第40讲 含参数不等式的解法

合集下载

含参数的不等式的解法

含参数的不等式的解法

含参数的不等式的解法解含参数的不等式的一般步骤如下:步骤1:确定参数的取值范围对于含参数的不等式,首先要确定参数可以取哪些值。

常见的含参数的不等式有以下几种类型:1.参数出现在不等式的左右两侧:例如,a,x,<b,x,其中a和b是参数。

如果参数a和b都是非负数,则取值范围为[0,+∞),如果参数a为负数而b为非负数,则取值范围为(-∞,+∞)。

2. 参数出现在不等式的系数中:例如,ax + b > 0,其中a和b是参数。

对于一次不等式,如果参数a为正数,则取值范围为(-∞, -b/a);如果参数a为负数,则取值范围为(-b/a, +∞)。

对于二次不等式,需要讨论a的正负和零的情况,进而确定取值范围。

3.参数出现在不等式的指数中:例如,x^a>b,其中a和b是参数。

对于参数b,需要讨论它的正负和零的情况,进而确定取值范围。

对于参数a,如果它为正数,则不等式的解集为(0,+∞);如果它为负数,则不等式的解集为(-∞,0)。

步骤2:解参数的不等式在确定参数的取值范围之后,可以根据具体的参数取值情况来解不等式。

根据参数的不同取值情况,采用不同的解法。

1.解参数出现在不等式的左右两侧的不等式:-如果参数都是非负数,则可以直接从不等式中消去绝对值符号,并分析绝对值的取值范围,最后得到一个简单的数学不等式。

-如果参数一个是负数一个是非负数,则需要分情况讨论,考虑不等式两侧的符号。

2.解参数出现在不等式的系数中的不等式:-如果参数是一个正数或负数,则根据参数的正负讨论不等式两侧的符号,并得到一个简单的数学不等式。

-如果参数是一个未知数,可以根据参数的取值范围来讨论参数与未知数的关系,然后解不等式。

3.解参数出现在不等式的指数中的不等式:-如果参数b是负数,则需要讨论不等式两侧的符号并得到一个简单的数学不等式。

步骤3:解不等式在解决了参数的不等式之后,可以根据参数的取值范围来解不等式,得到不等式的解集。

含参数的绝对值不等式的解法

含参数的绝对值不等式的解法

含参数的绝对值不等式的解法含参数的绝对值不等式是高中数学中常见的一类问题,解决这类问题需要运用一些特定的方法和技巧。

本文将简要介绍含参数的绝对值不等式的解法,并通过例题进行说明,帮助读者更好地理解和掌握这类问题的解题方法。

一、绝对值不等式的基本概念在开始介绍含参数的绝对值不等式的解法之前,我们先来回顾一下绝对值不等式的基本概念。

对于任意实数x,绝对值|x|的定义如下:当x≥0时,|x|=x;当x<0时,|x|=-x。

绝对值的定义告诉我们,无论x是正数还是负数,绝对值都是非负的。

绝对值不等式则是对绝对值进行不等式的运算,即|x|<a或|x|>a,其中a为正实数。

含参数的绝对值不等式的解法与普通的绝对值不等式有一些区别,需要根据参数的取值范围来进行分类讨论。

1. 当参数的取值范围为正数时,我们可以直接根据绝对值的定义进行求解。

例如,对于不等式|x-2|<a,其中a>0,我们可以得到以下解法步骤:(1)当x-2≥0时,|x-2|=x-2,不等式变为x-2<a,解为x<a+2;(2)当x-2<0时,|x-2|=-(x-2),不等式变为-(x-2)<a,解为x>2-a。

综合以上两种情况,得到不等式的解集为2-a<x<a+2。

2. 当参数的取值范围为负数时,同样可以根据绝对值的定义进行求解。

例如,对于不等式|x+3|<b,其中b<0,我们可以得到以下解法步骤:(1)当x+3≥0时,|x+3|=x+3,不等式变为x+3<b,解为x<b-3;(2)当x+3<0时,|x+3|=-(x+3),不等式变为-(x+3)<b,解为x>-3-b。

综合以上两种情况,得到不等式的解集为b-3<x<-3-b。

3. 当参数的取值范围为正负混合时,我们需要分情况讨论。

例如,对于不等式|x-1|<c,其中c可以为正数也可以为负数,我们可以得到以下解法步骤:(1)当x-1≥0时,|x-1|=x-1,不等式变为x-1<c,解为x<c+1;(2)当x-1<0时,|x-1|=-(x-1),不等式变为-(x-1)<c,解为x>1-c。

2015届高三数学(文)第一轮总复习课件 第40讲 不等式的解法

2015届高三数学(文)第一轮总复习课件 第40讲 不等式的解法

4
学海导航
文数
x2-1<0 2.不等式组 2 的解集为( x -3x<0
C )
B.{x|0<x<3} D.{x|-1<x<3}
A.{x|-1<x<1} C.{x|0<x<1}
5
学海导航
文数
x2-1<0 -1<x<1 解析: 2 ⇒ ⇒0<x<1. 0<x<3 x -3x<0
15
学海导航
文数
(方法二)原不等式可化为 3x2-19x+6≤0 1 ⇒(3x-1)(x-6)≤0⇒(x- )(x-6)≤0. 3 1 所以原不等式的解集为{x| ≤x≤6}. 3
16
学海导航
文数
(2)(方法一)原不等式可化为
x>0 2 x +x-2≥0 x<0 或 2 x +x-2≤0


2t+1>t2+2t-3 即 2 ,所以 1<t<2. t +2t-3>0
24
学海导航
文数

含参不等式的解法
【例 3】解关于 x 的不等式 x2-(a+a2)x+a3<0(a∈R).
25
学海导航
文数
解析:原不等式化为(x-a)(x-a2)<0. 当 a>1 或 a<0 时,a2>a,所以原不等式的解为 a<x<a2; 当 0<a<1 时,a2<a,所以原不等式的解为 a2<x<a; 当 a=1 或 a=0 时, 原不等式为(x-1)2<0 或 x2<0, 所以无 解. 综上所述, 当 a>1 或 a<0 时,原不等式的解集为{x|a<x<a2}; 当 0<a<1 时,原不等式的解集为{x|a2<x<a}; 当 a=1 或 a=0 时,原不等式的解集为∅.

解答含参不等式问题常用的几种方法

解答含参不等式问题常用的几种方法

考点透视含参不等式问题较为复杂,常与导数、函数、方程等知识相结合.这类问题侧重于考查不等式的性质、简单基本函数的图象和性质、导数的性质等,对同学们的运算和分析能力有较高的要求.下面举例说明解答含参不等式问题的几种常用方法.一、判别式法判别式法主要适用于求解含参二次不等式问题.解答这类问题主要有三个步骤:第一步,根据二次不等式构造一元二次方程;第二步,运用二次方程的判别式,建立关于参数的新不等式;第三步,解新不等式,求得问题的答案.例1.若ax2-2ax+1≥0在R上恒成立,则实数a的取值范围为_____.解:当a=0时,1≥0,不等式ax2-2ax+1≥0成立;当a≠0时,{a>0,Δ≤0,解得0<a≤1;综上所述,实数a的取值范围为0≤a≤1.该二次不等式的二次项和一次项中含有参数,需分a=0和a≠0两种情况进行讨论.运用判别式法求解含参一元二次不等式问题,需先根据不等式构造一元二次函数和一元二次方程;然后根据一元二次方程的根的分布情况,建立关于判别式、根与系数、对称轴的不等式,从而求得参数的取值范围.二、分离参数法分离参数法适用于求解变量和参数可分离的不等式问题.解题时,需先判断出参数系数的正负;然后根据不等式的性质将参数分离出来,得到一个一端含有参数、另一端含有变量的不等式;再求出含变量一边的式子的最值;最后求出参数的取值范围.例2.当x∈()1,+∞时,(e x-1-1)ln x≥a(x-1)2恒成立,则实数a的取值范围为_____.解:因为x∈()1,+∞,则x-1>0,由(e x-1-1)ln x≥a(x-1)2,可得e x-1-1x-1⋅ln xx-1≥a,即e x-1-1x-1⋅1x-1ln x≥a,则e x-1-1x-1⋅1e ln x-1ln x≥a,令f()x=e x-1x()x>0,则f′()x=()x-1e x+1x2,令g()x=()x-1e x+1,则g′()x=xe x>0,所以g()x在()0,+∞上单调递增,则g()x>g()0=0,即f′()x>0,所以f()x在()0,+∞上单调递增,则f()x>0,令h()x=ln x-x+1,则h′()x=1-xx<0,则h()x在()1,+∞上单调递减,则h()x<h()1=0,即ln x-x+1<0,则x-1>ln x,所以f()x-1>f()ln x>0,即e x-1-1x-1>eln x-1ln x>0,可得e x-1-1x-1⋅1e ln x-1ln x>1,则a≤1,解答本题,要先将不等式进行整理,使参数和变量分离;再构造出函数f()x=e x-1x()x>0,将问题转化为函数最值问题.对其求导,判断其单调性,即可求得参数的取值范围.三、函数性质法若含参不等式中含有简单基本函数,则可直接将不等式进行变形,将其构造成函数,把问题转化为f(x,a)≥0、f(x,a)<0、f(x,a)≥g(x,a)、f(x,a)<g(x,a)等函数不等式问题.再根据简单基本函数的单调性,以及导数与函数单调性之间的关系,判断出函数的单调性,即可根据函数的单调性,求得函数的最值,顺利求出问题的答案.例3.若不等式sin x-ln()x+1+e x≥1+x+ax2-13x3恒成立,则a的取值范围为_____.解:由x>-1得,sin x-ln(x+1)+e x-x-1-ax2+13x3≥0,设f(x)=sin x-ln(x+1)+e x-x-1-ax2+13x3,则g(x)=f′(x)=cos x-1x+1+e x-1-2ax+x2,则h(x)=g′(x)=-sin x+1(x+1)2+e x-2a+2x,则z(x)=h′(x)=-cos x-2(x+1)3+e x+2,z′(x)=sin x+6(x+1)4+e x,当x>-1时,z′(x)>0,则h(x)单调递增,又当x∈(-1,0)时,z(x)<0,则h(x)单调递减,当x∈(0,+∞)时,z(x)>0,则h(x)单调递增,又h(0)=2-2a,①当2-2a≥0,即1≥a时,h(0)≥0,则当x∈(-1,+∞)孙小芳35考点透视时,h (x )≥0,此时g (x )单调递增,又g (0)=0,故当x ∈(-1,0)时,g (x )<0,则f (x )单调递减,当x ∈(0,+∞)时,g (x )>0时,f (x )单调递增,所以f (x )min =f (0),又f (0)=0,故f (x )≥0恒成立,满足题意;②当2-2a <0,即a >1时,h (0)<0,x →+∞,h (x )→+∞,故存在x 0>0,且h (x 0)=0,则当x ∈(-1,x 0)时,h (x )<0,则g (x )单调递减,当x ∈(x 0,+∞)时,h (x )>0,所以g (x )单调递增,又g (0)=0,故g (x 0)<0,x →+∞,g (x )→+∞,故存在x 1>x 0,且g (x 1)=0,所以当x ∈(-1,x 1)时,g (x )<0,则f (x )单调递减,又因为f (0)=0,所以f (x )<f (0)=0,与f (x )≥0恒成立不相符;综上所述,a ≤1.根据不等式构造函数f (x )=sin x -ln(x +1)+e x -x -1-ax 2+13x 3,通过多次求导,判断出导函数的符号,进而判断出函数的单调性,求得函数最值.求得使f (x )min ≥0成立时a 的取值范围,即可解题.四、主参换位法主参换位法,也叫反客为主法,适用于解答已知参数的范围求自变量取值范围的不等式问题.解答这类问题一般分三个步骤:第一步,将原不等式转化成关于参数的不等式;第二步,以参数为自变量,构造函数式,将问题转化为函数问题;第三步,根据函数的性质、图象讨论不等式成立的情形,建立关系即可解题.例4.已知函数f ()x =ax 2+bx -6,不等式f ()x ≤0的解集为[]-3,2.若当0≤m ≤4时,不等式mf ()x +6m <x +1恒成立,求实数x 的取值范围.解:由题意知:-3,2是方程ax 2+bx -6=0的根,且a >0,∴ìíîïï-b a=-3+2,-6a=(-3)×2,解得a =1,b =1.∴f ()x =x 2+x -6,∴mf ()x +6m <x +1可变形为()x 2+x m -x -1<0,令g ()m =()x 2+x m -x -1,∴{g (0)<0,g (4)<0,即{-x -1<0,4x 2+3x -1<0,解得ìíîx >-1,-1<x <14,-1<x <14.解答本题主要采用了主参换位法.因为已知参数m 的取值范围,故把m 当成自变量,通过主参换位,将问题转化为g ()m =()x 2+x m -x -1对任意0≤m ≤4恒成立,根据一次函数的性质,列出不等式组,即可解题.五、数形结合法当把不等式两边的式子看成两个函数式时,可根据其几何意义画出两个函数的图象,分析两个曲线间的位置,确保不等式恒成立,即可通过数形结合,求得参数的取值范围.例5.若关于x 的不等式||||kx -4-x 2-3≤3k 2+1恒成立,则k 的取值范围是_____.解:由题意可得4-x 2≥0,得-2≤x ≤2,则||||kx -4-x 2-3≤3k 2+1可转化为:||kx -4-x 23,设直线l :kx -y -3=0,上半圆C :x 2+y 2=4()y >0,即y =4-x 2,半径为r =2,||kx -4-x 2≤3表示圆C 小于或等于3,如图,设圆心(原点O )到直线l 的距离为d ,由于圆C 上半部分上的点到直线l 的最大距离为d +r =d +2,所以d +2≤3,即d ≤1,即||0-0-3k 2+1≤1,解得k ≤-22或k ≥22,所以k 的取值范围为(]-∞,-22⋃[)22,+∞.解答本题,需挖掘代数式的几何意义,采用数形结合法,将原问题转化为使圆C 上半部分上的任意一点到直线l 的距离小于或等于3时参数的取值范围.分析直线与圆的位置关系,便可建立新不等式.由此可见,求解含参不等式问题的方法多样.但由于不等式与函数的关系紧密,且利用函数的单调性和图象容易建立不等关系式,因此函数思想是破解含参不等式问题的主要思想.(作者单位:江苏省南京市大厂高级中学)36。

含参量不等式解法解析

含参量不等式解法解析

含参量不等式解法解析一、含参量的一元二次不等式解法例1 解关于x的不等式ax2+2x+1<0(ar)。

分析:对含参量的一元二次不等式的讨论首先讨论二次项系数,再判断“△”与零的关系。

一般还要对根的大小进行比较。

判断根的大小结合二次函数的图象写解集解:(1)当a=0时,原不等式的解集为{x|x>-■}。

(2)当a>0时,方程ax2+2x+1=0,△=4-4a。

①若△>0,即0时,方程ax2+2x+1=0的两个解为x1=■,x2=■,x1<x2。

所以原不等式的解集为{|x<■,或x>■ }。

②若△=0,即a=1时,原不等式的解集为{x|x≠-1}。

③若△1时,原不等式的解集为R。

④当a0,方程两个解为x1=■,x2=■,且x1>x2。

原不等式的解集为{x|■<x<■}。

总结:对含参数的一元二次不等式的讨论,一般可分为以下三种情形:(1)当含参数的一元二次不等式的二次项系数为常数,但不知道与之对应的一元二次方程是否有解时需要对判别式”△”进行讨论。

(2)当含参数的一元二次不等式的二次项系数为常数,且与之对应的一元二次方程有两解,但不知道两个解的大小,因此需要对解的大小进行比较。

(3)当含参数的一元二次不等式的二次项系数含有参数时,首先要对二次项系数进行讨论,其次,有时要对判别式进行讨论,有时还要对方程的解的大小进行比较。

二、含参数的绝对值不等式的讨论方法例2 解关于x的不等式|x2+2x-3|>a。

错解:|x2+2x-3|>a。

当x2+2x-3>a时,解得x>-1+■。

当x2+2x-3<-a时,解得-1+■<x<-1+■。

剖析:此解法没有对a作任何讨论,陷入了解不等式的思维混乱状态。

解绝对值不等式的关键是去掉绝对值符号,由于a的范围不确定,所以解题时需对a 进行分类讨论,特别注意解不等式时要考虑0≤a0时,原不等式等价于■<0。

由于■>1,可解得1<x<■。

也可先确定两根,然后直接写出解集。

含参数不等式的解法

含参数不等式的解法

含参数不等式的解法
在数学中,一个不等式可以被定义为一个形式化的声明,表示两个数
值或变量之间的关系。

由于不等式表示的关系比等式要复杂,因此求解不
等式需要更多的数学技巧。

不等式解有多种不同的方法,每种解法的有效
性取决于给定不等式的形式和需要解决的问题。

本文将介绍几种常用的解
决不等式的方法。

一、分类法
该方法根据不等式的类型来求解。

许多不等式可以归类为线性不等式、二次不等式、无穷多项式不等式或层次不等式。

确定不等式的类型是求解
该不等式的首要步骤,因为不同类型的不等式需要用不同的方法来解决。

例如,二次不等式可以用二次求根公式求出解集,而线性不等式可以使用
图形法来求解。

二、所有积分数的测试法
在求解不等式时,可以使用此法来检查所有可能的积分数,以确定它
们是否符合不等式的要求。

例如,要解决不等式n>3,可以通过设置
n=1,2,3,4来检查n是否大于3、如果n大于3,那么意味着解集是n>3;
如果n不大于3,那么意味着解集是n≤3、因此,可以使用这种方法来求
解大多数不等式。

三、交换法
交换法是一种求解不等式的有效方法,可以用来求解不等式以及等式。

含参数不等式的解法

含参数不等式的解法

含参数不等式的解法含参数的不等式是指在不等式中存在一个或多个参数,通过改变参数的取值,使不等式成立或不成立。

解这类不等式通常需要用到代数方法。

一、一元不等式的参数解法对于只含有一个未知数的一元不等式,可以使用参数解法。

首先,我们假设未知数为一个参数,然后求解这个参数的取值范围,使得不等式成立。

举例说明:解不等式,x+2,<1,其中x是实数。

我们将未知数x设为参数t,即x=t。

则原不等式可以改写为,t+2,<1、要使不等式成立,必须有-1<t+2<1,即-3<t<-1所以,参数t的取值范围为-3<t<-1二、含有二元或多元不等式的参数解法对于含有二元或多元的不等式,也可以采用参数解法来求解。

举例说明:解不等式(ax+b)/(cx+d)>0,其中a,b,c,d为实数,且ac≠0。

可以将未知数x设为参数t,即x=t。

则原不等式可以改写为(at+b)/(ct+d)>0。

我们设函数f(t)=(at+b)/(ct+d),其中t为参数。

要使不等式(at+b)/(ct+d)>0成立,需要满足两个条件:1.f(t)不等于0;2.f(t)为正数。

将f(t)=(at+b)/(ct+d)令为0,得到(at+b)/(ct+d)=0,解得t=-b/a。

由于ac≠0,所以c≠0。

将f(t)=(at+b)/(ct+d)分成两种情况讨论:情况1:若c>0,则当t<-d/c或t>-b/a时,f(t)同号,即f(t)>0或f(t)<0。

情况2:若c<0,则当t>-d/c且t<-b/a时,f(t)同号,即f(t)>0或f(t)<0。

综合情况1和情况2,可以得到解不等式(ax+b)/(cx+d)>0的参数t的取值范围。

三、举一反三除了以上例子,还有许多不等式可以采用参数解法来求解。

例如解不等式(sin x-1)/(sin x+1)<0,其中x为实数。

含参不等式的解法

含参不等式的解法

不等式(3)----含参不等式的解法当在一个不等式中含有了字母,则称这一不等式为含参数的不等式,那么此时的参数可以从以下两个方面来影响不等式的求解,首先是对不等式的类型(即是那一种不等式)的影响,其次是字母对这个不等式的解的大小的影响。

我们必须通过分类讨论才可解决上述两个问题,同时还要注意是参数的选取确定了不等式的解,而不是不等式的解来区分参数的讨论。

解参数不等式一直是高考所考查的重点内容。

(一)几类常见的含参数不等式一、含参数的一元二次不等式的解法:例1 解关于的x不等式(m • 1)x? _4x • 1乞0(m・R)分析:当m+1=0时,它是一个关于x的一元一次不等式;当m+1 = 1时,还需对m+1>0及m+1<0来分类讨论,并结合判别式及图象的开口方向进行分类讨论:⑴当m< —1时,"=4 (3- m) >0,图象开口向下,与x轴有两个不同交点,不等式的解集取两边。

⑵当一1<m<3时,"=4 (3—m) >0,图象开口向上,与x 轴有两个不同交点,不等式的解集取中间。

⑶当m=3时,"=4 (3—m) =0,图象开口向上,与x轴只有一个公共点,不等式的解为方程4x? -4x=0的根。

⑷当口>3时,"=4 ( 3—m) <0,图象开口向上全部在x 轴的上方,不等式的解集为..。

解:八・1当m - -1时,原不等式的解集为x|x丄-;1 4J当m时,(m 1)x^4x 0的判别式-=4(3— m);贝V当mc—1时,原不等式的解集为』x| x/ _、3_m或x兰2+、3_m卜m+1 m+1当-1 wm £3时,原不等式的解集为収l2^3—m☆兰2+"一m'>m+1 m+1当m=3时,原不等式的解集为| x =丄?;当m>3时,原不等式的解集为.一。

小结:⑴解含参数的一元二次不等式可先分解因式再讨论求解,若不易分解,也可对判别式分类讨论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第40讲 含参数的不等式
【考点解读】
解含参数的不等式的基本途径——分类讨论思想的应用;(应注意寻找讨论点,以讨论点划分区间进行讨论求解.能避免讨论的应设法避免讨论)。

【知识扫描】
含有参数的不等式可渗透到各类不等式中去,在解不等式时随时可见含参数的不等式.而这类含参数的不等式是我们教学和高考中的一个重点和难点.解含参数的不等式往往需要分类讨论求解,寻找讨论点(常见的如零点,等值点等),正确划分区间,是分类讨论解决这类问题的关键.在分类讨论过程中要做到不重,不漏.
【考计点拔】
牛刀小试:
1.设0<a<1,给出下面四个不等式:
①)1(2log +a a
<)1(3log +a a ②2a a >(2a )a ③(2
a )a >a a ④a a >2a a 其中不成立的有( )
A.0个
B.1个
C.2个
D.3个
【答案】B
2.已知方程mx 2-2(m+2)x+(m+5)=0有两个不同的正根,则m 的取值范围是( )
A.m<4
B.0<m<4
C.m<-5或0<m<4
D.m<-2或0<m<4
【答案】B
3.关于x 的不等式(k 2-2k+25)x <(k 2-2k+2
5)1-x 的解集为( ) A.{x |x<21} B.{x |x>21} C.{x |x>2} D.{x |x<2}
【答案】A
4.若ax 2+bx+c>0的解集为{x |x<-2或x>4},那么对于函数f(x)=ax 2+bx+c 会有( )
A.f(5)<f(2)<f(-1)
B.f(2)<f(5)<f(-1)
C.f(-1)<f(2)<f(5)
D.f(2)<f(-1)<f(5)
【答案】D
5.若函数f(x)=212log ,0,log (),0x x x x >⎧⎪⎨-<⎪⎩,若f(a)>f(-a),则实数a 的取值范围是
(A )(-1,0)∪(0,1) (B )(-∞,-1)∪(1,+∞)
(C )(-1,0)∪(1,+∞) (D )(-∞,-1)∪(0,1)
【答案】C
【解析】当0a >时,由f(a)>f(-a)得:212log log a a
>,即221log log a a >,即1a a >,
解得1a >;当0a <时,由f(a)>f(-a)得:12log ()a ->
2()log a -,即21log (a
->2()log a -, 即1a -
>
a -,解得10a -<<,故选C 。

【典例解析】
考点一:根据不等式的解集求变量的范围
例1. 已知A ={x| 2ax 2+(2-ab)x -b>0},B ={x| x<-2或x>3},其中b>0,若A ⊇B ,求a 、b 的取值范围.
解:a ≥21且0<b ≤6
【变式训练1】:不等式
11<-x ax 的解集是{x| x<1或x>2},则a = . 解:a =21
考点二:函数与不等式
例2. 已知关于x 的不等式
a x ax --5<0的解集为M ,(1) 当a =4时,求集合M ;(2) 若3∈M 且5∉M ,求实数a 的取值范围.
解: (1)M ={x|x <-2或
45<x <2} (2)a ∈[1,35
)∪(9,25]
【变式训练2】:已知函数f (x)=b
ax x +2(a 、b 为常数),且方程f (x)-x +12=0有两个实根为x 1=3,x 2=4.(1)求函数f (x)的解析式;
(2)设k >1,解关于x 的不等式f (x)<x
k x k --+2)1(. 解:(1)将x 1=3,x 2=4分别代入方程b ax x +2-x +12=0 得:931684a a b a b ⎧=-⎪⎪+⎨⎪=-⎪+⎩
解得1,2a b =-=
所以f(x)=x
x -22(x ≠2)
(2)不等式即为x
k x k x x --+<-2)1(22 可代为02)1(2<-++-x k x k x 即0))(1)(2(>---k x x x
①当1<k <2时,解集为x ∈(1,k)∪(2,+∞)
②当k =2时,不等式为(x -2)2(x -1)>0,解集为x ∈(1,2)∪(2,+∞)
③当k >2时,解集为x ∈(1,2)∪(k ,+∞)
考点三:分类讨论
例3. 解关于x 的不等式ax 2-2≥2x -ax(a ∈R).
解:a =0时,x ≤-1;a >0时,x ≤-1或x ≥a
2,
-2<a <0时,a 2≤x ≤-1;a =-2时,x =-1;a <-2时,-1≤x ≤a 2.
【规律小结】解含参数的不等式的基本途径是分类讨论,应注意寻找讨论点,以讨论点划分区间进行讨论求解.能避免讨论的应设法避免讨论.
【变式训练3】:解关于x 的不等式01224222>+--a a ax x . 解:(1)当2a +1>0,即a >-2
1时,原不等式为(x +4a)(x -6a)>0
①当a >0时,x ∈(-∞,-4a)∪(6a ,+∞) ②当-21<a <0时,x ∈
③当a =0时,x ∈(-∞,0)∪(0,+∞)
(2)当2a +1<0,即a <-21时,原不等式为(x +4a)(x -6a) ∴x ∈(6a ,-4a)
综合以上,原不等式的解集为:
当a ≥0时,解集为(-∞,-4a)∪(6a ,+∞) 当-21<a <0时,解集为(-∞,6a)∪(-4a ,+∞)
当a <-21时,解集为(6a ,-4a)。

相关文档
最新文档