含参数的不等式组解法
含参数的一元二次不等式的解法教学设计(邓慧明)

含参数的一元二次不等式的解法教学设计授课班级:高一(3)班授课教师:邓慧明一、设计思路:1、教学内容分析本节课选自《普通高中课程标准实验教科书·数学(5)》(北师大版)第三章第2节第三课时。
从教材中的地位与作用来看,一元二次不等式在陕西高考数学考试大纲中要求:通过函数图像了解一元二次不等式与相应二次函数、一元二次方程的联系,并会解一元二次不等式。
二次型不等式是联系不等式、函数、方程、几何、三角等知识的桥梁和纽带,在高考中常常作为考查学生的综合应用知识的能力出现。
含参数的一元二次不等式的解法是一元二次不等式的重点内容之一,而且在解含参数的一元二次不等式的过程中所渗透的类比、化归、分类讨论、整体变换和方程思想等思想方法,都是学生今后学习和工作中必备的数学素养。
2、学生学习情况分析学生已经学习过系数为常数的一元二次不等式的解法,对解法的本质有了一定的了解,把系数变为参数后怎么解?通过对比、点拨让学生去发现含参数的一元二次不等式的解法与系数为常数的解法本质是相同的;通过教师设置的问题链(即变式)进一步感受参数对解决问题的影响;通过自主探究、合作交流,明确分类的原因以鼓励学生在学习过程中养成独立思考、积极探究的习惯;通过变式过程让学生明白变与不变的辩证关系,激发学生的数学学习兴趣,发展他们的创新意识。
3、设计指导思想与理念《数学课程标准》指出,学生的数学学习活动不应只限于接受、记忆模仿和练习,高中数学课程还应倡导自主探索、动手实践、合作交流、阅读自学等学习数学的方式。
本节课将在教师引导下,使用自主探究、合作交流等方式,充分发挥学生学习的主动性,为学生形成积极主动地、多样的学习方式进一步创造有利的条件,以激发学生的数学学习兴趣,鼓励学生在学习过程中,养成独立思考、积极探索的习惯。
二、教学目标:1.知识与技能掌握一元二次不等式的解法,在此基础上理解含有参数的一元二次不等式的解法.2.过程与方法通过体验解题的过程,培养数形结合的能力,分类讨论、转化的能力,综合分析、解决问题的能力;提高学生的逻辑分析能力.3.情感态度价值观通过分类讨论的过程激发学习数学的热情,培养学生思维的严密性.三、教学重、难点:教学重点:含有参数的一元二次不等式的解法.教学难点:分类讨论标准的划分.(“分类讨论”是高中数学中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。
含参不等式

含参不等式知识互联网题型一:不等式(组)的基本解法典题精练【例1】 ⑴解不等式31423x x x +--+≤.⑵解不等式组12(1)532122x x x --⎧⎪⎨-<+⎪⎩≤,并在数轴上表示出解集⑶求不等式组2(2)43251x x x x --⎧⎨--⎩≤<的整数解⑷解不等式组32215x x -<-<⑸解不等式组253473x x -<⎧⎪-⎨>⎪⎩(2012年朝阳一模)题型二:含参数的不等式(组)思路导航对于含参不等式,未知数的系数含有字母需要分类讨论:如不等式ax b <,例题精讲【引例】⑴关于x 的一次不等式组x ax b >⎧⎨<⎩无解集,则a ,b 的大小关系是 .⑵关于x 的一次不等式组x ax b <⎧⎨<⎩的解集是x b <,则a ,b 的大小关系是 .⑶关于x 的一次不等式组x ax b >⎧⎨<⎩的解集是a x b <<,则a ,b 的大小关系是 .⑷关于x 的一次不等式组x ax b ⎧⎨⎩≥≤的解集是a x b ≤≤,则a ,b 的大小关系是 .典题精练【例2】 解关于x 的不等式:⑴+2a x b > ⑵13kx +>⑶132kx x +>- ⑷36mx nx +<--⑸()212m x +< ⑹()25n x --<【例3】 ⑴不等式()123x m m ->-的解集与2x >的解集相同,则m 的值是 .⑵关于x 的不等式2x a -≤-1的解集如图所示,则a 的值为 .⑶ 关于x 的不等式5ax >的解集为52x <-,则参数a 的值 .⑷ ①若不等式组3x x a >⎧⎨>⎩的解集是x a >,则a 的取值范围是 .②若不等式组3x x a >⎧⎨⎩≥的解集是x a ≥,则a 的取值范围是 .A .3a ≤B .3a =C .3a >D .3a ≥(北京二中期中考试)⑸已知关于x 的不等式组232x a x a +⎧⎨-⎩≥≤无解,则a 的取值范围是 .⑹已知关于x 的不等式组>053x a x -⎧⎨-⎩≥无解,则a 的取值范围是 .【例4】 ⑴ 已知关于x 的不等式组0521≥x a x -⎧⎨->⎩只有四个整数解,则实数a 的取值范围是 .⑵ 如果关于x 的不等式50x m -≤的正整数解只有4个,那么m 的取值范围是( ) A .2025m <≤ B .2025m <≤ C .25m < D .20m ≥(北京五中期中考试)题型三:复杂的不等式(组)思路导航对于复杂的不等式可采用整体思想,例如,此时不必去括号可直接把2x +看成一个整体去解. 典题精练 解下列不等式:【例5】⑴ >2x ⑵ 3x ≤ ⑶ 14≤x -【例6】 解不等式⑴123≤≤x + ⑵235≥x x -++真题赏析【例7】 已知2310a x -+=,32160b x --=,且4a b <≤,求x 的取值范围.复习巩固题型一 不等式(组)的基本解法 巩固练习【练习1】 不等式组331482x x x +>⎧⎨--⎩≤的最小整数解是( )A .0B .1C .2D .-1题型二 含参数的一元一次不等式(组) 巩固练习【练习2】 、a b 为参数,解不等式153bax x -<-+【练习3】⑴若不等式(2)2a x a-<-的解集在数轴上表示如图所示,则a的取值范围是.⑵若不等式组213xx a-<⎧⎨<⎩的解集是2x<,则a的取值范围是.⑶如果关于x的不等式组230≥≤xx m-⎧⎨⎩无解,则m的取值范围是.【练习4】⑴关于x的不等式组1532223xxxx a+⎧>-⎪⎪⎨+⎪<+⎪⎩只有4个整数解,则a的取值范围是().A.1453a--≤≤ B.1453a-<-≤ C.145<3a--≤D.1453a-<<-⑵已知关于x的不等式组321≥x ax-⎧⎨->-⎩的整数解有5个,则a的取值范围是 .题型三复杂的不等式(组)巩固练习【练习5】解下列不等式:135x<-<。
一元二次不等式的解法含参不等式恒成立问题及根的分布

范围是
.
第7页/共27页
题型与解法
(四)一元二次方程根的分布问题
例3 分别求使方程x2-mx-m+3=0的两根满足下列条
件的m值的集合:
(1)两根都大于0;
x=m/2
(2)一个根大于0,另一个根小于0;
(3)两根都小于1.
x1
x2
解:令f(x)=x2-mx-m+3且图像与x轴相交
则△=m2-4(-m+3)=(m+6)(m-2)≥0
.
3.已知关于 x 的方程 x2 (m 2)x 1 0 无正根,
求 m 的取值范围.
第16页/共27页
题型与解法
(三)逆向问题
例2.已知不等式 ax2 bx 2 0 的解集为 ( 1 , 1), 求a-b 的值.
23
[思路分析] 由不等式 ax2 bx 2 0 对应的方程 ax2 bx 2 0 的两根为 1 , 1 , 可利用二次方程
两个根都在(k1 , k2 )内
x1<k1 < k2 <x2
y
y
k1 o k2 x
ok1 k2
x
0
k1
b 2a
k2
f
(k1 )
0
f (k2 ) 0
f f
(k1 ) (k2 )
0 0
第15页/共27页
题型与解法
(四)一元二次方程根的分布问题 1.已知方程 x2 2mx m 12 0 .
(A) x 3a或x 4a (B) 3a x 4a
(C) 4a x 3a (D) 3a x 4a
第22页/共27页
课堂练习
3.(1)不等式ax2+bx+2>0的解集是
含有参数的不等式组解法

含有参数的不等式组解法一般来说,含有参数的不等式组的解法可以分为以下几步:第一步:确定参数的取值范围。
根据问题的条件或约束,找出参数可以取得的范围。
这通常需要对问题进行分析和推理。
第二步:将未知数用符号表示。
用一个字母(通常是x)表示不等式中的未知数。
第三步:将所有不等式整理成标准形式。
标准形式是指不等式两边都是关于x的多项式,并且不等号是"≥"或"≤",而不是">"或"<"。
如果不等式中有分数、根式或绝对值等,可以通过一系列代数运算将其转化为标准形式。
第四步:通过分析求解。
根据参数的取值范围,可以分析出不等式中的未知数的取值范围。
进而,通过对不等式中两边同时进行一系列代数运算,可以推导出满足条件的解集。
第五步:对参数取值范围的讨论。
有时,不等式的解集对参数的取值范围有限制。
这时,需要根据参数的取值范围对解集进行讨论。
这通常需要对不等式进行分析和推导,以找出对应于不同参数取值范围的解集。
下面我们通过一个例子来说明含有参数的不等式组的解法。
例题:设0<a<b<c,解不等式组:,x-a,+,x-b,+,x-c,≤a+b+c解法:首先,确定参数的取值范围。
由于0<a<b<c,所以参数a、b、c 的取值范围是存在实数并满足0<a<b<c的范围。
然后,将未知数用符号表示。
我们用x表示不等式中的未知数。
接下来,将不等式整理成标准形式。
由于不等式中已经是绝对值不等式的形式,所以不需要进行额外的变形。
然后,通过分析求解。
根据绝对值的定义,我们可以得到以下三个不等式:1.当x≤a时,x-a,=a-x。
2.当a<x≤b时,x-a,=x-a,x-b,=x-b。
3.当x>b时,x-b,=x-b,x-c,=x-c。
将这三个不等式分别代入原始不等式,我们可以得到以下三个不等式:1.a-x+b-x+c-x≤a+b+c,即-3x+2b+c≤3a+2c。
初中数学含参不等式组知识点及解法

初中数学含参不等式组知识点及解法一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.要点诠释: (1)这里的“几个”不等式是两个、三个或三个以上.(2) 这几个一元一次不等式必须含有同一个未知数.二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(3) 有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2. 一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释: (1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.解含参的一元二次方程的解法,在具体问题里面,按分类的需要有讨论如下四种情况:(1)二次项的系数;(2)判别式;(3)不等号方向(4)根的大小。
含参数的一元二次不等式的解法:二次项系数为常数(能分解因式先分解因式,不能得先考虑0≥∆) 例1、解关于x 的不等式0)1(2>++-a x a x 。
解:0)1)((2>--x a x1,0)1)((==⇒=--x a x x a x 令 为方程的两个根(因为a 与1的大小关系不知,所以要分类讨论)(1)当1<a 时,不等式的解集为}1|{a x x x <>或(2)当1>a 时,不等式的解集为}1|{<>x a x x 或(3)当1=a 时,不等式的解集为}1|{≠x x综上所述:(1)当1<a 时,不等式的解集为}1|{a x x x <>或(2)当1>a 时,不等式的解集为}1|{<>x a x x 或(3)当1=a 时,不等式的解集为}1|{≠x x例2、解关于x 的不等式022≤-+k kx x分析:此不等式为含参数k 的不等式,当k 值不同时相应的二次方程的判别式的值也不同,故应先从讨论判别式入手.解 )8(82+=+=∆k k k k(1) 当02,08,02=-+>-<>∆k kx x k k 方程时或既有两个不相等的实根。
含参不等式的解法教案

含参不等式的解法教案一、教学目标:1. 让学生掌握含参不等式的基本概念和解法。
2. 培养学生运用含参不等式解决实际问题的能力。
3. 提高学生分析问题、解决问题的能力。
二、教学内容:1. 含参不等式的定义及分类。
2. 含参不等式的解法:图像法、代入法、不等式法、参数分离法等。
3. 含参不等式在实际问题中的应用。
三、教学重点与难点:1. 教学重点:含参不等式的解法及其应用。
2. 教学难点:含参不等式解法在实际问题中的应用。
四、教学方法:1. 采用讲授法,讲解含参不等式的基本概念和解法。
2. 利用案例分析法,分析含参不等式在实际问题中的应用。
3. 组织小组讨论法,让学生合作探究含参不等式的解法。
五、教学过程:1. 导入:通过简单的不等式问题,引导学生思考含参不等式的概念。
2. 讲解:讲解含参不等式的定义、分类和解法,结合实际例子进行分析。
3. 练习:布置练习题,让学生巩固含参不等式的解法。
4. 案例分析:分析含参不等式在实际问题中的应用,引导学生运用所学知识解决实际问题。
5. 小组讨论:组织学生进行小组讨论,分享含参不等式的解法心得。
6. 总结:对本节课的内容进行总结,强调含参不等式的解法及其应用。
7. 作业布置:布置课后作业,巩固所学知识。
教学反思:在课后对教学效果进行反思,了解学生的掌握情况,针对存在的问题进行调整教学方法,以提高学生对含参不等式的理解和应用能力。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习兴趣和积极性。
2. 练习题评价:通过学生完成的练习题,评估学生对含参不等式解法的掌握程度。
3. 案例分析评价:评估学生在案例分析中的表现,包括分析问题的能力、运用所学知识解决问题的能力。
七、教学拓展:1. 对比分析:引导学生对比含参不等式与一般不等式的异同,加深对含参不等式的理解。
2. 研究性问题:提出研究性问题,引导学生进行深入探究,如探讨含参不等式在实际应用中的局限性等。
含参数不等式的解法(含答案)

含参数不等式的解法典题探究例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。
例2:若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的范围。
例3:在∆ABC 中,已知2|)(|,2cos )24(sin sin 4)(2<-++=m B f B BB B f 且π恒成立,求实数m 的范围。
例4:(1)求使不等式],0[,cos sin π∈->x x x a 恒成立的实数a 的范围。
如果把上题稍微改一点,那么答案又如何呢?请看下题: (2)求使不等式)2,0(4,cos sin ππ∈-->x x x a 恒成立的实数a 的范围。
演练方阵A 档(巩固专练)1.设函数f (x )=⎪⎪⎩⎪⎪⎨⎧≥-<<-+-≤+)1(11)11(22)1()1(2x xx x x x ,已知f (a )>1,则a 的取值范围是( )A.(-∞,-2)∪(-21,+∞) B.(-21,21) C.(-∞,-2)∪(-21,1)D.(-2,-21)∪(1,+∞)2.已知f (x )、g (x )都是奇函数,f (x )>0的解集是(a 2,b ),g (x )>0的解集是(22a ,2b),则f (x )·g (x )>0的解集是__________.3.已知关于x 的方程sin 2x +2cos x +a =0有解,则a 的取值范围是__________.4. 解不等式)0( 01)1(2≠<++-a x aa x 5. 解不等式06522>+-a ax x ,0≠a6.已知函数f (x )=x 2+px +q ,对于任意θ∈R ,有f (sin θ)≤0,且f (sin θ+2)≥2. (1)求p 、q 之间的关系式;(2)求p 的取值范围;(3)如果f (sin θ+2)的最大值是14,求p 的值.并求此时f (sin θ)的最小值.7.解不等式log a (1-x1)>18.设函数f (x )=a x 满足条件:当x ∈(-∞,0)时,f (x )>1;当x ∈(0,1]时,不等式f (3mx -1)>f (1+mx -x 2)>f (m +2)恒成立,求实数m 的取值范围.9.设124()lg,3x xa f x ++=其中a R ∈,如果(.1)x ∈-∞时,()f x 恒有意义,求a 的取值范围。
一元一次不等式组的解法经典例题透析

经典例题透析类型一:解一元一次不等式组1、解不等式组,并把它的解集在数轴上表示出来。
思路点拨:先求出不等式①②的解集,然后在数轴上表示不等式①②的解集,求出它们的公共部分即不等式组的解集。
解析:解不等式①,得x≥-;解不等式②,得x<1。
所以不等式组的解集为-≤x<1在数轴上表示不等式①②的解集如图。
总结升华:用数轴表示不等式组的解集时,要切记:大于向右画,小于向左画。
有等号画实心圆点,无等号画空心圆圈。
举一反三:【变式1】解不等式组:解析:解不等式①,得:解不等式②,得:在数轴上表示这两个不等式的解集为:∴原不等式组的解集为:【变式2】解不等式组:思路点拨:在理解一元一次不等式组时要注意以下两点:(1)不等式组里不等式的个数并未规定;(2)在同一不等式组里的未知数必须是同一个.(3)注意在数轴表示解集时“空心点”与“实心点”的区别解法一:解不等式①,得:解不等式②,得:解不等式③,得:在数轴上表示这三个不等式的解集为:∴原不等式组的解集为:解法二:解不等式②,得:解不等式③,得:由与得:再与求公共解集得:.【变式3】解不等式组:解析:解不等式①得:x>-2解不等式②得:x<-7∴不等式组的解集为无解【变式4】解不等式:-1<≤5思路点拨:(1)把连写不等式转化为不等式组求解;(2)根据不等式的性质,直接求出连写不等式的解集。
解法1:原不等式可化为下面的不等式组解不等式①,得x>-1,解不等式②,得x≤8所以不等式组的解集为-1<x≤8。
即原不等式的解集为-1<x≤8解法2:-1<≤5,-3<2x-1≤15,-2<2x≤16,-1<x≤8。
所以原不等式的解集为-1<x≤8总结升华:对于连写形式的不等式可以化成不等式组来求解,而对于只有中间部分含有未知数的连写形式的不等式也可以按照解不等式的步骤求解,如解法2.【变式5】求不等式组的整数解。
思路点拨:按照不等式组的解法,先求出每个不等式的解集,在数轴上表示出各个不等式的解集,取其公共部分得到不等式的解集,再在不等式组的解集内求出符合要求的整数解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含参数的不等式组是指不等式中含有某个参数,需要求出该参数的取值范围使得不等
式组的解存在或满足某种条件。
以下是解含参数的不等式组的一般步骤:
1. 列出不等式组
首先需要根据问题的具体条件列出含有参数的不等式组表达式,包括不等式的符号和
参数的系数和变量。
2. 对每个不等式进行分析
对于每个不等式,需要根据符号及系数来分析其解的取值范围,从而得到该参数的约
束条件。
若不等式为一次不等式,则可以使用代数方法求出其解;若不等式为二次不
等式,则需要使用平方根解法等方法。
3. 将约束条件组合起来
将得到的每个约束条件组合起来,作为参数的取值范围。
通常来说,解析式的形式越
简单,越容易定位参数取值范围。
4. 判断不等式组解的存在性
根据参数的取值范围和不等式组的解的性质,判断该不等式组是否有解或满足某种条件。
可以使用图像法或算法确定解的情况,同时需要注意区分解的类型和数量等问题。
5. 求解不等式组
如果不等式组的解存在,可以使用代入法、换元法等方法求出解析式,并根据问题的
具体条件验证解的正确性。
需要注意的是,含参数的不等式组的求解需要灵活运用数学方法和技巧,在求解过程
中还需注意对角线法则等问题,防止求解错误。