中,M 为BC 中点,则BC AM ⊥, 又侧面11BB C C 为矩形, 1BC BB ∴⊥, 1//MN BB ,MN BC ⊥,由MN AM M ⋂=,,MN AM ⊂平面1A AMN , ∴BC ⊥平面1A AMN ,又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC ,又11B C ⊂平面11EB C F ,且平面11EB C F ⋂平面ABC EF =11//B C EF ∴ ,//EF BC ∴,又BC ⊥平面1A AMN , ∴EF ⊥平面1A AMN ,EF ⊂平面11EB C F , ∴平面11EB C F ⊥平面1A AMN .(2)[方法一]:几何法如图,过O 作11B C 的平行线分别交1111,A B AC 于点11,E F ,联结11,,,AE AO AF NP , 由于//AO 平面11EB C F ,11//E F 平面11EB C F ,11=AOE F O ,AO ⊂平面11AE F ,11E F ⊂平面11AE F ,所以平面11//AE F 平面11EB C F .又因平面11AE F 平面111=AA B B AE ,平面11EB C F ⋂平面111=AA B B EB ,所以11∥EB AE .因为111B C A N ⊥,11B C MN ⊥,1A N MN N =,所以11B C ⊥面1AA NM .又因1111∥E F B C ,所以11⊥E F 面1AA NM , 所以1AE 与平面1AA NM 所成的角为1∠E AO .令2AB =,则11=NB ,由于O 为111A B C △的中心,故112233==OE NB . 在1Rt AE O 中,122,3===AO AB OE ,由勾股定理得1==AE所以111sin ∠==E O E AO AE 由于11∥EB AE ,直线1B E 与平面1A AMN[方法二]【最优解】:几何法 因为//AO 平面11EFC B ,平面11EFC B 平面1=AMNA NP ,所以∥AO NP .因为//ON AP ,所以四边形OAPN 为平行四边形.由(Ⅰ)知EF ⊥平面1AMNA ,则EF 为平面1AMNA 的垂线. 所以1B E 在平面1AMNA 的射影为NP . 从而1B E 与NP 所成角的正弦值即为所求.在梯形11EFC B 中,设1EF =,过E 作11EG B C ⊥,垂足为G ,则3==PN EG . 在直角三角形1B EG中,1sin ∠==B EG [方法三]:向量法由(Ⅰ)知,11B C ⊥平面1A AMN ,则11B C 为平面1A AMN 的法向量.因为∥AO 平面11EB C F ,AO ⊆平面1A AMN ,且平面1A AMN ⋂平面11EB C F PN =, 所以//AO PN .由(Ⅰ)知11,=∥AA MN AA MN ,即四边形APNO 为平行四边形,则==AO NP AB . 因为O 为正111A B C △的中心,故13==AP ON AM . 由面面平行的性质得111111,33=∥EF B C EF B C ,所以四边形11EFC B 为等腰梯形.由P ,N 为等腰梯形两底的中点,得11PN B C ⊥,则11110,⋅==++=PN B C EB EP PN NB 111111111623+-=-B C PN B C PN B C . 设直线1B E 与平面1A AMN 所成角为θ,AB a ,则21111111sin θ⋅===aEB B C EB B C a 所以直线1B E 与平面1A AMN[方法四]:基底法不妨设2===AO AB AC ,则在直角1AA O 中,1AA =以向量1,,AA AB AC 为基底, 从而1,2π=AA AB ,1,2π=AA AC ,,3π=AB AC .1111123=++=+EB EA AA A B AB AA ,BC AC AB =-, 则12103=EB ,||2BC =. 所以112()3⎛⎫⋅=+⋅-= ⎪⎝⎭EB BC AB AA AC AB 2224333⋅-=-AB AC AB .由(Ⅰ)知BC ⊥平面1A AMN ,所以向量BC 为平面1A AMN 的法向量. 设直线1B E 与平面1A AMN 所成角θ,则11110sin cos ,10||θ⋅===EB BC EB BC EB BC 故直线1B E 与平面1A AMN 所成角的正弦值为sin θ= 【整体点评】(2)方法一:几何法的核心在于找到线面角,本题中利用平行关系进行等价转化是解决问题的关键;方法二:等价转化是解决问题的关键,构造直角三角形是求解角度的正弦值的基本方法; 方法三:利用向量法的核心是找到平面的法向量和直线的方向向量,然后利用向量法求解即可;方法四:基底法是立体几何的重要思想,它是平面向量基本定理的延伸,其关键之处在于找到平面的法向量和直线的方向向量.11.【2020年新课标3卷理科】如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【答案】(1)证明见解析;(2. 【解析】 【分析】(1)方法一:连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内;(2)方法一:以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz -,利用空间向量法可计算出二面角1A EF A --的余弦值,进而可求得二面角1A EF A --的正弦值. 【详解】(1)[方法一]【最优解】:利用平面基本事实的推论在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F ,如图1所示.在长方体1111ABCD A B C D -中,//,BF CG BF CG =,所以四边形BCGF 为平行四边形,则//,BC FG BC FG =,而,//BC AD BC AD =,所以//,AD FG AD FG =,所以四边形DAFG 为平行四边形,即有//AF DG ,同理可证四边形1DEC G 为平行四边形,1//C E DG ∴,1//C E AF ∴,因此点1C 在平面AEF 内.[方法二]:空间向量共线定理以11111,,C D C B C C 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图2所示. 设11111,,3C D a C B b C C c ===,则1(0,0,0),(,0,2),(0,,),(,,3)C E a c F b c A a b c .所以1(,0,2),(,0,2)C E a c FA a c ==.故1C E FA =.所以1AF C E ∥,点1C 在平面AEF 内. [方法三]:平面向量基本定理同方法二建系,并得1(0,0,0),(,0,2),(0,,),(,,3)C E a c F b c A a b c , 所以111(,0,2),(0,,),(,,3)C E a c C F b c C A a b c ===.故111C A C E C F =+.所以点1C 在平面AEF 内. [方法四]:根据题意,如图3,设11111,2,3A D a A B b A A c ===.在平面11A B BA 内,因为12BF FB =,所以1111133B F B B A A ==.延长AF 交11A B 于G ,AF ⊂平面AEF ,11A B ⊂平面1111D C B A .11,G AF G A B ∈∈,所以G ∈平面,AEF G ∈平面1111D C B A ①.延长AE 交11A D 于H ,同理H ∈平面,AEF H ∈平面1111D C B A ②. 由①②得,平面AEF平面1111A B C D GH =.连接11,,GH GC HC ,根据相似三角形知识可得11,2GB b D H a ==.在11Rt C B G 中,1C G =同理,在11Rt C D H 中,1C H =如图4,在1Rt A GH 中,GH = 所以11GH C G C H =+,即G ,1C ,H 三点共线. 因为GH ⊂平面AEF ,所以1C ⊂平面AEF ,得证. [方法五]:如图5,连接11,,DF EB DB ,则四边形1DEB F 为平行四边形,设1DB 与EF 相交于点O ,则O 为1,EF DB 的中点.联结1AC ,由长方体知识知,体对角线交于一点,且为它们的中点,即11AC B D O =,则1AC 经过点O ,故点1C 在平面AEF 内.(2)[方法一]【最优解】:坐标法以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz -,如图2.则()2,1,3A 、()12,1,0A 、()2,0,2E 、()0,1,1F ,()0,1,1AE =--,()2,0,2AF =--,()10,1,2A E =-,()12,0,1A F =-,设平面AEF 的一个法向量为()111,,m x y z =,由00m AE m AF ⎧⋅=⎨⋅=⎩,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,则()1,1,1m =-,设平面1A EF 的一个法向量为()222,,n x y z =,由1100n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,则()1,4,2n =,3cos ,3m n m n m n⋅<>===⨯⋅ 设二面角1A EF A--的平面角为θ,则cos θ=sin7θ∴=. 因此,二面角1A EF A--. [方法二]:定义法在AEF 中,AE AF EF ====即222AE EF AF +=,所以AE EF ⊥.在1A EF 中,11A E A F =6,设,EF AF 的中点分别为M ,N ,连接11,,A M MN A N ,则1,A M EF MN EF ⊥⊥,所以1AMN ∠为二面角1A EFA --的平面角.在1AMN 中,1122MN A M A N ====所以1175cos A MN+-∠==1sin A MN∠==[方法三]:向量法由题意得11AE AF AF AE EF==,由于222AE EF AF+=,所以AE EF⊥.如图7,在平面1A EF内作1A G EF⊥,垂足为G,则EA与1GA的夹角即为二面角1A EF A--的大小.由11AA AE EG GA=++,得22221111222AA AE EG GA AE EG EG GA AE GA=++++⋅⋅+⋅.其中,1EG AG==11AE GA⋅=,1cos,AE GA〉〈=所以二面角1A EF A--.[方法四]:三面角公式由题易得,11EA FA FE EA FA===所以2221111cos2EA EA AAAEAEA EA+-∠===⋅.222cos0,sin12EA EF AFAEF AEFEA EF+-∠===∠=⋅.22211111cos2EA EF A FA EF A EFEA EF+-∠===∠=⋅设θ为二面角1A EF A--的平面角,由二面角的三个面角公式,得111cos cos cos cos sin sin AEA AEF A EF AEF A EF θ∠-∠⋅∠==∠⋅∠sin θ=【整体点评】(1)方法一:通过证明直线1//C E AF ,根据平面的基本事实二的推论即可证出,思路直接,简单明了,是通性通法,也是最优解;方法二:利用空间向量基本定理证明;方法三:利用平面向量基本定理;方法四:利用平面的基本事实三通过证明三点共线说明点在平面内;方法五:利用平面的基本事实以及平行四边形的对角线和长方体的体对角线互相平分即可证出. (2)方法一:利用建立空间直角坐标系,由两个平面的法向量的夹角和二面角的关系求出;方法二:利用二面角的定义结合解三角形求出;方法三:利用和二面角公共棱垂直的两个向量夹角和二面角的关系即可求出,为最优解;方法四:利用三面角的余弦公式即可求出. 12.【2020年新高考1卷(山东卷)】如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. 【答案】(1)证明见解析;(2【解析】 【分析】(1)利用线面垂直的判定定理证得AD ⊥平面PDC ,利用线面平行的判定定理以及性质定理,证得//AD l ,从而得到l ⊥平面PDC ;(2)方法一:根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点(,0,1)Q m ,之后求得平面QCD 的法向量以及向量PB 的坐标,求得cos ,n PB <>的最大值,即为直线PB 与平面QCD 所成角的正弦值的最大值. 【详解】 (1)证明:在正方形ABCD 中,//AD BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以//AD 平面PBC ,又因为AD ⊂平面PAD ,平面PAD 平面PBC l =,所以//AD l ,因为在四棱锥P ABCD -中,底面ABCD 是正方形,所以,,AD DC l DC ⊥∴⊥且PD ⊥平面ABCD ,所以,,AD PD l PD ⊥∴⊥因为CD PD D =,所以l ⊥平面PDC .(2)[方法一]【最优解】:通性通法因为,,DP DA DC 两两垂直,建立空间直角坐标系D xyz -,如图所示:因为1PD AD ==,设(0,0,0),(0,1,0),(1,0,0),(0,0,1),(1,1,0)D C A P B , 设(,0,1)Q m ,则有(0,1,0),(,0,1),(1,1,1)DC DQ m PB ===-, 设平面QCD 的法向量为(,,)n x y z =,则00DC n DQ n ⎧⋅=⎨⋅=⎩,即00y mx z =⎧⎨+=⎩,令1x =,则z m =-,所以平面QCD 的一个法向量为(1,0,)n m =-,则 1cos ,3n PB n PB n PB⋅+<>==根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线PB 与平面QCD 所成角的正弦值等于|cos ,|n PB <>====当且仅当1m =时取等号,所以直线PB 与平面QCD [方法二]:定义法如图2,因为l ⊂平面PBC ,Q l ∈,所以Q ∈平面PBC .。

立体几何 解答题专项训练-2022届高三数学三轮冲刺复习

立体几何 解答题专项训练-2022届高三数学三轮冲刺复习
(1)求证:EF⊥平面BCF;
(2)点M在线段EF上运动,当点M在什么位置时,平面MAB与平面FCB所成锐二面角最大?并求此时锐二面角的余弦值。
16、在四棱锥P﹣ABCD中,侧面PAB为等边三角形,底面ABCD为直角梯形,AB∥CD,∠DAB=90°,PB=PC=2,CD=AD=1,E为线段AB的中点,过直线CE的平面与线段PA,PD分别交于点M,N.
(1)求证:MN⊥PB;
(2)若直线PC与平面CEMN所成的角的余弦值为 ,求 的值.
17、如图所示,正方形 所在平面与梯形 所在平面垂直, , , , .
(1)求证:EF∥平面SAD.
(2)若G为线段AB上一动点,求平面EFG与平面ABCD间最小锐二面角的余弦值.
15、如图1所示,在矩形 中, , , 为 中点,将 沿 折起,使点 到点 处,且平面 平面 ,如图2所示.
(1)求证: ;
(2)在棱 上取点 ,使平面 平面 ,求直线 与平面 所成角的正弦值.
立体几何解答题专项训练
1、在如图所示的几何体中,四边形 是正方形,四边形 是梯形, , ,平面 平面 ,且 .
(1)求证: 平面 ;
(2)求平面 与平面 所成角的大小;
(3)已知点 在棱 上,且异面直线 与 所成角的余弦值为 ,求点 到平面 的距离.
2、如图,在梯形ABCD中,AB∥CD,∠BCD= ,四边形ACFE为矩形,且CF⊥平面ABCD,AB=CD=BC=CF=1。
(1)证明:平面 平面 .
(2)若 ,求二面角 的余弦值.
11、如图1,已知 为等边三角形,四边形 为平行四边形, ,把 沿 向上折起,使点E到达点P位置,如图2所示;且平面 平面 .
(1)证明: ;
(2)在(1)的条件下求二面角 的余弦值.

高考数学近三年真题立体几何(理科专用)

高考数学近三年真题立体几何(理科专用)

三年专题 立体几何(选择题、填空题)(理科专用)1.【2022年新高考1卷】南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为140.0km 2;水位为海拔157.5m 时,相应水面的面积为180.0km 2,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为(√7≈2.65)( ) A .1.0×109m 3B .1.2×109m 3C .1.4×109m 3D .1.6×109m 32.【2022年新高考1卷】已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3≤l ≤3√3,则该正四棱锥体积的取值范围是( ) A .[18,814]B .[274,814]C .[274,643]D .[18,27]3.【2022年新高考2卷】已知正三棱台的高为1,上、下底面边长分别为3√3和4√3,其顶点都在同一球面上,则该球的表面积为( ) A .100πB .128πC .144πD .192π4.【2021年甲卷理科】2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C '''满足45A C B ∠'''=︒,60A B C ''∠'=︒.由C 点测得B 点的仰角为15︒,B B '与C C '的差为100;由B 点测得A 点的仰角为45︒,则A ,C 两点到水平面A B C '''的高度差A A C C ''- 1.732≈)( )A .346B .373C .446D .4735.【2021年甲卷理科】已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1A CBC A C B C ⊥==,则三棱锥O A B C-的体积为( )A 12B 12C 4D 46.【2021年新高考1的母线长为( )A .2B .C .4D .7.【2021年新高考2卷】正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A .201+B .2C .563D 38.【2020年新课标1卷理科】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A 4B 2C 4D 29.【2020年新课标1卷理科】已知,,A B C 为球O 的球面上的三个点,⊙1O 为A B C的外接圆,若⊙1O 的面积为4π,1A BB C A C O O ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π10.【2020年新课标2卷理科】如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H11.【2020年新课标2卷理科】已知△ABC 4的等边三角形,且其顶点都在球O的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 212.【2020年新课标3卷理科】下图为某几何体的三视图,则该几何体的表面积是( )A.B .C .D .13.【2020年新高考1卷(山东卷)】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90°14.【2022年新高考1卷】已知正方体ABCD −A 1B 1C 1D 1,则( ) A .直线BC 1与DA 1所成的角为90° B .直线BC 1与CA 1所成的角为90° C .直线BC 1与平面BB 1D 1D 所成的角为45°D .直线BC 1与平面ABCD 所成的角为45°15.【2022年新高考2卷】如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,FB ∥ED,AB =ED =2FB ,记三棱锥E −ACD ,F −ABC ,F −ACE 的体积分别为V 1,V 2,V 3,则( )A .V 3=2V 2B .V 3=V 1C .V 3=V 1+V 2D .2V 3=3V 116.【2021年新高考1卷】在正三棱柱111A B CA B C -中,11A BA A ==,点P 满足1B P BC B B λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1A B P△的周长为定值B .当1μ=时,三棱锥1P A B C-的体积为定值C .当12λ=时,有且仅有一个点P ,使得1AP B P⊥D .当12μ=时,有且仅有一个点P ,使得1AB ⊥平面1A BP17.【2021年新高考2卷】如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点.则满足M NO P⊥的是( )A .B .C .D .18.【2020年新课标3卷理科】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.19.【2020年新高考1卷(山东卷)】已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD=60°.以1D BCC 1B 1的交线长为________.20.【2020年新高考2卷(海南卷)】已知正方体ABCD-A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点,则三棱锥A-NMD1的体积为____________三年专题立体几何(解答题)(理科专用)1.【2022年全国甲卷】在四棱锥P−ABCD中,PD⊥底面ABCD,CD∥AB,AD=DC=CB=1 ,AB=2,DP=√3.(1)证明:BD⊥PA;(2)求PD与平面PAB所成的角的正弦值.2.【2022年全国乙卷】如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E为AC 的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.3.【2022年新高考1卷】如图,直三棱柱ABC−A1B1C1的体积为4,△A1BC的面积为2√2.(1)求A 到平面A 1BC 的距离;(2)设D 为A 1C 的中点,AA 1=AB ,平面A 1BC ⊥平面ABB 1A 1,求二面角A −BD −C 的正弦值.4.【2022年新高考2卷】如图,PO 是三棱锥P −ABC 的高,PA =PB ,AB ⊥AC ,E 是PB 的中点.(1)证明:OE//平面PAC ;(2)若∠ABO =∠CBO =30°,PO =3,PA =5,求二面角C −AE −B 的正弦值. 5.【2021年甲卷理科】已知直三棱柱111A B C A B C -中,侧面11A AB B为正方形,2A BB C ==,E ,F 分别为A C 和1C C 的中点,D 为棱11AB 上的点.11B FA B ⊥(1)证明:B F D E⊥;(2)当1BD为何值时,面11B BC C与面D F E 所成的二面角的正弦值最小?6.【2021年乙卷理科】如图,四棱锥P A B C D==,P D D C-的底面是矩形,P D⊥底面A B C D,1M为B C的中点,且P B A M⊥.(1)求B C;(2)求二面角A P M B--的正弦值.7.【2021年新高考1卷】如图,在三棱锥A B C D-中,平面A B D⊥平面B C D,A B A D=,O为B D的中点.(1)证明:O A C D⊥;(2)若OCD是边长为1的等边三角形,点E在棱A D上,2--=,且二面角E B C DD E E A的大小为45︒,求三棱锥A B C D-的体积.8.【2021年新高考2卷】在四棱锥Q A B C D-中,底面A B C D是正方形,若====.A D Q D Q A Q C2,3(1)证明:平面Q A D ⊥平面A B C D ; (2)求二面角BQ D A--的平面角的余弦值.9.【2020年新课标1卷理科】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,A E 为底面直径,A EA D=.A B C是底面的内接正三角形,P 为D O 上一点,6P OO=.(1)证明:P A ⊥平面P B C ;(2)求二面角BP C E--的余弦值.10.【2020年新课标2卷理科】如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB1C 1C是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AM N 所成角的正弦值.11.【2020年新课标3卷理科】如图,在长方体1111A B C D A B C D -中,点,E F 分别在棱11,D DB B 上,且12D EE D =,12B FF B =.(1)证明:点1C 在平面A E F 内;(2)若2A B=,1A D=,13A A=,求二面角1AE F A --的正弦值.12.【2020年新高考1卷(山东卷)】如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面A BCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. 13.【2020年新高考2卷(海南卷)】如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面A BCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB ,求PB 与平面QCD 所成角的正弦值.。

2022年全国高考数学真题及模拟题汇编:立体几何(附答案解析)

2022年全国高考数学真题及模拟题汇编:立体几何(附答案解析)

2022年全国高考数学真题及模拟题汇编:立体几何一.选择题(共8小题)1.(2021秋•海淀区期末)如图,A,B是两个形状相同的杯子,且B杯高度是A杯高度的,则B杯容积与A杯容积之比最接近的是()A.1:3B.2:5C.3:5D.3:42.(2021秋•爱民区校级期末)一个正方体的顶点都在球面上,若球的表面积为4π,则正方体的棱长为()A.B.C.D.3.(2021秋•齐齐哈尔期末)已知互不重合的直线m,n,互不重合的平面α,β,下列命题正确的是()A.若n⊂α,m∥n,则m∥αB.若n⊂α,m⊥n,则m⊥αC.若α∥β,m∥α,则m∥βD.若m⊥β,m⊂α,则α⊥β4.(2021秋•1月份月考)某几何体的三视图(单位:cm)如图所示,则该几何体的外接球的表面积(单位:cm2)为()A.18πB.20πC.22πD.24π5.(2021秋•南岗区校级期末)已知向量=(1,1,k),,,且向量与互相垂直,则k的值是()A.1B.﹣2C.﹣3D.﹣46.(2021秋•河南月考)将正方形ABCD沿着对角线AC折成一个直二面角,此时BD=2,则边长AB=()A.B.1C.D.27.(2021秋•长宁区期末)在三棱锥D﹣ABC中,DA⊥平面ABC,AB⊥BC,DA=AB=BC;记直线DB与直线AC所成的角为α,直线DC与平面ABD所成的角为β,二面角D﹣BC ﹣A的平面角为γ,则()A.β<γ<αB.γ<β<αC.β<α<γD.α<γ<β8.(2021秋•重庆期末)已知空间中四点A(﹣1,1,0),B(2,2,1),C(1,1,1),D (0,2,3),则点D到平面ABC的距离为()A.B.C.D.0二.多选题(共4小题)9.(2021秋•保定期末)如图,M,N为正方体中所在棱的中点,过M,N两点作正方体的截面,则截面的形状可能为()A.三角形B.四边形C.五边形D.六边形10.(2021秋•南海区校级月考)如图,在平行六面体ABCD﹣A1B1C1D1中,M为A1C1与B1D1的交点,若,则下列等式正确的是()A.B.C.D.11.(2021秋•黄陂区校级月考)设α是给定的平面,A,B是不在α内的任意不同两点,则()A.一定存在过直线AB的平面β与平面α垂直B.在α内一定存在直线l与直线AB平行C.在α内一定存在直线l与直线AB相交D.在α内一定存在直线l与直线AB垂直12.(2021秋•历下区校级月考)已知点P,C,D是圆锥表面上的点,该圆锥的侧面展开图为以点P为圆心,4为半径的半圆,点C是的中点,点D是的中点(如图),则下列说法正确的是()A.圆锥的体积为B.直线PD与圆锥底面夹角为C.圆锥的内切球半径为D.以圆锥底面圆心为球心、半径为2的球被平面PCD所截,则截面面积为三.填空题(共4小题)13.(2021秋•房山区期末)如图,长方体ABCD﹣A1B1C1D1,若=(2,2,1),则的坐标为.14.(2021秋•湖北期末)已知一个圆台的上、下底面半径之比为1:2,母线长为,其母线与底面所成的角为45°,则这个圆台的体积为.15.(2021秋•黑龙江期末)已知P,A,B,C四点共面且对于空间任意一点O,都有=2,则t=.16.(2021秋•房山区期末)《九章算术》是我国古代数学名著,其中提到的“阳马”是指底面为矩形,有一侧棱垂直于底面的四棱锥.在阳马P﹣ABCD的表面三角形中,直角三角形的个数为.四.解答题(共6小题)17.(2021秋•爱民区校级期末)如图,在四棱锥O﹣ABCD中,底面ABCD是正方形,M 为OA的中点,N为OB的中点.求证:MN∥平面OCD.18.(2021秋•长宁区期末)已知ABCD是边长为2的正方形,正方形ABCD绕BC旋转形成一个圆柱.(1)求该圆柱的表面积;(2)正方形ABCD绕BC顺时针旋转至A1D1CB,求异面直线AD1与CD所成角的大小.19.(2021秋•榆林期末)如图,在四棱锥P﹣ABCD中,P A⊥平面ABCD,底面为直角梯形,CD∥AB,AD⊥AB,且P A=AD=CD=2,AB=3,E为PD的中点.(1)证明:AE⊥平面PCD;(2)过A,B,E作四棱锥P﹣ABCD的截面,请写出作法和理由,并求截面的面积.20.(2021秋•房山区期末)如图,正方体ABCD﹣A1B1C1D1的棱长为2,点E为BB1的中点.(Ⅰ)求证:BC1∥平面AD1E;(Ⅱ)求点C1到平面AD1E的距离;(Ⅲ)判断B1C1的中点M是否在平面AD1E上?说明理由.21.(2021秋•三门县校级期末)如图所示,已知正方体ABCD﹣A1B1C1D1的棱长为2,E,F分别为BC,CD的中点.(1)求A1到平面C1EF的距离;(2)求平面C1EF与平面AB1D1夹角的余弦值.22.(2021秋•佛山期末)如图,四棱锥P﹣ABCD中,四边形ABCD是矩形,AD⊥平面P AB,P A⊥PB,E是AD的中点.(1)在线段BP上找一点M,使得直线EM∥平面PCD,并说明理由;(2)若P A=AD,AB=AD,求平面PCE与平面P AB所成二面角的正弦值.2022年全国高考数学真题及模拟题汇编:立体几何参考答案与试题解析一.选择题(共8小题)1.(2021秋•海淀区期末)如图,A,B是两个形状相同的杯子,且B杯高度是A杯高度的,则B杯容积与A杯容积之比最接近的是()A.1:3B.2:5C.3:5D.3:4【考点】棱柱、棱锥、棱台的体积.【专题】计算题;整体思想;演绎法;空间位置关系与距离;逻辑推理;数学运算.【分析】根据两个杯子形状相同可得底面积之比为高之比的平方,因此容积之比为高之比的立方即可求解.【解答】解:因为A,B是两个形状相同的杯子,且B杯高度是A杯高度的,所以底面半径比也是,所以两个杯子的底面积之比为,所以B杯容积与A杯容积之比,故选:B.【点评】本题主要考查体积的计算,立体几何的实际应用等知识,属于基础题.2.(2021秋•爱民区校级期末)一个正方体的顶点都在球面上,若球的表面积为4π,则正方体的棱长为()A.B.C.D.【考点】球的体积和表面积.【专题】计算题;整体思想;综合法;空间位置关系与距离;逻辑推理;直观想象;数学运算.【分析】求得球的半径,由此求得正方体的体对角线长,进而求得正方体的棱长.【解答】解:设正方体的棱长为a,则其体对角线长为,设球的半径为r,则4πr2=4π,r=1,所以.故选:B.【点评】本题主要考查球与多面体的切接问题,属于基础题.3.(2021秋•齐齐哈尔期末)已知互不重合的直线m,n,互不重合的平面α,β,下列命题正确的是()A.若n⊂α,m∥n,则m∥αB.若n⊂α,m⊥n,则m⊥αC.若α∥β,m∥α,则m∥βD.若m⊥β,m⊂α,则α⊥β【考点】直线与平面垂直.【专题】数形结合;数形结合法;空间位置关系与距离;直观想象.【分析】可通过分别对线在面内和面外两种情况结合直线与平面平行以及垂直的性质分别进行分析判断即可.【解答】解:对于A选项,n⊂α,m∥n,则m∥α或m⊂α,故A错误;对于B选项,n⊂α,m⊥n,则m⊥α或m⊂α,故B错误;对于C选项,α∥β,m∥α,则m∥β或m⊂β,故C错误;对于D选项,m⊥β,m⊂α,则必有α⊥β,故D正确,故选:D.【点评】本题考查了直线与平面的位置关系,属于基础题.4.(2021秋•1月份月考)某几何体的三视图(单位:cm)如图所示,则该几何体的外接球的表面积(单位:cm2)为()A.18πB.20πC.22πD.24π【考点】由三视图求面积、体积;球的体积和表面积;球内接多面体.【专题】转化思想;综合法;球;数学运算.【分析】首先把三视图转换为几何体的直观图,进一步求出外接球的表面积.【解答】解:根据几何体的三视图转换为直观图为:该几何体为由一个底面为直角三角形的三棱柱体ABC﹣DEF,(倒着放)如上图所示:AB=2,AC=3,AD=3,设外接球的半径为R,所以(2R)2=22+32+32=22,则R=,所以S=4π•()2=22π(cm2).故选:C.【点评】本题考查的知识要点:三视图和直观图之间的转换,球的表面积公式,主要考查学生的运算能力和转换能力及思维能力,属于基础题.5.(2021秋•南岗区校级期末)已知向量=(1,1,k),,,且向量与互相垂直,则k的值是()A.1B.﹣2C.﹣3D.﹣4【考点】空间向量的数量积运算;向量的数量积判断向量的共线与垂直.【专题】方程思想;定义法;空间向量及应用;数学运算.【分析】先求出=(3,1,k+2),再由向量与互相垂直,列方程能求出k.【解答】解:∵向量=(1,1,k),,,∴=(3,1,k+2),∵向量与互相垂直,∴=0+2+k+2=0,解得k=﹣4.故选:D.【点评】本题考查实数值的求法,考查空间向量坐标运算法则、向量垂直的性质等基础知识,考查推理论证能力,是基础题.6.(2021秋•河南月考)将正方形ABCD沿着对角线AC折成一个直二面角,此时BD=2,则边长AB=()A.B.1C.D.2【考点】二面角的平面角及求法;点、线、面间的距离计算.【专题】计算题;整体思想;演绎法;空间位置关系与距离;逻辑推理;直观想象;数学运算.【分析】取AC的中点为O,连接OB,OD,根据题意得,,进而根据勾股定理得AB=2.【解答】解:如图,取AC的中点为O,连接OB,OD,由正方形的性质得△ACD,△ABC为等腰直角三角形,所以OD⊥AC,OB⊥AC,所以∠BOD是二面角B﹣AC﹣D的平面角,因为正方形ABCD沿着对角线AC折成一个直二面角,所以.因为△BOD是等腰直角三角形,,所以,解得AB=2.故选:D.【点评】本题主要考查折叠问题的处理方法,空间中距离的计算等知识,属于基础题.7.(2021秋•长宁区期末)在三棱锥D﹣ABC中,DA⊥平面ABC,AB⊥BC,DA=AB=BC;记直线DB与直线AC所成的角为α,直线DC与平面ABD所成的角为β,二面角D﹣BC ﹣A的平面角为γ,则()A.β<γ<αB.γ<β<αC.β<α<γD.α<γ<β【考点】二面角的平面角及求法.【专题】数形结合;向量法;空间角;数学运算.【分析】由题意把三棱锥D﹣ABC放置在正方体CD中,设正方体的棱长为1,利用空间向量求解α,在正方体中分别求解β与γ,则答案可求.【解答】解:如图,把三棱锥D﹣ABC放置在正方体CD中,设正方体的棱长为1,以A为坐标原点,建立如图所示空间直角坐标系,则A(0,0,0),C(1,1,0),B(0,1,0),D(0,0,1),∴,,则cosα=|cos<>|=||=||=,则;由已知可得,DA⊥BC,又AB⊥BC,且DA∩AB=A,∴CB⊥平面DAB,则β=∠CDB,DB=,DC=,则cosβ=>;由BC⊥平面DAB,得γ=∠DBA=,∴β<γ<α.故选:A.【点评】本题考查空间角的求法,考查空间想象能力与思维能力,训练空间向量的应用,是中档题.8.(2021秋•重庆期末)已知空间中四点A(﹣1,1,0),B(2,2,1),C(1,1,1),D (0,2,3),则点D到平面ABC的距离为()A.B.C.D.0【考点】点、线、面间的距离计算.【专题】转化思想;向量法;立体几何;直观想象;数学运算.【分析】用向量数量积计算点到平面距离即可.【解答】解:=(3,1,1),=(2,0,1),=(1,1,3),令=(﹣1,1,2),因为•=0,•=0,所以是平面ABC的法向量,所以==,故选:A.【点评】本题考查了点到平面距离问题,属于中档题.二.多选题(共4小题)9.(2021秋•保定期末)如图,M,N为正方体中所在棱的中点,过M,N两点作正方体的截面,则截面的形状可能为()A.三角形B.四边形C.五边形D.六边形【考点】空间中直线与直线之间的位置关系;空间点、线、面的位置.【专题】计算题;方程思想;转化思想;综合法;立体几何;数学运算.【分析】根据题意,由正方体的几何结构分析可得答案.【解答】解:根据题意,过M,N两点作正方体的截面,则截面的形状可能为四边形和六边形,如图:故选:BD.【点评】本题考查平面的基本性质,涉及正方体的几何结构,属于基础题.10.(2021秋•南海区校级月考)如图,在平行六面体ABCD﹣A1B1C1D1中,M为A1C1与B1D1的交点,若,则下列等式正确的是()A.B.C.D.【考点】空间向量及其线性运算.【专题】转化思想;综合法;空间向量及应用;逻辑推理;数学运算.【分析】直接利用向量的加法运算判断A、B、C、D的结论.【解答】解:在平行六面体ABCD﹣A1B1C1D1中,M为A1C1与B1D1的交点,若,对于A:=,故A正确;对于B:,故B正确;对于C:,故C正确;对于D:,故D正确.故选:ABCD.【点评】本题考查的知识要点:向量的线性运算,向量的加法,主要考查学生的运算能力和数学思维能力,属于基础题.11.(2021秋•黄陂区校级月考)设α是给定的平面,A,B是不在α内的任意不同两点,则()A.一定存在过直线AB的平面β与平面α垂直B.在α内一定存在直线l与直线AB平行C.在α内一定存在直线l与直线AB相交D.在α内一定存在直线l与直线AB垂直【考点】空间中直线与平面之间的位置关系.【专题】转化思想;综合法;空间位置关系与距离;逻辑推理.【分析】利用空间中线线、线面、面面间的位置关系直接求解.【解答】解:设α是给定的平面,A,B是不在α内的任意不同两点,在A中,∵A,B是不在α内的任意两点,∴直线AB与α相交或平行,∴存在过直线AB的平面与平面α垂直,故A正确;对于B,在当直线AB与α相交时,在α内不存在直线l与直线AB平行,故B错误;在C中,∵AB∥α时,在α内不存在直线l与直线AB相交,故C错误;在D中,当直线AB与平面α平行或相交时,在α内一定存在直线l与直线AB垂直,故D正确.故选:AD.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力,是中档题.12.(2021秋•历下区校级月考)已知点P,C,D是圆锥表面上的点,该圆锥的侧面展开图为以点P为圆心,4为半径的半圆,点C是的中点,点D是的中点(如图),则下列说法正确的是()A.圆锥的体积为B.直线PD与圆锥底面夹角为C.圆锥的内切球半径为D.以圆锥底面圆心为球心、半径为2的球被平面PCD所截,则截面面积为【考点】棱柱、棱锥、棱台的体积;球的体积和表面积;直线与平面所成的角.【专题】计算题;整体思想;综合法;空间位置关系与距离;立体几何;数学运算.【分析】由已知条件,还原圆锥,根据锥体体积的计算公式、线面角的求解,圆锥内切球的求解方法,以及球体截面面积的计算,对每个选项进行逐一分析,即可容易判断和求解.【解答】解:根据题意,还原圆锥如下所示:不妨设该圆锥底面半径为r,高为h,底面圆圆心为O,根据题意,P A=4,圆锥底面圆周长为2πr=,解得r=2,由勾股定理可得h==2,A:圆锥的体积为==π,故A正确;B:显然直线PD与圆锥底面夹角为∠PDO,在Rt△PDO中,cos∠PDO===,故∠PDO=,则直线PD与圆锥底面的夹角为,故B错误;C:设内切球的球心为O,半径为1,画出圆锥轴截面和内切球的示意图如下:由三角形PHO1与三角形POC相似可得:,即,解得r1=,故C正确;D:易知:平面PCD截以圆锥底面圆心为球心,半径为2的球的截面为一个圆,不妨设截面圆半径为2,设球心到面PCD的距离为h1,在△PCD中,PC=PD=4,CD=2,则S△PCD==2,由等体积法可得,V O﹣PCD=V P﹣OCD,即=,解得h1=,故可得,r2==,故截面圆面积为=,故D正确;故选:ACD.【点评】本题考查了立体几何综合,属于难题.三.填空题(共4小题)13.(2021秋•房山区期末)如图,长方体ABCD﹣A1B1C1D1,若=(2,2,1),则的坐标为(﹣2,2,﹣1).【考点】空间中的点的坐标;空间向量运算的坐标表示.【专题】计算题;转化思想;综合法;空间位置关系与距离;直观想象;数学运算.【分析】利用长方体的特征,结合已知向量,转化求解即可.【解答】解:长方体ABCD﹣A1B1C1D1,若=(2,2,1),可知AB=AD=2,AA1=1,则=++=(﹣2,2,﹣1).故答案为:(﹣2,2,﹣1).【点评】本题考查空间向量的应用,向量坐标的求法,是基础题.14.(2021秋•湖北期末)已知一个圆台的上、下底面半径之比为1:2,母线长为,其母线与底面所成的角为45°,则这个圆台的体积为.【考点】旋转体(圆柱、圆锥、圆台);棱柱、棱锥、棱台的体积.【专题】计算题;转化思想;综合法;空间位置关系与距离;逻辑推理;直观想象;数学运算.【分析】根据圆台的轴截面性质,结合题意利用勾股定理,算出圆台的上底面半径为r =2,下底面半径为R=4,高h=2,再由圆台的体积公式加以计算,即可得出该圆台的体积.【解答】解:根据题意,设圆台的上、下底面半径分别为x,2x,母线长为,母线与底面所成的角为45°,圆台的高为x,并且x2+x2=(2)2,解得x=2,所以圆台的上底面半径为r=2,下底面半径为R=4,高h=2.由此可得圆台的体积为V=πh(r2+R2+rR)=π.故答案为:π.【点评】本题给出圆台的上、下底面半径和高之比,在已知母线长情况下求圆台的体积.着重考查了圆台的轴截面性质、圆台的体积公式与勾股定理等知识,属于中档题.15.(2021秋•黑龙江期末)已知P,A,B,C四点共面且对于空间任意一点O,都有=2,则t=﹣2.【考点】空间向量的夹角与距离求解公式.【专题】计算题;方程思想;综合法;平面向量及应用;数学运算.【分析】分别用,,表示出,,,根据平面向量的基本定理可知=m+n,列出方程组解出t.【解答】解:=﹣=,=﹣=2,=﹣=2,∵P,A,B,C四点共面,∴存在m,n∈R使得=m+n,∴=m(2)+n[2]=(2m+2n)+n+(mt+nt ﹣n),∴,解得m=﹣,n=1,t=﹣2.故答案为:﹣2.【点评】本题考查了平面向量的基本定理及线性运算,列出方程组是解题的关键,属于中档题.16.(2021秋•房山区期末)《九章算术》是我国古代数学名著,其中提到的“阳马”是指底面为矩形,有一侧棱垂直于底面的四棱锥.在阳马P﹣ABCD的表面三角形中,直角三角形的个数为4.【考点】棱锥的结构特征.【专题】计算题;对应思想;分析法;空间位置关系与距离;逻辑推理.【分析】利用线面垂直的判定定理求解即可.【解答】解:不妨设P A⊥底面ABCD,如下图所示:∵P A⊥底面ABCD,AB、BC⊂平面ABCD,∴P A⊥AB,P A⊥BC,∵BC⊥AB,P A∩AB=A,∴BC⊥平面P AB,∵PB⊂平面P AB,∴BC⊥PB,故△P AB、ΔPBC均为直角三角形,同理可知△P AD、△PCD均为直角三角形.因此,在阳马P﹣ABCD表面三角形中,直角三角形的个数为4.故答案为:4.【点评】本题考查棱锥的结构的特征,考查学生的推理能力,属于中档题.四.解答题(共6小题)17.(2021秋•爱民区校级期末)如图,在四棱锥O﹣ABCD中,底面ABCD是正方形,M 为OA的中点,N为OB的中点.求证:MN∥平面OCD.【考点】直线与平面平行.【专题】数形结合;数形结合法;空间位置关系与距离;直观想象.【分析】因为M为OA的中点,N为OB的中点.所以由三角形中位线可知MN∥AB,所以MN∥CD,根据线面平行的判定即可求证.【解答】证明:因为M为OA的中点,N为OB的中点.所以MN∥AB,又因为底面ABCD是正方形,所以AB∥CD,所以MN∥CD,因为CD⊂面OCD,MN⊄面OCD,所以MN∥面OCD.【点评】本题考查了空间中直线与平面平行的判定,属于基础题.18.(2021秋•长宁区期末)已知ABCD是边长为2的正方形,正方形ABCD绕BC旋转形成一个圆柱.(1)求该圆柱的表面积;(2)正方形ABCD绕BC顺时针旋转至A1D1CB,求异面直线AD1与CD所成角的大小.【考点】异面直线及其所成的角.【专题】转化思想;综合法;空间角;数学运算.【分析】(1)由圆柱的侧面积公式和表面积公式,计算可得所求;(2)由异面直线所成角的定义和解三角形,计算可得所求角.【解答】解:(1)圆柱的表面是由上下两个半径为2的圆面和一个长为4π,宽为2的矩形构成.∴该圆柱的表面积S圆柱=4π×2+2π×22=16π;(2)由正方形ABC1D1,可得CD1⊥BC,又∠DCD1=,∴CD1⊥CD,DD1=,AD1=,过D1作D1H∥CD,且CD=D1H,连接DH,AH,可得∠AD1H(或其补角)为异面直线AD1与CD所成角.在△AHD1中D1H=CD=2,AH=,AD1=2,由D1H2+AH2=AD12,可得△AHD1为直角三角形,∴cos∠AD1H===,故异面直线AD1与CD所成角的大小arccos.【点评】本题考查圆柱的表面积的求法,以及异面直线所成角的求法,考查转化思想和运算能力,属于中档题.19.(2021秋•榆林期末)如图,在四棱锥P﹣ABCD中,P A⊥平面ABCD,底面为直角梯形,CD∥AB,AD⊥AB,且P A=AD=CD=2,AB=3,E为PD的中点.(1)证明:AE⊥平面PCD;(2)过A,B,E作四棱锥P﹣ABCD的截面,请写出作法和理由,并求截面的面积.【考点】直线与平面垂直.【专题】计算题;转化思想;综合法;空间位置关系与距离;数学运算.【分析】(1)由线面垂直的性质定理可得CD⊥P A,由已知可得CD⊥AD,由线面垂直的判定定理可得CD⊥平面P AD,推出CD⊥AE,由AE⊥PD,即可证明结论;(2)过E作EF∥CD,交PC于F,连接BF,推导出EF∥AB,可得截面为四边形ABFE,计算可得面积.【解答】(1)证明:因为P A⊥平面ABCD,所以CD⊥P A.又CD∥AB,AD⊥AB,所以CD⊥AD.因为AD∩P A=A,所以CD⊥平面P AD,则CD⊥AE.因为P A=AD,E为PD的中点,所以AE⊥PD.又CD∩PD=D,所以AE⊥平面PCD.(2)解:如图,过E作EF∥CD,交PC于F,连接BF,则截面为四边形ABFE.理由如下:因为AB∥CD,EF∥CD,所以EF∥AB,所以A,B,F,E四点共面,从而过A,B,E 的截面为四边形ABFE.由(1)知AE⊥平面PCD,所以AE⊥EF,又,,AB=3,所以四边形ABFE为直角梯形,其面积.【点评】本题主要考查线面垂直的判定与性质定理,截面面积的求法,考查逻辑推理与运算求解能力,属于中档题.20.(2021秋•房山区期末)如图,正方体ABCD﹣A1B1C1D1的棱长为2,点E为BB1的中点.(Ⅰ)求证:BC1∥平面AD1E;(Ⅱ)求点C1到平面AD1E的距离;(Ⅲ)判断B1C1的中点M是否在平面AD1E上?说明理由.【考点】直线与平面平行;点、线、面间的距离计算.【专题】计算题;整体思想;演绎法;空间向量及应用;逻辑推理;数学运算.【分析】(Ⅰ)先判断出四边形C1D1AB是平行四边形,再由线面平行的判断定理可得答案;(Ⅱ)以A为原点,分别ADABAA1所在的直线为xyz的正方向建立空间直角坐标系,求出平面D1AE的法向量,再由点到平面的距离的向量公式可得答案;(Ⅲ)由EM是三角形△C1B1B的中位线,得出C1B∥ME,再由C1B∥D1A得出ME∥D1A可得答案.【解答】(Ⅰ)证明:在正方体中,C1D1∥AB,C1D1=AB,所以四边形C1D1AB是平行四边形,所以BC1∥AD1,BC1⊄平面AD1E,AD1⊂平面AD1E,所以BC1∥平面AD1E;(Ⅱ)解:在正方体中,以A为原点,分别ADABAA1所在的直线为xyz的正方向建立如图所示的空间直角坐标系,所以A(0,0,0),D1(2,0,2),E(0,2,1),C1(2,2,2),,,,设平面D1AE的一个法向量为,所以,即,令z=2,则y=﹣1,x=﹣2,所以,点C1到平面AD1E的距离为.(Ⅲ)解:连接D1MEM,因为EM是三角形△C1B1B的中位线,所以C1B∥ME,因为C1B∥D1A,所以ME∥D1A,所以MED1A确定平面MED1A,因为ED1A三点在平面MED1A内,所以四点MED1A共面,所以B1C1的中点M在平面AD1E上.【点评】本题主要考查线面平行的证明,点面距离的计算,立体几何中的探索性问题等知识,属于中等题.21.(2021秋•三门县校级期末)如图所示,已知正方体ABCD﹣A1B1C1D1的棱长为2,E,F分别为BC,CD的中点.(1)求A1到平面C1EF的距离;(2)求平面C1EF与平面AB1D1夹角的余弦值.【考点】二面角的平面角及求法;点、线、面间的距离计算.【专题】数形结合;数形结合法;立体几何;数学运算.【分析】(1)根据题意建立空间直角坐标系,利用坐标表示向量,求出平面C1EF的法向量,再求点A1到平面C1EF的距离;(2)求出平面AB1D1的法向量,利用法向量求平面C1EF与平面AB1D1夹角的余弦值.【解答】解:(1)根据题意建立空间直角坐标系,如图所示:则A1(2,0,2),C1(0,2,2),E(1,2,0),F(0,1,0),所以=(﹣2,2,0),=(﹣1,﹣1,0),=(1,0,﹣2),设平面C1EF的法向量为=(x,y,z),则,即,令z=1,得x=2,y=﹣2,所以=(2,﹣2,1),所以点A1到平面C1EF的距离为d===;(2)因为A(2,0,0),B1(2,2,2),D1(0,0,2),所以=(0,2,2),=(﹣2,0,2),设平面AB1D1的法向量为=(x,y,z),则,即,令z=1,解得x=1,y=﹣1,所以=(1,﹣1,1),所以平面C1EF与平面AB1D1夹角的余弦值为|cosθ|===.【点评】本题考查了空间中的距离与夹角的余弦值计算问题,也考查了运算求解能力,是中档题.22.(2021秋•佛山期末)如图,四棱锥P﹣ABCD中,四边形ABCD是矩形,AD⊥平面P AB,P A⊥PB,E是AD的中点.(1)在线段BP上找一点M,使得直线EM∥平面PCD,并说明理由;(2)若P A=AD,AB=AD,求平面PCE与平面P AB所成二面角的正弦值.【考点】直线与平面平行;二面角的平面角及求法.【专题】转化思想;向量法;立体几何;直观想象;数学运算.【分析】(1)取M为PB中点,只要说明ME平行于平面PCD内直线ND即可;(2)用向量数量积计算二面角的余弦值,进而求解.【解答】(1)解:M为PB中点M时,EM∥平面PCD,理由如下:取PB中点M,取PC中点N,连接MN、EM、DN,所以MN∥BC,MN=BC,因为四边形ABCD是矩形,E是AD的中点,所以DE∥BC,DE=BC,所以DE∥MN,DE=MN,所以四边形MNDE是平行四边形,所以DN∥ME,因为DN⊂平面PCD,ME⊄平面PCD,所以EM∥平面PCD.(2)解:因为P A⊥PB,建系如图,因为AD⊥平面P AB,所以平面ABCD⊥平面P AB,P A=AD,AB=AD=P A,所以PB==P A,不妨设P A=1,则P(0,0,0),A(0,1,0),B(1,0,0),E(0,1,),C(1,0,1),=(0,1,),=(1,0,1),令=(2,1,﹣2),因为•=0,•=0,所以是平面PCE的法向量,=(0,0,1)是的平面P AB的法向量,设平面PCE与平面P AB所成二面角为θ,θ∈(0,π),|cosθ|===,sinθ==.【点评】本题考查了直线与平面的位置关系,考查了二面角计算问题,属于中档题.。

立体几何(解答题)-高考真题文科数学分项汇编(原卷版)

立体几何(解答题)-高考真题文科数学分项汇编(原卷版)

专题06立体几何(解答题)1.【2020年高考全国Ⅰ卷文数】如图,D为圆锥的顶点,O是圆锥底面的圆心,△ABC是底面的内接正三角形,P为DO上一点,∠APC=90°.(1)证明:平面PAB⊥平面PAC;(2)设DO= 2,圆锥的侧面积为3π,求三棱锥P−ABC的体积.2.【2020年高考全国Ⅱ卷文数】如图,已知三棱柱ABC−A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F;π(2)设O为△A1B1C1的中心,若AO=AB=6,AO//平面EB1C1F,且∠MPN=,求四棱锥B−EB1C1F3的体积.3.【2020年高考全国Ⅲ卷文数】如图,在长方体ABCD A 1B1C1D1中,点E,F分别在棱DD1,BB1上,且2DE ED1,BF 2FB1.证明:(1)当AB BC时,EF AC;(2)点C1在平面AEF内.4.【2020年高考江苏】在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.5.【2020年高考浙江】如图,在三棱台ABC—DEF中,平面ACFD⊥平面ABC,∠ACB=∠ACD=45°,DC =2BC.(Ⅰ)证明:EF⊥DB;(Ⅱ)求直线DF与平面DBC所成角的正弦值.6.【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.7.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A E,AB=3,求四棱锥E BB1C1C的体积.18.【2019年高考全国Ⅲ卷文数】图1是由矩形ADEB,Rt△ ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.9.【2019年高考北京卷文数】如图,在四棱锥P ABCD中,PA 平面ABCD,底部ABCD为菱形,E 为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.10.【2019年高考天津卷文数】如图,在四棱锥P ABCD中,底面ABCD为平行四边形,△PCD为等边三角形,平面PAC 平面PCD,PA CD,CD 2, AD 3.(1)设G,H分别为PB,AC的中点,求证:GH∥平面PAD;(2)求证:PA 平面PCD;(3)求直线AD与平面PAC所成角的正弦值.11.【2019年高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.12.【2019年高考浙江卷】如图,已知三棱柱ABC A1B1C1,平面A1ACC1 平面ABC,ABC 90,BAC 30,A1A A1C AC,E,F分别是AC,A1B1的中点.(1)证明:EF BC;(2)求直线EF与平面A1BC所成角的余弦值.13.【2018年高考全国Ⅰ卷文数】如图,在平行四边形ABCM中,AB AC 3,∠ACM 90,以 AC 为折痕将△ACM折起,使点M到达点D的位置,且AB⊥ DA.(1)证明:平面ACD⊥平面ABC;BP DQ 2 DA ,求三棱锥Q ABP的体积.Q(2)为线段AD上一点,P为线段BC上一点,且 314.【2018年高考全国Ⅱ卷文数】如图,在三棱锥P ABC中,AB BC 2 2,PA PB PC AC 4,O为AC的中点.(1)证明:PO 平面ABC;(2)若点M在棱BC上,且MC 2MB,求点C到平面POM的距离.15.【2018年高考全国Ⅲ卷文数】如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.16.【2018年高考北京卷文数】如图,在四棱锥P−ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(1)求证:PE⊥BC;(2)求证:平面PAB⊥平面PCD;(3)求证:EF∥平面PCD.17.【2018年高考天津卷文数】如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2 3,∠BAD=90°.(1)求证:AD⊥BC;(2)求异面直线BC与MD所成角的余弦值;(3)求直线CD与平面ABD所成角的正弦值.18.【2018年高考江苏卷】在平行六面体ABCD A1B1C1D1中,AA1 AB, AB1 B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1 平面A1BC.19.【2018年高考浙江卷】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.。

高考理科数学3年真题汇编专题06 立体几何(解答题)(解析版)

高考理科数学3年真题汇编专题06 立体几何(解答题)(解析版)

专题06 立体几何(解答题)1.【2020年高考全国Ⅰ卷理数】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,PO =.(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值.【解析】(1)设DO a =,由题设可得,,63PO a AO a AB a ===,2PA PB PC a ===. 因此222PA PB AB +=,从而PA PB ⊥. 又222PA PC AC +=,故PA PC ⊥. 所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,||OE 为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得1(0,1,0),(0,1,0),(,,0),(0,0,222E A C P --. 所以31(,,0),(0,1,)222EC EP =--=-. 设(,,)x y z =m 是平面PCE 的法向量,则00EPEC ⎧⋅=⎪⎨⋅=⎪⎩m m ,即021022y z x y ⎧-+=⎪⎪⎨⎪--=⎪⎩,可取(=m . 由(1)知AP=是平面PCB 的一个法向量,记AP =n , 则cos ,|||5⋅==nm n m n m |. 所以二面角B PC E --的余弦值为5. 【点晴】本题主要考查线面垂直的证明以及利用向量求二面角的大小,考查学生空间想象能力,数学运算能力,是一道容易题.2.【2020年高考全国Ⅱ卷理数】如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【解析】(1)因为M ,N 分别为BC ,B 1C 1的中点,所以1MN CC ∥.又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面11EB C F .(2)由已知得AM ⊥BC .以M 为坐标原点,MA 的方向为x 轴正方向, MB 为单位长,建立如图所示的空间直角坐标系M -xyz ,则AB =2,AM连接NP ,则四边形AONP 为平行四边形,故1,0)3PM E =.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设(,0,0)Q a,则1(NQ B a =, 故21123223210(,,4()),||33B E a a B E =-----=. 又(0,1,0)=-n 是平面A 1AMN 的法向量,故1111π10sin(,)cos ,2||B E B E B E B E ⋅-===⋅n n n |n |所以直线B 1E 与平面A 1AMN .3.【2020年高考全国Ⅱ卷理数】如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BFFB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【解析】设AB a =,AD b =,1AA c =,如图,以1C 为坐标原点,11C D 的方向为x 轴正方向,建立空间直角坐标系1C xyz -.(1)连结1C F ,则1(0,0,0)C ,(,,)A a b c ,2(,0,)3E a c ,1(0,,)3F b c ,1(0,,)3EA b c =,11(0,,)3C F b c =,得1EA C F =.因此1EA C F ∥,即1,,,A E F C 四点共面,所以点1C 在平面AEF 内. (2)由已知得(2,1,3)A ,(2,0,2)E ,(0,1,1)F ,1(2,1,0)A ,(0,1,1)AE =--,(2,0,2)AF =--,1(0,1,2)A E =-,1(2,0,1)A F =-.设1(,,)x y z =n 为平面AEF 的法向量,则 110,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,220,y z x z --=⎧⎨--=⎩可取1(1,1,1)=--n . 设2n 为平面1A EF 的法向量,则 22110,0,A E A F ⎧⋅=⎪⎨⋅=⎪⎩n n 同理可取21(,2,1)2=n .因为121212cos ,||||⋅〈〉==⋅n n n n n n ,所以二面角1A EF A --.4.【2020年高考江苏】在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.【解析】因为,E F 分别是1,AC B C 的中点,所以1EF AB ∥. 又/EF ⊂平面11AB C ,1AB ⊂平面11AB C , 所以EF ∥平面11AB C .(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC , 所以1B C AB ⊥.又AB AC ⊥,1B C ⊂平面11AB C ,AC ⊂平面1AB C ,1,B C AC C =所以AB ⊥平面1AB C .又因为AB ⊂平面1ABB ,所以平面1AB C ⊥平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题.5.【2020年高考浙江】如图,在三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC . (Ⅰ)证明:EF ⊥DB ;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.【解析】(Ⅰ)如图,过点D 作DO AC ⊥,交直线AC 于点O ,连结OB .由45ACD ∠=︒,DO AC ⊥得CD =,由平面ACFD ⊥平面ABC 得DO ⊥平面ABC ,所以DO BC ⊥.由45ACB ∠=︒,12BC CD ==得BO BC ⊥.所以BC ⊥平面BDO ,故BC ⊥DB .由三棱台ABC DEF -得BC EF ∥,所以EF DB ⊥. (Ⅱ)方法一:过点O 作OH BD ⊥,交直线BD 于点H ,连结CH .由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角. 由BC ⊥平面BDO 得OH BC ⊥,故OH ⊥平面BCD ,所以OCH ∠为直线CO 与平面DBC 所成角.设CD =.由2,DO OC BO BC ===,得BD OH =所以sin OH OCH OC ∠==,因此,直线DF 与平面DBC . 方法二:由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图,以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O xyz -.设CD =.由题意知各点坐标如下:(0,0,0),(1,1,0),(0,2,0),(0,0,2)O B C D .因此(0,2,0),(1,1,0),(0,2,2)OC BC CD ==-=-. 设平面BCD 的法向量(,,z)x y =n .由0,0,BC CD ⎧⋅=⎪⎨⋅=⎪⎩n n 即0220x y y z -+=⎧⎨-+=⎩,可取(1,1,1)=n .所以|sin |cos ,||||OC OC OC θ⋅===⋅n |n n |.因此,直线DF 与平面DBC . 【点睛】本题主要考查空间点、线、面位置关系,线面垂直的判定定理的应用,直线与平面所成的角的求法,意在考查学生的直观想象能力和数学运算能力,属于基础题.6.【2020年高考天津】如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,DE 分别在棱1AA 和棱1CC 上,且2,1,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.【解析】依题意,以C 为原点,分别以1,,CA CB CC 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得1(0,0,0),(2,0,0),(0,2,0),(0,0,3)C A B C ,11(2,0,3),(0,2,3),(2,0,1),(0,0,2)A B D E ,(1,1,3)M .(Ⅰ)证明:依题意,1(1,1,0)C M =,1(2,2,2)B D =--,从而112200C M B D ⋅=-+=,所以11C M B D ⊥.(Ⅱ)解:依题意,(2,0,0)CA =是平面1BB E 的一个法向量,1(0,2,1)EB =,(2,0,1)ED =-.设(,,)x y z =n 为平面1DB E 的法向量,则10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.y z x z +=⎧⎨-=⎩不妨设1x =,可得(1,1,2)=-n .因此有|||cos ,|A CA C CA ⋅〈〉==n n n sin ,6CA 〈〉=n .所以,二面角1B B E D --. (Ⅲ)解:依题意,(2,2,0)AB =-.由(Ⅱ)知(1,1,2)=-n 为平面1DB E 的一个法向量,于是cos ,||||AB AB AB ⋅==n n n .所以,直线AB 与平面1DB E . 7.【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A−MA 1−N 的正弦值. 【答案】(1)见解析;(2. 【解析】(1)连结B 1C ,ME . 因为M ,E 分别为BB 1,BC 的中点, 所以ME ∥B 1C ,且ME =12B 1C . 又因为N 为A 1D 的中点,所以ND =12A 1D . 由题设知A 1B 1=DC ,可得B 1C =A 1D ,故ME =ND , 因此四边形MNDE 为平行四边形,MN ∥ED . 又MN ⊄平面EDC 1, 所以MN ∥平面C 1DE . (2)由已知可得DE ⊥DA .以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz ,则(2,0,0)A ,A 1(2,0,4),2)M ,(1,0,2)N ,1(0,0,4)A A =-,1(12)A M =--,1(1,0,2)A N =--,(0,MN =.设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩m m ,所以2040x z z ⎧-+-=⎪⎨-=⎪⎩,.可取=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩,.n n所以020p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是cos ,||5⋅〈〉===‖m n m n m n ,所以二面角1A MA N -- 【名师点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.8.【2019年高考全国Ⅱ卷理数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值.【答案】(1)证明见解析;(2 【解析】(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A , 故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知Rt ABE △≌11Rt A B E △,所以45AEB ∠=︒, 故AE AB =,12AA AB =.以D 为坐标原点,DA 的方向为x 轴正方向,||DA 为单位长,建立如图所示的空间直角坐标系D –xyz ,则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,0,0)CB =,(1,1,1)CE =-,1(0,0,2)CC =.设平面EBC 的法向量为n =(x ,y ,x ),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0,x x y z =⎧⎨-+=⎩所以可取n =(0,1,1)--.设平面1ECC 的法向量为m =(x ,y ,z ),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩m m 即20,0.z x y z =⎧⎨-+=⎩ 所以可取m =(1,1,0). 于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --的正弦值为2. 【名师点睛】本题考查了利用线面垂直的性质定理证明线线垂直以及线面垂直的判定,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.9.【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B −CG −A 的大小.【答案】(1)见解析;(2)30.【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE . (2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC . 由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH.以H 为坐标原点,HC 的方向为x 轴的正方向,建立如图所示的空间直角坐标系H –xyz ,则A (–1,1,0),C (1,0,0),G (2,0),CG =(1,0AC =(2,–1,0). 设平面ACGD 的法向量为n =(x ,y ,z ),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩n n即0,20.x x y ⎧=⎪⎨-=⎪⎩ 所以可取n =(3,6,又平面BCGE 的法向量可取为m =(0,1,0),所以cos ,||||2⋅〈〉==n m n m n m .因此二面角B –CG –A 的大小为30°.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,最后通过建系的向量解法将求二面角转化为求二面角的平面角问题,突出考查考生的空间想象能力.10.【2019年高考北京卷理数】如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =. (1)求证:CD ⊥平面PAD ; (2)求二面角F –AE –P 的余弦值; (3)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.【答案】(1)见解析;(2)(3)见解析. 【解析】(1)因为PA ⊥平面ABCD ,所以PA ⊥CD . 又因为AD ⊥CD ,所以CD ⊥平面PAD . (2)过A 作AD 的垂线交BC 于点M .因为PA ⊥平面ABCD ,所以PA ⊥AM ,PA ⊥AD .如图建立空间直角坐标系A −xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2).因为E 为PD 的中点,所以E (0,1,1). 所以(0,1,1),(2,2,2),(0,0,2)AE PC AP ==-=.所以1222224,,,,,3333333PF PC AF AP PF ⎛⎫⎛⎫==-=+= ⎪ ⎪⎝⎭⎝⎭.设平面AEF 的法向量为n =(x ,y ,z ),则0,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,2240.333y z x y z +=⎧⎪⎨++=⎪⎩ 令z =1,则1,1y x =-=-.于是=(1,1,1)--n .又因为平面PAD 的法向量为p =(1,0,0),所以cos ,||⋅〈〉==‖n p n p n p . 由题知,二面角F −AE −P(3)直线AG 在平面AEF 内. 因为点G 在PB 上,且2,(2,1,2)3PG PB PB ==--, 所以2424422,,,,,3333333PG PB AG AP PG ⎛⎫⎛⎫==--=+=- ⎪ ⎪⎝⎭⎝⎭. 由(2)知,平面AEF 的法向量=(1,1,1)--n . 所以4220333AG ⋅=-++=n . 所以直线AG 在平面AEF 内.【名师点睛】(1)由题意利用线面垂直的判定定理即可证得题中的结论;(2)建立空间直角坐标系,结合两个半平面的法向量即可求得二面角F −AE −P 的余弦值;(3)首先求得点G 的坐标,然后结合平面AEF 的法向量和直线AG 的方向向量即可判断直线是否在平面内.11.【2019年高考天津卷理数】如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,AD AB ⊥1,2AB AD AE BC ====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F --的余弦值为13,求线段CF 的长.【答案】(1)见解析;(2)49;(3)87. 【解析】依题意,可以建立以A 为原点,分别以AB AD AE ,,的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设(0)CF h h =>,则()1,2,F h .(1)依题意,(1,0,0)AB =是平面ADE 的法向量,又(0,2,)BF h =,可得0BF AB ⋅=,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE . (2)依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--.设(,,)x y z =n 为平面BDE 的法向量,则0,0,BD BE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x y x z -+=⎧⎨-+=⎩不妨令1z =,可得(2,2,1)=n .因此有4cos ,9||||CE CE CE ⋅==-n n n .所以,直线CE 与平面BDE 所成角的正弦值为49. (3)设(,,)x y z =m 为平面BDF 的法向量,则0,0,BD BF ⎧⋅=⎪⎨⋅=⎪⎩m m 即0,20,x y y hz -+=⎧⎨+=⎩不妨令1y =,可得21,1,h ⎛⎫=-⎪⎝⎭m .由题意,有||1cos ,||||3⋅〈〉===m n m n m n ,解得87h =.经检验,符合题意. 所以,线段CF 的长为87.【名师点睛】本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.12.【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .【答案】(1)见解析;(2)见解析.【解析】(1)因为D ,E 分别为BC ,AC 的中点, 所以ED ∥AB .在直三棱柱ABC−A 1B 1C 1中,AB ∥A 1B 1,所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1, 所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC−A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.13.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35. 【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC .又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形. 由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形. 由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E ,EG由于O 为A 1G 的中点,故122A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B1,0),1B,3,2F ,C (0,2,0).因此,33(,2EF =,(BC =-. 由0EF BC ⋅=得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ. 由(1)可得1=(310)=(02BC A C --,,,,,. 设平面A 1BC 的法向量为n ()x y z =,,, 由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩n n ,得00y y ⎧+=⎪⎨=⎪⎩,取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅,n n n |,因此,直线EF 与平面A 1BC 所成的角的余弦值为35. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.14.【2018年高考全国Ⅰ卷理数】如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.【答案】(1)见解析;(2.【解析】方法一:(1)由已知可得,BF⊥PF,BF⊥EF,所以BF⊥平面PEF.又BF⊂平面ABFD,所以平面PEF⊥平面ABFD.(2)在平面DEF中,过P作PH⊥EF于点H,连接DH,如图,由于EF为平面ABCD和平面PEF的交线,PH⊥EF,则PH⊥平面ABFD,故PH⊥DH.则DP与平面ABFD所成的角为PDH∠.在三棱锥P-DEF中,可以利用等体积法求PH.因为DE∥BF且PF⊥BF,所以PF⊥DE,又△PDF≌△CDF,所以∠FPD=∠FCD=90°,所以PF⊥PD,由于DE∩PD=D,则PF⊥平面PDE,故13F PDE PDEV PF S-=⋅△,因为BF∥DA且BF⊥平面PEF,所以DA⊥平面PEF,所以DE⊥EP.设正方形的边长为2a,则PD=2a,DE=a,在△PDE 中,PE =,所以22PDE S a =△,故36F PDE V a -=, 又2122DEF S a a a =⋅=△,所以232F PDE V PH a a -==,所以在△PHD 中,sin PH PDH PD ∠==,故DP 与平面ABFD 方法二:(1)由已知可得,BF ⊥PF ,BF ⊥EF , 所以BF ⊥平面PEF . 又BF ⊂平面ABFD , 所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF 的方向为y 轴正方向,||BF 为单位长,建立如图所示的空间直角坐标系H −xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE 又PF =1,EF =2,故PE ⊥PF .可得32PH EH ==.则33(0,0,0),(1,,0),(1,22H P D DP --=HP =为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则34sin ||4||||3HP DP HP DPθ⋅===.所以DP 与平面ABFD. 15.【2018年高考全国II 卷理数】如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.【答案】(1)见解析;(2)4. 【解析】(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP = 连结OB .因为2AB BC AC ==,所以ABC △为等腰直角三角形, 且OB AC ⊥,122OB AC ==. 由222OP OB PB +=知PO OB ⊥. 由,OP OB OP AC ⊥⊥知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB 的方向为x 轴正方向,建立空间直角坐标系O xyz -.C由已知得(0,0,0),(2,0,0),(0,2,0),(0,2,0),O B A C P AP -=取平面PAC 的法向量(2,0,0)OB =.设(,2,0)(02)M a a a -<≤,则(,4,0)AM a a =-. 设平面PAM 的法向量为(,,)x y z =n .由0,0AP AM ⋅=⋅=n n 得20(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩,可取,)a a =--n ,所以cos ,OB =n .由已知可得|cos ,|2OB =n .=2.解得4a =-(舍去),43a =.所以4()3=-n .又(0,2,PC =-,所以cos ,PC =n所以PC 与平面PAM 所成角的正弦值为4. 16.【2018年高考全国Ⅲ卷理数】如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.【答案】(1)见解析;(2. 【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD . 因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD , 故BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径, 所以 DM ⊥CM . 又 BCCM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD , 故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz .当三棱锥M −ABC 体积最大时,M 为CD 的中点.由题设得(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,1,1)D A B C M ,(2,1,1),(0,2,0),(2,0,0)AM AB DA =-==设(,,)x y z =n 是平面MAB 的法向量,则0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.x y z y -++=⎧⎨=⎩ 可取(1,0,2)=n .DA 是平面MCD 的法向量,因此5cos ,5||||DA DA DA ⋅==n n n ,2sin ,5DA =n , 所以面MAB 与面MCD . 17.【2018年高考江苏卷】如图,在正三棱柱ABC −A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值;(2)求直线CC 1与平面AQC 1所成角的正弦值.【答案】(1;(2.【解析】如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OCOO 为基底,建立空间直角坐标系O −xyz. 因为AB =AA 1=2,所以1110,1,0,,0,1,0,0,1,())()()2,,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以1,2)2P -, 从而131(,,2)(0,2,22),BP AC ==--,故111|||cos ,|||||5BP AC BP AC BP AC ⋅===⋅. 因此,异面直线BP 与AC 1 (2)因为Q 为BC 的中点,所以1,0)2Q , 因此33(,0)2AQ =,11(0,2,2),(0,0,2)AC CC ==.设n =(x ,y ,z )为平面AQC 1的一个法向量, 则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅=n n 即30,2220.y y z +=⎪+=⎩不妨取1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ, 则111||sin |cos |,|||CC CC CC |θ==⋅⋅==n n n 所以直线CC 1与平面AQC 1. 18.【2018年高考江苏卷】在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC . 【答案】(1)见解析;(2)见解析.【解析】(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1. 因为AB ⊄平面A 1B 1C ,A 1B 1⊂平面A 1B 1C , 所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形. 又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC , 所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .19.【2018年高考浙江卷】如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.【答案】(1)见解析;(2【解析】方法一:(1)由11112,4,2,,AB AA BB AA AB BB AB ===⊥⊥得111AB A B ==, 所以2221111A B AB AA +=.故111AB A B ⊥.由2BC =,112,1,BB CC ==11,BB BC CC BC ⊥⊥得11B C =由2,120AB BC ABC ==∠=︒得AC =由1CC AC ⊥,得1AC =,所以2221111AB B C AC +=,故111AB B C ⊥.因此1AB ⊥平面111A B C .(2)如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连结AD .由1AB ⊥平面111A B C 得平面111A B C ⊥平面1ABB , 由111C D A B ⊥得1C D ⊥平面1ABB , 所以1C AD ∠是1AC 与平面1ABB 所成的角.由111111BC A B AC ==111111cos C A B C A B ∠=∠=,所以1C D =故111sin 13C D C AD AC ∠==. 因此,直线1AC 与平面1ABB所成的角的正弦值是13. 方法二:(1)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz .由题意知各点坐标如下:111(0,(1,0,0),(0,(1,0,2),A B A B C因此11111(1,3,2),(1,3,2),(0,23),AB A B AC ==-=- 由1110AB A B ⋅=得111AB A B ⊥.由1110AB AC ⋅=得111AB AC ⊥. 所以1AB ⊥平面111A B C . (2)设直线1AC 与平面1ABB 所成的角为θ.由(1)可知11(0,23,1),(1,3,0),(0,0,2),AC AB BB ===设平面1ABB 的法向量(,,)x y z =n .由10,0,AB BB ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x z ⎧+=⎪⎨=⎪⎩可取(=n .所以111|sin |cos ,|13|||AC AC AC θ⋅===⋅n |n n |. 因此,直线1AC 与平面1ABB 所成的角的正弦值是13. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.20.【2018年高考北京卷理数】如图,在三棱柱ABC −111A B C 中,1CC ⊥平面ABC ,D,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点,AB=BC,AC =1AA =2.(1)求证:AC ⊥平面BEF ;(2)求二面角B−CD −C 1的余弦值;(3)证明:直线FG 与平面BCD 相交.【答案】(1)见解析;(2)21;(3)见解析. 【解析】(1)在三棱柱ABC -A 1B 1C 1中,∵CC 1⊥平面ABC ,∴四边形A 1ACC 1为矩形.又E ,F 分别为AC ,A 1C 1的中点,∴AC ⊥EF .∵AB =BC .∴AC ⊥BE ,∴AC ⊥平面BEF .(2)由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1.又CC 1⊥平面ABC ,∴EF ⊥平面ABC .∵BE ⊂平面ABC ,∴EF ⊥BE .如图建立空间直角坐标系E -xyz .由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1).∴=(201)=(120)CD CB ,,,,,, 设平面BCD 的法向量为()a b c =,,n , ∴00CD CB ⎧⋅=⎪⎨⋅=⎪⎩n n ,∴2020a c a b +=⎧⎨+=⎩, 令a =2,则b =-1,c =-4,∴平面BCD 的法向量(214)=--,,n , 又∵平面CDC 1的法向量为=(020)EB ,,,∴cos =||||EBEB EB ⋅<⋅>=-n n n .由图可得二面角B -CD -C 1为钝角,所以二面角B -CD -C 1的余弦值为 (3)由(2)知平面BCD 的法向量为(214)=--,,n , ∵G (0,2,1),F (0,0,2),∴=(021)GF -,,, ∴2GF ⋅=-n ,∴n 与GF 不垂直,∴GF 与平面BCD 不平行且不在平面BCD 内,∴GF 与平面BCD 相交.21.【2018年高考天津卷理数】如图,AD BC ∥且AD =2BC ,AD CD ⊥,EG AD ∥且EG =AD ,CD FG ∥且CD =2FG ,DG ABCD ⊥平面,DA =DC =DG =2.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN CDE ∥平面;(2)求二面角E BC F --的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(1)见解析;(2;(3)3. 【解析】本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.满分13分. 依题意,可以建立以D 为原点,分别以DA ,DC ,DG 的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M (0,32,1),N (1,0,2).(1)依题意DC =(0,2,0),DE =(2,0,2).设n 0=(x ,y ,z )为平面CDE 的法向量,则0000DC DE ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即20220y x z =⎧⎨+=⎩,,不妨令z=–1,可得n 0=(1,0,–1).又MN =(1,32-,1),可得00MN ⋅=n ,又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE .(2)依题意,可得BC =(–1,0,0),(122)BE =-,,,CF =(0,–1,2). 设n =(x ,y ,z )为平面BCE 的法向量,则00BC BE ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即0220x x y z -=⎧⎨-+=⎩,, 不妨令z =1,可得n =(0,1,1).设m =(x ,y ,z )为平面BCF 的法向量,则00BC CF ⎧⋅=⎪⎨⋅=⎪⎩,,m m 即020x y z -=⎧⎨-+=⎩,, 不妨令z =1,可得m =(0,2,1).因此有cos<m ,n>=||||⋅=m n m n sin<m ,n. 所以,二面角E –BC –F. (3)设线段DP 的长为h (h ∈[0,2]),则点P 的坐标为(0,0,h ),可得(12)BP h =--,,. 易知,DC =(0,2,0)为平面ADGE 的一个法向量,故 cos BP DC BP DC BP DCh ⋅<⋅>==,解得h ∈[0,2]..所以线段DP的长为3。

2022年近三年高考数学(文科)立体几何简答题汇编

2022年近三年高考数学(文科)立体几何简答题汇编

2022年近三年高考数学(文科)立体几何简答题汇编一.解答题(共28小题)(1)求三棱锥体积V P-ABC;(2)若M为BC中点,求PM与面PAC所成角大小.(1)证明:EF∥平面ABCD;(2)求该包装盒的容积(不计包装盒材料的厚度).3.如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E为AC的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求三棱锥F-ABC的体积.4.已知直三棱柱ABC-A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC1的中点,BF ⊥A1B1.(1)求三棱锥F-EBC的体积;(2)已知D为棱A1B1上的点,证明:BF⊥DE.5.如图,四棱锥P-ABCD的底面是矩形,PD⊥底面ABCD,M为BC的中点,且PB⊥AM.(1)证明:平面PAM⊥平面PBD;(2)若PD=DC=1,求四棱锥P-ABCD的体积.6.在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.7.如图,在长方体ABCD-A1B1C1D1中,点E,F分别在棱DD1,BB1上,且2DE=ED1,BF=2FB1.证明:(1)当AB=BC时,EF⊥AC;(2)点C1在平面AEF内.8.如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心.若AO=AB=6,AO ∥平面EB 1C 1F ,且∠MPN=π3,求四棱锥B-EB 1C 1F 的体积. 9.已知四棱锥P-ABCD ,底面ABCD 为正方形,边长为3,PD ⊥平面ABCD .(1)若PC=5,求四棱锥P-ABCD 的体积;(2)若直线AD 与BP 的夹角为60°,求PD 的长.10.图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的四边形ACGD 的面积.11.如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.12.如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥E-BB1C1C的体积.13.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.14.如图,在正三棱锥P-ABC中,PA=PB=PC=2,AB=BC=AC=√3.(1)若PB的中点为M,BC的中点为N,求AC与MN的夹角;(2)求P-ABC的体积.15.如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.16.在平行六面体ABCD-A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.17.已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图,求异面直线PM与OB 所成的角的大小.18.如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.19.如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F 分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.20.如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP=DQ=23DA ,求三棱锥Q-ABP 的体积. 21.如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB=BC=12AD ,∠BAD=∠ABC=90°.(1)证明:直线BC ∥平面PAD ;(2)若△PCD 面积为2√7,求四棱锥P-ABCD 的体积.22.如图,在三棱锥A-BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E 、F (E 与A 、D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ;(2)AD ⊥AC .23.如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E 为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E-BCD的体积.24.如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P-ABCD的体积为8,求该四棱锥的侧面积.325.如图四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(Ⅰ)证明:A1O∥平面B1CD1;(Ⅱ)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.(1)求四棱锥A1-ABCD的体积;(2)求异面直线A1C与DD1所成角的大小.28.将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,其中B1与C在平面AA1O1O的同侧.(1)求圆柱的体积与侧面积;(2)求异面直线O1B1与OC所成的角的大小.。

全国通用2020_2022三年高考数学真题分项汇编专题06立体几何解答题文

全国通用2020_2022三年高考数学真题分项汇编专题06立体几何解答题文

06 立体几何(解答题)(文科专用)1.【2022年全国甲卷】小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD是边长为8(单位:cm)的正方形,△EAB,△FBC,△GCD,△HDA均为正三角形,且它们所在的平面都与平面ABCD垂直.(1)证明:EF//平面ABCD;(2)求该包装盒的容积(不计包装盒材料的厚度).【答案】(1)证明见解析;√3.(2)6403【解析】【分析】(1)分别取AB,BC的中点M,N,连接MN,由平面知识可知EM⊥AB,FN⊥BC,EM=FN,依题从而可证EM⊥平面ABCD,FN⊥平面ABCD,根据线面垂直的性质定理可知EM//FN,即可知四边形EMNF为平行四边形,于是EF//MN,最后根据线面平行的判定定理即可证出;(2)再分别取AD,DC中点K,L,由(1)知,该几何体的体积等于长方体KMNL−EFGH的体积加上四棱锥B−MNFE体积的4倍,即可解出.(1)如图所示:,分别取AB,BC 的中点M,N ,连接MN ,因为△EAB,△FBC 为全等的正三角形,所以EM ⊥AB,FN ⊥BC ,EM =FN ,又平面EAB ⊥平面ABCD ,平面EAB ∩平面ABCD =AB ,EM ⊂平面EAB ,所以EM ⊥平面ABCD ,同理可得FN ⊥平面ABCD ,根据线面垂直的性质定理可知EM//FN ,而EM =FN ,所以四边形EMNF 为平行四边形,所以EF//MN ,又EF ⊄平面ABCD ,MN ⊂平面ABCD ,所以EF//平面ABCD . (2)如图所示:,分别取AD,DC 中点K,L ,由(1)知,EF//MN 且EF =MN ,同理有,HE//KM,HE =KM ,HG//KL,HG =KL ,GF//LN,GF =LN ,由平面知识可知,BD ⊥MN ,MN ⊥MK ,KM =MN =NL =LK ,所以该几何体的体积等于长方体KMNL −EFGH 的体积加上四棱锥B −MNFE 体积的4倍.因为MN =NL =LK =KM =4√2,EM =8sin60∘=4√3,点B 到平面MNFE 的距离即为点B 到直线MN 的距离d ,d =2√2,所以该几何体的体积V =(4√2)2×4√3+4×13×4√2×4√3×2√2=128√3+2563√3=6403√3.2.【2022年全国乙卷】如图,四面体ABCD 中,AD ⊥CD,AD =CD,∠ADB =∠BDC ,E 为AC的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求三棱锥F−ABC 的体积.【答案】(1)证明详见解析(2)√34【解析】【分析】(1)通过证明AC⊥平面BED来证得平面BED⊥平面ACD.(2)首先判断出三角形AFC的面积最小时F点的位置,然后求得F到平面ABC的距离,从而求得三棱锥F−ABC的体积.(1)由于AD=CD,E是AC的中点,所以AC⊥DE.由于{AD=CD BD=BD∠ADB=∠CDB,所以△ADB≅△CDB,所以AB=CB,故AC⊥BD,由于DE∩BD=D,DE,BD⊂平面BED,所以AC⊥平面BED,由于AC⊂平面ACD,所以平面BED⊥平面ACD.(2)依题意AB=BD=BC=2,∠ACB=60°,三角形ABC是等边三角形,所以AC=2,AE=CE=1,BE=√3,由于AD=CD,AD⊥CD,所以三角形ACD是等腰直角三角形,所以DE=1. DE2+BE2=BD2,所以DE⊥BE,由于AC∩BE=E,AC,BE⊂平面ABC,所以DE⊥平面ABC.由于△ADB≅△CDB,所以∠FBA=∠FBC,由于{BF =BF∠FBA =∠FBC AB =CB ,所以△FBA ≅△FBC ,所以AF =CF ,所以EF ⊥AC ,由于S △AFC =12⋅AC ⋅EF ,所以当EF 最短时,三角形AFC 的面积最小值. 过E 作EF ⊥BD ,垂足为F ,在Rt △BED 中,12⋅BE ⋅DE =12⋅BD ⋅EF ,解得EF =√32,所以DF =√12−(√32)2=12,BF =2−DF =32,所以BF BD =34.过F 作FH ⊥BE ,垂足为H ,则FH//DE ,所以FH ⊥平面ABC ,且FHDE =BFBD =34, 所以FH =34,所以V F−ABC =13⋅S △ABC ⋅FH =13×12×2×√3×34=√34.3.【2021年甲卷文科】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,11BF A B ⊥.(1)求三棱锥F EBC -的体积;(2)已知D 为棱11A B 上的点,证明:BF DE ⊥. 【答案】(1)13;(2)证明见解析.【解析】 【分析】(1)先证明ABC 为等腰直角三角形,然后利用体积公式可得三棱锥的体积;(2)将所给的几何体进行补形,从而把线线垂直的问题转化为证明线面垂直,然后再由线面垂直可得题中的结论. 【详解】(1)由于11BF A B ⊥,11//AB A B ,所以AB BF ⊥, 又AB ⊥BB 1,1BB BF B ⋂=,故AB ⊥平面11BCC B , 则AB BC ⊥,ABC 为等腰直角三角形, 111221222BCE ABC S S ⎛⎫==⨯⨯⨯= ⎪⎝⎭△△,11111333F EBC BCE V S CF -=⨯⨯=⨯⨯=△. (2)由(1)的结论可将几何体补形为一个棱长为2的正方体1111ABCM A B C M -,如图所示,取棱,AM BC 的中点,H G ,连结11,,A H HG GB ,正方形11BCC B 中,,G F 为中点,则1BF B G ⊥, 又111111,BF A B A B B G B ⊥=,故BF ⊥平面11A B GH ,而DE ⊂平面11A B GH , 从而BF ⊥DE . 【点睛】求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.对于空间中垂直关系(线线、线面、面面)的证明经常进行等价转化.4.【2021年乙卷文科】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积.【答案】(1)证明见解析;(2 【解析】 【分析】(1)由PD ⊥底面ABCD 可得PD AM ⊥,又PB AM ⊥,由线面垂直的判定定理可得AM ⊥平面PBD ,再根据面面垂直的判定定理即可证出平面PAM ⊥平面PBD ;(2)由(1)可知,AM BD ⊥,由平面知识可知,~DAB ABM ,由相似比可求出AD ,再根据四棱锥P ABCD -的体积公式即可求出. 【详解】(1)因为PD ⊥底面ABCD ,AM ⊂平面ABCD , 所以PD AM ⊥, 又PB AM ⊥,PBPD P =,所以AM ⊥平面PBD , 而AM ⊂平面PAM , 所以平面PAM ⊥平面PBD . (2)[方法一]:相似三角形法 由(1)可知AM BD ⊥. 于是∽ABD BMA ,故=AD ABAB BM.因为1,,12===BM BC AD BC AB ,所以2112BC =,即BC =故四棱锥P ABCD -的体积13=⋅⋅=V AB BC PD . [方法二]:平面直角坐标系垂直垂直法由(2)知⊥AM DB ,所以1⋅=-AM BD k k . 建立如图所示的平面直角坐标系,设2(0)BC a a =>.因为1DC =,所以(0,0)A ,(1,0)B ,(0,2)D a ,()1,M a . 从而2020(2)211001--⋅=⨯=⨯-=-=---AM BD a a k k a a a .所以2a =,即DA =. [方法三]【最优解】:空间直角坐标系法 建立如图所示的空间直角坐标系D xyz -,设||=DA t ,所以(0,0,0)D ,(0,1,0)C ,(0,0,1)P ,(,0,0)A t ,(,1,0)B t . 所以,1,02t M ⎛⎫ ⎪⎝⎭,(,1,1)PB t =-,,1,02t AM ⎛⎫=- ⎪⎝⎭.所以2110(1)1022t t PB AM t ⎛⎫⋅=⋅-+⨯+⨯-=-+= ⎪⎝⎭.所以t ,即||=DA . [方法四]:空间向量法由PB AM ⊥,得0PB AM ⋅=. 所以()0++⋅=PD DA AB AM . 即0⋅+⋅+⋅=PD AM DA AM AB AM .又PD ⊥底面ABCD ,AM 在平面ABCD 内, 因此PD AM ⊥,所以0⋅=PD AM . 所以0⋅+⋅=DA AM AB AM ,由于四边形ABCD 是矩形,根据数量积的几何意义,得221||||02-+=DA AB ,即21||102-+=BC .所以||2BC =,即BC =. 【整体点评】(2)方法一利用相似三角形求出求出矩形的另一个边长,从而求得该四棱锥的体积; 方法二构建平面直角坐标系,利用直线垂直的条件得到矩形的另一个边长,从而求得该四棱锥的体积;方法三直接利用空间直角坐标系和空间向量的垂直的坐标运算求得矩形的另一个边长,为最常用的通性通法,为最优解;方法四利用空间向量转化求得矩形的另一边长.5.【2020年新课标1卷文科】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面PAB ⊥平面PAC ;(2)设DO ,求三棱锥P −ABC 的体积.【答案】(1)证明见解析;(2【解析】 【分析】(1)根据已知可得PA PB PC ==,进而有PAC △≌PBC ,可得90APC BPC ∠=∠=,即PB PC ⊥,从而证得PC ⊥平面PAB ,即可证得结论;(2)将已知条件转化为母线l 和底面半径r 的关系,进而求出底面半径,由正弦定理,求出正三角形ABC 边长,在等腰直角三角形APC 中求出AP ,在Rt APO 中,求出PO ,即可求出结论.【详解】(1)连接,,OA OB OC ,D 为圆锥顶点,O 为底面圆心,OD ∴⊥平面ABC ,P 在DO 上,,OA OB OC PA PB PC ==∴==,ABC 是圆内接正三角形,AC BC ∴=,PAC △≌PBC ,90APC BPC ∴∠=∠=︒,即,PB PC PA PC ⊥⊥,,PA PB P PC =∴⊥平面,PAB PC ⊂平面PAC ,∴平面PAB ⊥平面PAC ;(2)设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为,rl rl π==2222OD l r =-=,解得1,r l ==2sin 603AC r ==在等腰直角三角形APC 中,AP ==在Rt PAO 中,PO ===∴三棱锥P ABC -的体积为11333P ABC ABC V PO S -=⋅==△【点睛】本题考查空间线、面位置关系,证明平面与平面垂直,求锥体的体积,注意空间垂直间的相互转化,考查逻辑推理、直观想象、数学计算能力,属于中档题.6.【2020年新课标2卷文科】如图,已知三棱柱ABC –A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B –EB 1C 1F 的体积.【答案】(1)证明见解析;(2)24. 【解析】 【分析】(1)由,M N 分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1MN AA //,要证平面11EB C F ⊥平面1A AMN ,只需证明EF ⊥平面1A AMN 即可;(2)根据已知条件求得11EB C F S 四边形和M 到PN 的距离,根据椎体体积公式,即可求得11B EB C F V -. 【详解】 (1),M N 分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB 1//MN AA ∴在等边ABC 中,M 为BC 中点,则BC AM ⊥ 又侧面11BB C C 为矩形, 1BC BB ∴⊥1//MN BBMN BC ⊥由MN AM M ⋂=,,MN AM ⊂平面1A AMN ∴BC ⊥平面1A AMN又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC又11B C ⊂平面11EB C F ,且平面11EB C F ⋂平面ABC EF =11//B C EF ∴//EF BC ∴又BC ⊥平面1A AMN∴EF ⊥平面1A AMNEF ⊂平面11EB C F∴平面11EB C F ⊥平面1A AMN(2)过M 作PN 垂线,交点为H ,画出图形,如图//AO 平面11EB C FAO ⊂平面1A AMN ,平面1A AMN ⋂平面11EB C F NP =//AO NP ∴ 又//NO AP∴6AO NP ==O 为111A B C △的中心.∴1111sin 606sin 6033ON AC =︒=⨯⨯︒=故:ON AP ==3AM AP ==平面11EB C F ⊥平面1A AMN ,平面11EB C F ⋂平面1A AMN NP =,MH ⊂平面1A AMN∴MH ⊥平面11EB C F 又在等边ABC 中EFAPBC AM =即2AP BCEF AM ⋅===由(1)知,四边形11EB C F 为梯形∴四边形11EB C F 的面积为:111126=62422EB C F EF B C S NP ++=⋅⨯=四边形 111113B EBC F EB C F V S h -∴=⋅四边形,h 为M 到PN 的距离sin 603MH =︒=, ∴1243243V =⨯⨯=. 【点睛】本题主要考查了证明线线平行和面面垂直,及其求四棱锥的体积,解题关键是掌握面面垂直转为求证线面垂直的证法和棱锥的体积公式,考查了分析能力和空间想象能力,属于中档题.7.【2020年新课标3卷文科】如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥;(2)点1C 在平面AEF 内.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据正方形性质得AC BD ⊥,根据长方体性质得1AC BB ⊥,进而可证AC ⊥平面11BB D D ,即得结果;(2)只需证明1//EC AF 即可,在1CC 上取点M 使得12CM MC =,再通过平行四边形性质进行证明即可.【详解】(1)因为长方体1111ABCD A B C D -,所以1BB ⊥平面ABCD ∴1AC BB ⊥,因为长方体1111,ABCD A B C D AB BC -=,所以四边形ABCD 为正方形AC BD ∴⊥ 因为11,BB BD B BB BD =⊂、平面11BB D D ,因此AC ⊥平面11BB D D ,因为EF ⊂平面11BB D D ,所以AC EF ⊥;(2)在1CC 上取点M 使得12CM MC =,连,DM MF ,因为111112,//,=D E ED DD CC DD CC =,所以11,//,ED MC ED MC =所以四边形1DMC E 为平行四边形,1//DM EC ∴因为//,=,MF DA MF DA 所以M F A D 、、、四点共面,所以四边形MFAD 为平行四边形, 1//,//DM AF EC AF ∴∴,所以1E C A F 、、、四点共面,因此1C 在平面AEF 内【点睛】本题考查线面垂直判定定理、线线平行判定,考查基本分析论证能力,属中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题06立体几何(解答题)(文科专用)【2022年全国甲卷】1.小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD 是边长为8(单位:cm )的正方形,,,,EAB FBC GCD HDA 均为正三角形,且它们所在的平面都与平面ABCD 垂直.(1)证明://EF 平面ABCD ;(2)求该包装盒的容积(不计包装盒材料的厚度).【答案】(1)证明见解析;【解析】【分析】(1)分别取,AB BC 的中点,M N ,连接MN ,由平面知识可知,EM AB FN BC ⊥⊥,EM FN =,依题从而可证EM ⊥平面ABCD ,FN ⊥平面ABCD ,根据线面垂直的性质定理可知//EM FN ,即可知四边形EMNF 为平行四边形,于是//EF MN ,最后根据线面平行的判定定理即可证出;(2)再分别取,AD DC 中点,K L ,由(1)知,该几何体的体积等于长方体KMNL EFGH -的体积加上四棱锥B MNFE -体积的4倍,即可解出.(1)如图所示:,分别取,AB BC 的中点,M N ,连接MN ,因为,EAB FBC 为全等的正三角形,所以,EM AB FN BC ⊥⊥,EM FN =,又平面EAB ⊥平面ABCD ,平面EAB ⋂平面ABCD AB =,EM ⊂平面EAB ,所以EM ⊥平面ABCD ,同理可得FN ⊥平面ABCD ,根据线面垂直的性质定理可知//EM FN ,而EM FN =,所以四边形EMNF 为平行四边形,所以//EF MN ,又EF ⊄平面ABCD ,MN ⊂平面ABCD ,所以//EF 平面ABCD .(2)方法一:(分割法一)如图所示:,分别取,AD DC 中点,K L ,由(1)知,//EF MN 且EF MN =,同理有,//,HE KM HE KM =,//,HG KL HG KL =,//,GF LN GF LN =,由平面知识可知,BD MN ⊥,MN MK ⊥,KM MN NL LK ===,所以该几何体的体积等于长方体KMNL EFGH -的体积加上四棱锥B MNFE -体积的4倍.因为MN NL LK KM ====8sin 6043EM ==点B 到平面MNFE 的距离即为点B到直线MN 的距离d ,d =(2143V =⨯⨯⨯== 方法二:(分割法二)如图所示:连接AC,BD,交于O ,连接OE,OF,OG,OH.则该几何体的体积等于四棱锥O -EFGH 的体积加上三棱锥A -OEH 的4倍,再加上三棱锥E -OAB 的四倍.容易求得,OE=OF=OG=OH=8,取EH 的中点P ,连接AP,OP.则EH 垂直平面APO.由图可知,三角形APO,四棱锥O -EFGH 与三棱锥E -OAB 的高均为EM 的长.所以该几何体的体积(2111114433232V =⋅+⋅⋅⋅⋅【2022年全国乙卷】2.如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积.【答案】(1)证明详见解析【解析】【分析】(1)通过证明AC ⊥平面BED 来证得平面BED ⊥平面ACD .(2)首先判断出三角形AFC 的面积最小时F 点的位置,然后求得F 到平面ABC 的距离,从而求得三棱锥F ABC -的体积.(1)由于AD CD =,E 是AC 的中点,所以AC DE ⊥.由于AD CD BD BD ADB CDB =⎧⎪=⎨⎪∠=∠⎩,所以ADB CDB ≅△△,所以AB CB =,故AC BD ⊥,由于DE BD D ⋂=,,DE BD平面BED ,所以AC ⊥平面BED ,由于AC ⊂平面ACD ,所以平面BED ⊥平面ACD .(2)解法1:判别几何关系依题意2AB BD BC ===,60ACB ∠=︒,三角形ABC 是等边三角形,所以2,1,AC AE CE BE ====由于,AD CD AD CD =⊥,所以三角形ACD 是等腰直角三角形,所以1DE =. 222DE BE BD +=,所以DE BE ⊥,由于AC BE E ⋂=,,AC BE ⊂平面ABC ,所以DE ⊥平面ABC .由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BF FBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅,所以AF CF =,所以EF AC ⊥, 由于12AFC S AC EF =⋅⋅,所以当EF 最短时,三角形AFC 的面积最小 过E 作EF BD ⊥,垂足为F ,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得EF =所以13,222DF BF DF ===-=,所以34BF BD = 过F 作FH BE ⊥,垂足为H ,则//FH DE ,所以FH ⊥平面ABC ,且34FH BF DE BD ==, 所以34FH =, 所以111323324F ABC ABC V S FH -=⋅⋅=⨯⨯=解法2:等体积转换AB BC =,60ACB ∠=︒,2AB =ABC ∴∆是边长为2的等边三角形,BE ∴=连接EFADB CDB AF CFEF ACBED EF BD ∆≅∆∴=∴⊥∴∆⊥∆在中,当时,AFC 面积最小222,,2,,BED EF AD CD AD CD AC E AC DE BE BD BE EDBE DE EF BD BD ⊥==∴+=∴⊥⋅⊥∆=为中点DE=1若在中,32113222BEF BF S BF EF ∆∴=⋅=⋅11233F ABC A BEF C BEF BEF V V V S AC ---∆∴=+=⋅=【2021年甲卷文科】3.已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,11BF A B ⊥.(1)求三棱锥F EBC -的体积;(2)已知D 为棱11A B 上的点,证明:BF DE ⊥.【答案】(1)13;(2)证明见解析. 【解析】【分析】(1)先证明ABC 为等腰直角三角形,然后利用体积公式可得三棱锥的体积;(2)将所给的几何体进行补形,从而把线线垂直的问题转化为证明线面垂直,然后再由线面垂直可得题中的结论.【详解】(1)由于11BF A B ⊥,11//AB A B ,所以AB BF ⊥,又AB ⊥BB 1,1BB BF B ⋂=,故AB ⊥平面11BCC B ,则AB BC ⊥,ABC 为等腰直角三角形,111221222BCE ABC S S ⎛⎫==⨯⨯⨯= ⎪⎝⎭△△,11111333F EBC BCE V S CF -=⨯⨯=⨯⨯=△.(2)由(1)的结论可将几何体补形为一个棱长为2的正方体1111ABCM A B C M -,如图所示,取棱,AM BC 的中点,H G ,连结11,,A H HG GB ,正方形11BCC B 中,,G F 为中点,则1BF B G ⊥,又111111,BF A B A B B G B ⊥=,故BF ⊥平面11A B GH ,而DE ⊂平面11A B GH ,从而BF ⊥DE .【点睛】求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.对于空间中垂直关系(线线、线面、面面)的证明经常进行等价转化.【2021年乙卷文科】4.如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积.【答案】(1)证明见解析;(2. 【解析】【分析】 (1)由PD ⊥底面ABCD 可得PD AM ⊥,又PB AM ⊥,由线面垂直的判定定理可得AM ⊥平面PBD ,再根据面面垂直的判定定理即可证出平面PAM ⊥平面PBD ;(2)由(1)可知,AM BD ⊥,由平面知识可知,~DAB ABM ,由相似比可求出AD ,再根据四棱锥P ABCD -的体积公式即可求出.【详解】(1)因为PD ⊥底面ABCD ,AM ⊂平面ABCD ,所以PD AM ⊥,又PB AM ⊥,PB PD P =,所以AM ⊥平面PBD ,而AM ⊂平面PAM ,所以平面PAM ⊥平面PBD .(2)[方法一]:相似三角形法由(1)可知AM BD ⊥. 于是∽ABD BMA ,故=AD AB AB BM .因为1,,12===BM BC AD BC AB ,所以2112BC =,即BC =故四棱锥P ABCD -的体积13=⋅⋅=V AB BC PD . [方法二]:平面直角坐标系垂直垂直法由(2)知⊥AM DB ,所以1⋅=-AM BD k k .建立如图所示的平面直角坐标系,设2(0)BC a a =>.因为1DC =,所以(0,0)A ,(1,0)B ,(0,2)D a ,()1,M a . 从而2020(2)211001--⋅=⨯=⨯-=-=---AM BD a a k k a a a .所以a =DA =. [方法三]【最优解】:空间直角坐标系法建立如图所示的空间直角坐标系D xyz -,设||=DA t ,所以(0,0,0)D ,(0,1,0)C ,(0,0,1)P ,(,0,0)A t ,(,1,0)B t . 所以,1,02t M ⎛⎫ ⎪⎝⎭,(,1,1)PB t =-,,1,02t AM ⎛⎫=- ⎪⎝⎭. 所以2110(1)1022t t PB AM t ⎛⎫⋅=⋅-+⨯+⨯-=-+= ⎪⎝⎭.所以t =,即||=DA .[方法四]:空间向量法由PB AM ⊥,得0PB AM ⋅=.所以()0++⋅=PD DA AB AM .即0⋅+⋅+⋅=PD AM DA AM AB AM .又PD ⊥底面ABCD ,AM 在平面ABCD 内,因此PD AM ⊥,所以0⋅=PD AM .所以0⋅+⋅=DA AM AB AM ,由于四边形ABCD 是矩形,根据数量积的几何意义, 得221||||02-+=DA AB ,即21||102-+=BC .所以||2BC =BC .【整体点评】(2)方法一利用相似三角形求出求出矩形的另一个边长,从而求得该四棱锥的体积;方法二构建平面直角坐标系,利用直线垂直的条件得到矩形的另一个边长,从而求得该四棱锥的体积;方法三直接利用空间直角坐标系和空间向量的垂直的坐标运算求得矩形的另一个边长,为最常用的通性通法,为最优解;方法四利用空间向量转化求得矩形的另一边长.【2020年新课标1卷文科】5.如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC 是底面的内接正三角形,P 为DO 上一点,⊥APC =90°.(1)证明:平面P AB ⊥平面P AC ;(2)设DO ,求三棱锥P −ABC 的体积.【答案】(1)证明见解析;(2. 【解析】【分析】(1)根据已知可得PA PB PC ==,进而有PAC △⊥PBC ,可得90APC BPC ∠=∠=,即PB PC ⊥,从而证得PC ⊥平面PAB ,即可证得结论; (2)将已知条件转化为母线l 和底面半径r 的关系,进而求出底面半径,由正弦定理,求出正三角形ABC 边长,在等腰直角三角形APC 中求出AP ,在Rt APO 中,求出PO ,即可求出结论.【详解】(1)连接,,OA OB OC ,D 为圆锥顶点,O 为底面圆心,OD ∴⊥平面ABC , P 在DO 上,,OA OB OC PA PB PC ==∴==, ABC 是圆内接正三角形,AC BC ∴=,PAC △⊥PBC ,90APC BPC ∴∠=∠=︒,即,PB PC PA PC ⊥⊥,,PA PB P PC =∴⊥平面,PAB PC ⊂平面PAC ,∴平面PAB ⊥平面PAC ;(2)设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为,rl rl π==2222OD l r =-=,解得1,r l ==2sin 603AC r ==在等腰直角三角形APC 中,AP AC ==在Rt PAO 中,PO ==∴三棱锥P ABC -的体积为11333P ABC ABC V PO S -=⋅==△【点睛】本题考查空间线、面位置关系,证明平面与平面垂直,求锥体的体积,注意空间垂直间的相互转化,考查逻辑推理、直观想象、数学计算能力,属于中档题.【2020年新课标2卷文科】6.如图,已知三棱柱ABC –A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为⊥A 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且⊥MPN =π3,求四棱锥B –EB 1C 1F 的体积.【答案】(1)证明见解析;(2)24.【解析】【分析】(1)由,M N 分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1MN AA //,要证平面11EB C F ⊥平面1A AMN ,只需证明EF ⊥平面1A AMN 即可;(2)根据已知条件求得11EB C F S 四边形和M 到PN 的距离,根据椎体体积公式,即可求得11B EB C F V -.【详解】(1),M N 分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB1//MN AA ∴在等边ABC 中,M 为BC 中点,则BC AM ⊥ 又侧面11BB C C 为矩形,1BC BB ∴⊥1//MN BBMN BC ⊥由MN AM M ⋂=,,MN AM ⊂平面1A AMN∴BC ⊥平面1A AMN 又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC 又11B C ⊂平面11EB C F ,且平面11EB C F ⋂平面ABC EF =11//B C EF ∴//EF BC ∴又BC ⊥平面1A AMN∴EF ⊥平面1A AMNEF ⊂平面11EB C F∴平面11EB C F ⊥平面1A AMN(2)过M 作PN 垂线,交点为H ,画出图形,如图//AO 平面11EB C FAO ⊂平面1A AMN ,平面1A AMN ⋂平面11EB C F NP =//AO NP ∴ 又//NO AP∴6AO NP ==O 为111A B C △的中心.∴1111sin 606sin 6033ON AC =︒=⨯⨯︒=故:ON AP ==3AM AP ==平面11EB C F ⊥平面1A AMN ,平面11EB C F ⋂平面1A AMN NP =,MH ⊂平面1A AMN∴MH ⊥平面11EB C F 又在等边ABC 中EF AP BC AM=即2AP BC EF AM ⋅=== 由(1)知,四边形11EB C F 为梯形∴四边形11EB C F 的面积为:111126=62422EB C F EF B C S NP ++=⋅⨯=四边形 111113B EBC F EB C F V S h -∴=⋅四边形,h 为M 到PN 的距离sin 603MH =︒=, ∴1243243V =⨯⨯=. 【点睛】本题主要考查了证明线线平行和面面垂直,及其求四棱锥的体积,解题关键是掌握面面垂直转为求证线面垂直的证法和棱锥的体积公式,考查了分析能力和空间想象能力,属于中档题.【2020年新课标3卷文科】7.如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥;(2)点1C 在平面AEF 内.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据正方形性质得AC BD ⊥,根据长方体性质得1AC BB ⊥,进而可证AC ⊥平面11BB D D ,即得结果;(2)只需证明1//EC AF 即可,在1CC 上取点M 使得12CM MC =,再通过平行四边形性质进行证明即可.【详解】(1)因为长方体1111ABCD A B C D -,所以1BB ⊥平面ABCD ∴1AC BB ⊥,因为长方体1111,ABCD A B C D AB BC -=,所以四边形ABCD 为正方形AC BD ∴⊥ 因为11,BB BD B BB BD =⊂、平面11BB D D ,因此AC ⊥平面11BB D D ,因为EF ⊂平面11BB D D ,所以AC EF ⊥;(2)在1CC 上取点M 使得12CM MC =,连,DM MF ,因为111112,//,=D E ED DD CC DD CC =,所以11,//,ED MC ED MC =所以四边形1DMC E 为平行四边形,1//DM EC ∴因为//,=,MF DA MF DA 所以M F A D 、、、四点共面,所以四边形MFAD 为平行四边形, 1//,//DM AF EC AF ∴∴,所以1E C A F 、、、四点共面,因此1C在平面AEF内【点睛】本题考查线面垂直判定定理、线线平行判定,考查基本分析论证能力,属中档题.。

相关文档
最新文档