含参数不等式的解法(含答案)
高一数学含参数不等式的解法

作业:
满足3 x x 1的x的集合为A,满足x2 (a 1)x a 0 的x的集合为B. (1)若A B,求a的取值范围 (2)若A B,求a的取值范围 (3)若A B为仅含一个元素的集合,求a的值
见菜碟铜舌鬼扭动瘦瘦的犹如蒜头样的屁股,整个身体快速变成一枚巨大的缤纷奇蛋,这枚奇蛋一边旋转一边射出万道奇光……突然,整个奇蛋像巨大的深灰色花蕾 一样绽开……五条暗灰色螃蟹模样的疯狂尾巴急速从里面伸出……接着,一颗浅灰色花生模样的阴暗巨大狐头快速探了出来……一簇簇暗灰色糖块模样的奇妙巨大翅 膀飘然向外伸展……突然!两只暗灰色足球模样的贪婪巨爪威武地伸了出来……随着亮白色白菜模样的奇特幽光的狂速飞舞,无数钢灰色马心模样的梦幻羽毛和亮灰 色鳞甲飞一样射出……突然,无数亮灰色飞盘模样的风光鳞片从奇蛋中窜出,飞一样射向个个巨果!只见每只巨大鳞片上都站着一个鸡毛硬泪仙模样的武士……与此 同时壮扭公主朝鸡毛硬泪仙变成的巨大植物根基飞去,而月光妹妹则朝那伙校精的真身冲飞去……鸡毛硬泪仙的所有果实和替身都被撞得粉碎!而巨大的植物已经被 壮妞公主一顿肥拳猛腿弄得稀烂,再看鸡毛硬泪仙的真身也被月光妹妹一顿飞拳 云腿,直玩得满 脸桃花开,浑身别样肿……“算你们狠,俺们不玩了!”女樵夫M. 翁贝叶娆仙女见无法取胜,急忙变成长着离奇大腿的亮白色古怪锁孔朝西南方向飞去……月光妹妹笑道:“嘻嘻!跟我玩换马甲,这回你们可撞鱼雷上了,我正愁找 不到对手呢……”月光妹妹一边说着一边变成长着怪异下巴的水红色超级小号追了上去……女樵夫M.翁贝叶娆仙女见月光妹妹快要追上,又急忙变成长着离奇犄角 的纯红色古怪小旗朝正南方向飞去……月光妹妹笑道:“嘻嘻!又换一套马甲,我也把从远古时代积压下来卖不出去的存货拿出来让你们瞧瞧……”月光妹妹一边说 着一边变成长着怪异舌头的暗青色超级药片追了上去……只见X.妮什科招待和另外四个校精怪突然齐声怪叫着组成了一个巨大的卵石刀肝仙!这个巨大的卵石刀肝 仙,身长四百多米,体重二百多万吨。最奇的是这个怪物长着十分壮丽的刀肝!这巨仙有着紫红色椰壳似的身躯和紫玫瑰色细小旗杆般的皮毛,头上是暗白色陀螺一 样的鬃毛,长着淡红色水母似的铁锅蛇筋额头,前半身是墨紫色腰带似的怪鳞,后半身是脏乎乎的羽毛。这巨仙长着淡灰色水母模样的脑袋和墨黑色海参似的脖子, 有着墨灰色陀螺样的脸和钢灰色扫帚模样的眉毛,配着浓黑色瓜子一样的鼻子。有着乳白色臂章样的眼睛,和纯红色牛肝似的耳朵,一张乳白色车厢似的嘴唇,怪叫 时露出碳黑色地灯模样的牙齿,变态的墨紫色樱桃般的舌头很是恐怖,紫玫瑰色小号般的下巴非常离奇。这巨仙有着很像牙签模样的肩胛和酷似粉条一样的翅膀,这 巨仙变异的紫宝石色猪肚般的胸脯闪着冷光,特像螃
专题10 第二章元一次不等式(组)小专题-含参一元一次不等式组的解法(解析版)

八年级数学下册学霸提分秘籍专题10 第二章元一次不等式(组)小专题-含参一元一次不等式组的解法典例精讲(2020•河北模拟)已知关于x 的不等式组{−x −1≥−2x +112(x −2a)+12x <0,其中实数a 是不等于2的常数,请依据a 的取值情况求出不等式组的解集.【点睛】分别求出各不等式的解集,再根据实数a 是不等于2的常数进行分类解答即可.【解析】解:{−x −1≥−2x +1①12(x −2a)+12x <0②, 由①得,x ≥2, 由②得,x <a ,故当a >2时,不等式组得解集为2≤x <a ;当a <2时,该不等式组无解.巩固提高1.(2019•鼓楼区校级期末)解关于x 的不等式组{x −a ≥0x −2<0x +1>0.【点睛】根据不等式组的解法即可求出答案,注意对参数a 的讨论.【解析】解:{x −a ≥0①x −2<0②x +1>0③由①可得:x ≥a 由②可得:x <2 由③可得:x >﹣1当a ≤﹣1时,此时不等式组的解集为:﹣1<x <2 当﹣1<a <2时,此时不等式组的解集为:a ≤x <2 当a ≥2时, 此时不等式组无解2.(2020•顺义区校级期中)解关于x 的不等式组:{0<5x +3a ≤10<5x −3a ≤1,其中a 为参数.【点睛】求出不等式组中每个不等式的解集,分别求出当−35a =35a 时、当1−3a 5=1+3a 5时、当−35a =1+3a 5时、当35a =1−3a5时a 的值,结合不等式的解集,即可求出在各段的不等式组的解集. 【解析】解:{0<5x +3a ≤1①0<5x −3a ≤1②,解不等式①得:﹣3a <5x ≤1﹣3a ,−35a <x ≤1−3a5, 解不等式②得:3a <5x ≤1+3a ,35a <x ≤1+3a 5, ∵当−35a =35a 时,a =0,当1−3a 5=1+3a 5时,a =0,当−35a =1+3a 5时,a =−16, 当35a =1−3a 5时,a =16,∴当a ≥16或a ≤−16时,原不等式组无解;当0≤a <16时,原不等式组的解集为:35a <x ≤1−3a 5;当−16<a <0时,原不等式组的解集为:−35a <x ≤1+3a5. 3.(2020•浙江自主招生)解关于x 的不等式组:{a(x −2)>x −39(a +x)>9a +8.【点睛】利用不等式组的求解方法,求得各不等式组的解集,然后分别讨论a 的取值,即可求得答案. 【解析】解:∵{a(x −2)>x −3①9(a +x)>9a +8②,由①得:(a ﹣1)x >2a ﹣3③,由②得:x >89,当a ﹣1>0时,解③得:x >2a−3a−1, 若2a−3a−1≥89,即a ≥1910时, 不等式组的解集为:x >2a−3a−1; 当1≤a <1910时,不等式组的解集为:x ≥89; 当a ﹣1<0时,解③得:x <2a−3a−1,若2a−3a−1≥89,即a ≤1910时,89<x <2a−3a−1; 当a <1时,不等式组的解集为:89<x <2a−3a−1.∴原不等式组的解集为:当a ≥1910时,x >2a−3a−1;当a <1910时,89<x <2a−3a−1.。
含参数的绝对值不等式的解法

含参数的绝对值不等式的解法含参数的绝对值不等式是高中数学中常见的一类问题,解决这类问题需要运用一些特定的方法和技巧。
本文将简要介绍含参数的绝对值不等式的解法,并通过例题进行说明,帮助读者更好地理解和掌握这类问题的解题方法。
一、绝对值不等式的基本概念在开始介绍含参数的绝对值不等式的解法之前,我们先来回顾一下绝对值不等式的基本概念。
对于任意实数x,绝对值|x|的定义如下:当x≥0时,|x|=x;当x<0时,|x|=-x。
绝对值的定义告诉我们,无论x是正数还是负数,绝对值都是非负的。
绝对值不等式则是对绝对值进行不等式的运算,即|x|<a或|x|>a,其中a为正实数。
含参数的绝对值不等式的解法与普通的绝对值不等式有一些区别,需要根据参数的取值范围来进行分类讨论。
1. 当参数的取值范围为正数时,我们可以直接根据绝对值的定义进行求解。
例如,对于不等式|x-2|<a,其中a>0,我们可以得到以下解法步骤:(1)当x-2≥0时,|x-2|=x-2,不等式变为x-2<a,解为x<a+2;(2)当x-2<0时,|x-2|=-(x-2),不等式变为-(x-2)<a,解为x>2-a。
综合以上两种情况,得到不等式的解集为2-a<x<a+2。
2. 当参数的取值范围为负数时,同样可以根据绝对值的定义进行求解。
例如,对于不等式|x+3|<b,其中b<0,我们可以得到以下解法步骤:(1)当x+3≥0时,|x+3|=x+3,不等式变为x+3<b,解为x<b-3;(2)当x+3<0时,|x+3|=-(x+3),不等式变为-(x+3)<b,解为x>-3-b。
综合以上两种情况,得到不等式的解集为b-3<x<-3-b。
3. 当参数的取值范围为正负混合时,我们需要分情况讨论。
例如,对于不等式|x-1|<c,其中c可以为正数也可以为负数,我们可以得到以下解法步骤:(1)当x-1≥0时,|x-1|=x-1,不等式变为x-1<c,解为x<c+1;(2)当x-1<0时,|x-1|=-(x-1),不等式变为-(x-1)<c,解为x>1-c。
含参数的一元二次不等式的解法

含参数的一元二次不等式的解法解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元二次不等式常用的分类方法有三种:一、按2x 项的系数a 的符号分类,即0,0,0<=>a a a ;例1 解不等式:()0122>+++x a ax分析:本题二次项系数含有参数,()044222>+=-+=∆a a a ,故只需对二次项系数进行分类讨论。
解:∵()044222>+=-+=∆a a a解得方程()0122=+++x a ax 两根,24221a a a x +---=aa a x 24222++--=∴当0>a 时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<++-->a a a x a a a x x 242242|22或当0=a 时,不等式为012>+x ,解集为⎭⎬⎫⎩⎨⎧->21|x x当0<a 时, 解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<<++--a a a x a a a x 242242|22练习1 解不等式()00652≠>+-a a ax ax二、按判别式∆的符号分类,即0,0,0<∆=∆>∆;例2 解不等式042>++ax x分析 本题中由于2x 的系数大于0,故只需考虑∆与根的情况。
解:∵162-=∆a ∴当()4,4-∈a 即0<∆时,解集为R ;当4±=a 即Δ=0时,解集为⎭⎬⎫⎩⎨⎧≠∈2a xR x x 且; 当4>a 或4-<a 即>∆,此时两根分别为21621-+-=a a x ,21622---=a a x ,显然21x x >, ∴不等式的解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----+->21621622a a x a a x x 〈或练习2 解不等式()()R m x x m∈≥+-+014122三、按方程2=++c bx ax 的根21,x x 的大小来分类,即212121,,x x x x x x <=<;例3 解不等式)0( 01)1(2≠<++-a x aa x分析:此不等式可以分解为:()0)1(<--ax a x ,故对应的方程必有两解。
含参数一元二次不等式的解法

含参数一元二次不等式的解法我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.一元二次不等式的一般形式是或(其中均为常数,).解含参一元二次不等式的相关问题对于基础薄弱的同学来说是一个难点.为了帮助这些同学解决此类问题,本文将相关解题方法进行简化、总结,帮助同学们理解和学习.下面我们通过例举进行具体的分析说明.类型一解二次项前不带参数的一元二次不等式1、对应方程(其中均为常数,)可以进行因式分解.方法:所求解的一元二次不等式对应的一元二次方程可因式分解为(为方程的实数根)的形式,则分类讨论的关键在于通过比较两根的大小,确定参数讨论的界限,进而解出的取值范围.例1 解关于的不等式 .分析:对应方程可因式分解为的形式,讨论两根的大小,即可解出的取值范围.解:原不等式等价于,所对应方程的两根是当时,不等式的解集为 .当时,不等式的解集为 .当时,不等式的解集为 .2、对应方程(其中均为常数,)不能进行因式分解.方法:所求解的一元二次不等式对应的一元二次方程不能进行因式分解,则分类讨论的关键在于判别式,此时根据判别式确定参数讨论的界限,解出的取值范围.例2 解关于的不等式 .分析:对应方程不能进行因式分解,此时根据判别式确定参数讨论的界限,求出的取值范围.解:原不等式对应方程的判别式为(1)当,时,的两根为或,不等式的解集为 .(2)当,时,的根为,不等式的解集为 .1.当,时, 不等式的解集为 .综上所述:当时,不等式的解集为.当时,不等式的解集为 .当时,不等式的解集为 .类型二解二次项前带参数的一元二次不等式1、对应方程(其中均为常数,)可以进行因式分解.方法:所求解的一元二次不等式对应的一元二次方程可因式分解为(为方程的实数根)的形式,则分类讨论的关键仍然在于通过比较两根的大小确定参数讨论的界限. 另外,需要注意的问题是二次项前带参数与二次项前不带参数不同,参数的范围决定对应二次函数的开口方向,影响对应一元二次不等式的解集.例3 解关于的不等式 .分析:对应方程可因式分解为的形式,讨论两根的大小,即可确定参数讨论的界限,根据参数的不同取值范围,求出不等式相应解集。
3.2.2含参数的一元二次不等式的解法(例题精讲)

含参数的一元二次不等式的解法解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元二次不等式常用的分类方法有三种:一、按2x 项的系数a 的符号分类,即0,0,0<=>a a a ;例1 解不等式:()0122>+++x a ax 分析:本题二次项系数含有参数,()044222>+=-+=∆a a a ,故只需对二次项 系数进行分类讨论。
解:∵()044222>+=-+=∆a a a 解得方程 ()0122=+++x a ax 两根,24221a a a x +---=a a a x 24222++--= ∴当0>a 时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<++-->a a a x a a a x x 242242|22或 当0=a 时,不等式为012>+x ,解集为⎭⎬⎫⎩⎨⎧>21|x x 当0<a 时, 解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<<++--a a a x a a a x 242242|22例2 解不等式 分析 因为0≠a ,0>∆,所以我们只要讨论二次项系数的正负。
解 ()()032)65(2>--=+-x x a x x a ∴当0>a 时,解集为{}32|><x x x 或;当0<a 时,解集为{}32|<<x x二、按判别式∆的符号分类,即0,0,0<∆=∆>∆;例3 解不等式042>++ax x分析 本题中由于2x 的系数大于0,故只需考虑∆与根的情况。
解:∵162-=∆a ∴当()4,4-∈a 即0<∆时,解集为R ;当4±=a 即Δ=0时,()00652≠>+-a a ax ax解集为⎭⎬⎫⎩⎨⎧≠∈2a x R x x 且; 当4>a 或4-<a 即0>∆,此时两根分别为21621-+-=a a x ,21622---=a a x ,显然21x x >, ∴不等式的解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----+->21621622a a x a a x x 〈或例4 解不等式()()R m x x m ∈≥+-+014122 解 因,012>+m ()()2223414)4(mm -=+--=∆,所以当3±=m ,即0=∆时,解集为⎭⎬⎫⎩⎨⎧=21|x x ; 当33<<-m ,即0>∆时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+--+-+>1321322222m m x m m x x 〈或; 当33>-<m m 或,即0<∆时,解集为R 。
一元一次含参不等式的解法

一元一次含参不等式的解法一元一次含参不等式是指不等式中含有一个未知数和一个或多个常数参数的不等式。
其解法主要分为如下几种:1. 移项法移项法是一种常见的解一元一次含参不等式的方法。
其基本思想是将含有未知数的项移到一边,将常数项移到另一边,最终得到未知数的取值范围。
例如,对于不等式 $ax+b>c$,我们可以将常数项 $c$ 移到左侧,得到$ax+b-c>0$,然后将$ax$ 移到右侧,得到$x>\frac{c-b}{a}$。
因此,该不等式的解为 $x>\frac{c-b}{a}$。
2. 分段讨论法分段讨论法是一种常用的解一元一次含参不等式的方法。
其基本思想是根据参数的取值范围,将不等式分成若干个子区间,然后在每个子区间内求解不等式。
例如,对于不等式$ax^2+bx+c>0$,我们可以分别讨论$a>0$ 和$a<0$ 两种情况。
当$a>0$ 时,该不等式的解为$x<\frac{-b-\sqrt{b^2-4ac}}{2a}$ 或$x>\frac{-b+\sqrt{b^2-4ac}}{2a}$;当 $a<0$ 时,该不等式的解为 $\frac{-b-\sqrt{b^2-4ac}}{2a}<x<\frac{-b+\sqrt{b^2-4ac}}{2a}$。
因此,该不等式的解为$a>0$ 时$x<\frac{-b-\sqrt{b^2-4ac}}{2a}$ 或$x>\frac{-b+\sqrt{b^2-4ac}}{2a}$,$a<0$ 时$\frac{-b-\sqrt{b^2-4ac}}{2a}<x<\frac{-b+\sqrt{b^2-4ac}}{2a}$。
3. 辅助函数法辅助函数法是一种常用的解一元一次含参不等式的方法。
其基本思想是构造一个辅助函数,使得该函数的取值范围与未知数的取值范围相同,然后根据函数的性质求解不等式。
含参不等式的解法

不等式(3)----含参不等式的解法当在一个不等式中含有了字母,则称这一不等式为含参数的不等式,那么此时的参数可以从以下两个方面来影响不等式的求解,首先是对不等式的类型(即是那一种不等式)的影响,其次是字母对这个不等式的解的大小的影响。
我们必须通过分类讨论才可解决上述两个问题,同时还要注意是参数的选取确定了不等式的解,而不是不等式的解来区分参数的讨论。
解参数不等式一直是高考所考查的重点内容。
(一)几类常见的含参数不等式一、含参数的一元二次不等式的解法:例1:解关于的x 不等式2(1)410()m x x m R +-+≤∈分析:当m+1=0时,它是一个关于x 的一元一次不等式;当m+1≠1时,还需对m+1>0及m+1<0来分类讨论,并结合判别式及图象的开口方向进行分类讨论:⑴当m<-1时,⊿=4(3-m )>0,图象开口向下,与x 轴有两个不同交点,不等式的解集取两边。
⑵当-1<m<3时,⊿=4(3-m )>0, 图象开口向上,与x 轴有两个不同交点,不等式的解集取中间。
⑶当m=3时,⊿=4(3-m )=0,图象开口向上,与x 轴只有一个公共点,不等式的解为方程24410x x -+=的根。
⑷当m>3时,⊿=4(3-m )<0,图象开口向上全部在x 轴的上方,不等式的解集为∅。
解:11,|;4m x x ⎧⎫=-≥⎨⎬⎩⎭当时原不等式的解集为 ⎭⎬⎫⎩⎨⎧+-+≤≤+--<<-⎭⎬⎫⎩⎨⎧+-+≤+--≥-<∆=+-+-≠132132|,31132132|1);34014)1(12m m x m m x m m m x m m x x m m x x m m 原不等式的解集为时当或时,原不等式的解集为则当-(=的判别式时,当 当m=3时,原不等式的解集为⎭⎬⎫⎩⎨⎧=21|x x ; 当m>3时, 原不等式的解集为∅。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含参数不等式的解法典题探究例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。
例2:若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的范围。
例3:在∆ABC 中,已知2|)(|,2cos )24(sin sin 4)(2<-++=m B f B BB B f 且π恒成立,求实数m 的范围。
例4:(1)求使不等式],0[,cos sin π∈->x x x a 恒成立的实数a 的范围。
如果把上题稍微改一点,那么答案又如何呢?请看下题: (2)求使不等式)2,0(4,cos sin ππ∈-->x x x a 恒成立的实数a 的范围。
演练方阵A 档(巩固专练)1.设函数f (x )=⎪⎪⎩⎪⎪⎨⎧≥-<<-+-≤+)1(11)11(22)1()1(2x xx x x x ,已知f (a )>1,则a 的取值范围是( )A.(-∞,-2)∪(-21,+∞) B.(-21,21) C.(-∞,-2)∪(-21,1)D.(-2,-21)∪(1,+∞)2.已知f (x )、g (x )都是奇函数,f (x )>0的解集是(a 2,b ),g (x )>0的解集是(22a ,2b),则f (x )·g (x )>0的解集是__________.3.已知关于x 的方程sin 2x +2cos x +a =0有解,则a 的取值范围是__________.4. 解不等式)0( 01)1(2≠<++-a x aa x 5. 解不等式06522>+-a ax x ,0≠a6.已知函数f (x )=x 2+px +q ,对于任意θ∈R ,有f (sin θ)≤0,且f (sin θ+2)≥2. (1)求p 、q 之间的关系式;(2)求p 的取值范围;(3)如果f (sin θ+2)的最大值是14,求p 的值.并求此时f (sin θ)的最小值.7.解不等式log a (1-x1)>18.设函数f (x )=a x 满足条件:当x ∈(-∞,0)时,f (x )>1;当x ∈(0,1]时,不等式f (3mx -1)>f (1+mx -x 2)>f (m +2)恒成立,求实数m 的取值范围.9.设124()lg,3x xa f x ++=其中a R ∈,如果(.1)x ∈-∞时,()f x 恒有意义,求a 的取值范围。
10.已知当x ∈R 时,不等式a+cos2x<5-4sinx 恒成立,求实数a 的取值范围。
B 档(提升精练)1.定义在R 上的奇函数f (x )为增函数,偶函数g (x )在区间[0,+∞)的图象与f (x )的图象重合,设a >b >0,给出下列不等式,其中正确不等式的序号是( )①f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b ) ③f (a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a ) A.①③ B.②④ C.①④ D.②③2.下列四个命题中:①a +b ≥2ab ; ②sin 2x +x 2sin 4≥4 ; ③设x ,y 都是正数,若y x 91+=1,则x +y 的最小值是12 ; ④若|x -2|<ε,|y -2|<ε,则|x -y |<2ε,其中所有真命题的序号是__________.3.某公司租地建仓库,每月土地占用费y 1与车库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距车站10公里处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站__________公里处.4.已知二次函数 f (x )=ax 2+bx +1(a ,b ∈R ,a >0),设方程f (x )=x 的两实数根为x 1,x 2.(1)如果x 1<2<x 2<4,设函数f (x )的对称轴为x =x 0,求证x 0>-1; (2)如果|x 1|<2,|x 2-x 1|=2,求b 的取值范围.5.某种商品原来定价每件p 元,每月将卖出n 件,假若定价上涨x 成(这里x 成即10x,0<x ≤10).每月卖出数量将减少y 成,而售货金额变成原来的 z 倍.(1)设y =ax ,其中a 是满足31≤a <1的常数,用a 来表示当售货金额最大时的x 的值; (2)若y =32x ,求使售货金额比原来有所增加的x 的取值范围.6.设函数f (x )定义在R 上,对任意m 、n 恒有f (m +n )=f (m )·f (n ),且当x >0时,0<f (x )<1. (1)求证:f (0)=1,且当x <0时,f (x )>1;(2)求证:f (x )在R 上单调递减; (3)设集合A ={ (x ,y )|f (x 2)·f (y 2)>f (1)},集合B ={(x ,y )|f (ax -g +2)=1,a ∈R},若A ∩B =∅,求a 的取值范围.7.已知函数f (x )=1222+++x c bx x (b <0)的值域是[1,3],(1)求b 、c 的值;(2)判断函数F (x )=lg f (x ),当x ∈[-1,1]时的单调性,并证明你的结论; (3)若t ∈R ,求证:lg57≤F (|t -61|-|t +61|)≤lg 513.8.对于满足|p|≤2的所有实数p,求使不等式x 2+px+1>2p+x 恒成立的x 的取值范围。
9.设函数是定义在(,)-∞+∞上的增函数,如果不等式2(1)(2)f ax x f a --<-对于任意[0,1]x ∈恒成立,求实数a 的取值范围。
10.若对一切2≤p ,不等式()p x x p x +>++2222log 21log log 恒成立,求实数x 的取值范围。
C 档(跨越导练)1. 设z y x a z ab y b x b a b a bba a 、、,则,,,且,1)11(log log log 10====+>>+之间的大小关系为( )A 、z x y <<B 、x y z <<C 、x z y <<D 、z y x <<2.已知422=+y x ,那么582-+y x 的最大值是( )(A )10 (B )11 (C )12 (D )153.若0αsin 2βsin αsin 222=-+,则βcos αcos 22+的取值范围是( )(A )[1,5] (B )[1,2] (C )]49,1[ (D )[-1,2] 4.数列{}n a 中,0>n a ,且{}1+n n a a 是公比为)0q (q >的等比数列,满足)(32211N n a a a a a a n n n n n n ∈>++++++,则公比q 的取值范围是( )(A )2210+<<q (B )2510+<<q (C )2210+-<<q (D )2510+-<<q 5.已知0>>b a ,全集I=R ·M={2|ba xb x +<<},N={a x ab x <<|},则M N =( )(A ){ab x b x ≤<|} (B ){2|ba x ab x +<<} (C ){2|b a x b x +<<} (D ){2|ba x x +<,或x a ≥} 6.定义在R 上的奇函数f x ()是减函数,设0≤+b a ,给出下列不等式:(A )0)()(≤-a f a f ; (B )0)()(≥-b f a f ;(C ))()()()(b f a f b f a f -+-≤+ (D ))()()()(b f a f b f a f -+-≥+ 其成立的是 ( )(A )①与③ (B )②与③ (C )①与④ (D )②与④7.若实数x ,y 满足xy >0,且x y z 2=,则xy x +2的最小值为 。
8.如图,假设河的一条岸边为直线MN ,又AC ⊥MN于C ,点B 、D 在MN 上。
先需将货物从A 处运往B 处,经陆路AD 与水路DB.已知AC=10公里,BC=30公里,又陆路单位距离的运费是水路运费的两倍,为使运费最少,D 点应选在距离C 点多远处?9.若奇函数f (x )在定义域(-1,1)上是减函数 ⑴求满足M a f a f 的集合0)1()1(2<-+- ⑵对⑴中的a ,求函数[]xxa a x F -⎪⎭⎫ ⎝⎛-=211log )(的定义域。
10.已知某飞机飞行中每小时的耗油量与其速度的立方成正比。
当该机以a 公里/小时的速度飞行时,其耗油费用为m 元(油的价格为定值)。
又设此机每飞行1小时,除耗油费用外的其他费用为n 元。
试求此机飞行l 公里时的最经济时速及总费用。
含参不等式的解法参考答案典题探究例1【解析】:我们可以用改变主元的办法,将m 视为主变元,即将元不等式化为:0)12()1(2<---x x m ,;令)12()1()(2---=x x m m f ,则22≤≤-m 时,0)(<m f 恒成立,所以只需⎩⎨⎧<<-0)2(0)2(f f 即⎪⎩⎪⎨⎧<---<----0)12()1(20)12()1(222x x x x ,所以x 的范围是)231,271(++-∈x 。
例2【解析】:保证是二次的,才有判别式,但二次项系数含有参数m ,所以要讨论m-1是否是0。
(1)当m-1=0时,元不等式化为2>0恒成立,满足题意; (2)01≠-m 时,只需⎩⎨⎧<---=∆>-0)1(8)1(012m m m ,所以,)9,1[∈m 。
例3【解析】:由]1,0(s i n ,0,1s i n 22c o s )24(s i n s i n 4)(2∈∴<<+=++=B B B B BB B f ππ ]3,1()(∈B f ,2|)(|<-m B f 恒成立,2)(2<-<-∴m B f ,即⎩⎨⎧+<->2)(2)(B f m B f m 恒成立,]3,1(∈∴m例4【解析】(1):由于函]43,4[4),4sin(2cos sin ππππ-∈--=->x x x x a ,显然函数有最大值2,2>∴a 。