2019-2020年高考数学二轮复习 立体几何专题教案
【2019-2020】高考数学二轮复习专题四立体几何第一讲空间几何体教案理

【2019-2020】高考数学二轮复习专题四立体几何第一讲空间几何体教案理空间几何体的三视图授课提示:对应学生用书第34页[悟通——方法结论] 一个物体的三视图的排列规则俯视图放在正视图的下面,长度与正视图的长度一样,侧视图放在正视图的右面,高度与正视图的高度一样,宽度与俯视图的宽度一样,即“长对正、高平齐、宽相等”.[全练——快速解答]1.(2018·高考全国卷Ⅲ)古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )解析:由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应选A.故选A. 答案:A2.(2017·高考全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16解析:由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,且这两个梯形全等,这些梯形的面积之和为(2+4)×22×2=12,故选B.答案:B3.(2018·山西八校联考)将正方体(如图1)截去三个三棱锥后,得到如图2所示的几何体,侧视图的视线方向如图2所示,则该几何体的侧视图为( )解析:将图2中的几何体放到正方体中如图所示,从侧视图的视线方向观察,易知该几何体的侧视图为选项D 中的图形,故选D.答案:D明确三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线,看不到的部分用虚线表示.(2)由几何体的部分视图画出剩余的视图.先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.空间几何体的表面积与体积授课提示:对应学生用书第35页[悟通——方法结论]求解几何体的表面积或体积(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解.(3)求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形的应用.[全练——快速解答]1.(2017·高考全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90πB.63πC.42πD.36π解析:法一:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,故其体积V =π×32×10-12×π×32×6=63π.法二:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,其体积等价于底面半径为3,高为7的圆柱的体积,所以它的体积V =π×32×7=63π.答案:B2.(2018·福州四校联考)已知某几何体的三视图如图所示,则该几何体的表面积为( )A .272B .27C .27 2D .27 3解析:在长、宽、高分别为33,3,33的长方体中,由几何体的三视图得几何体为如图所示的三棱锥C BAP ,其中底面BAP 是∠BAP =90˚的直角三角形,AB =3,AP =33,所以BP =6,又棱CB ⊥平面BAP 且CB =33,所以AC =6,所以该几何体的表面积是12×3×33+12×3×33+12×6×33+12×6×33=273,故选D.答案:D3.(2018·西安八校联考)某几何体的三视图如图所示,则该几何体的体积是( )A.4π3 B.5π3C .2+2π3D .4+2π3解析:由三视图可知,该几何体为一个半径为1的半球与一个底面半径为1,高为2的半圆柱组合而成的组合体,故其体积V =23π×13+12π×12×2=53π,故选B.答案:B4.(2018·高考全国卷Ⅰ)在长方体ABCD A 1B 1C 1D 1中,AB =BC =2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( )A .8B .6 2C .8 2D .8 3解析:如图,连接AC 1,BC 1,AC .∵AB ⊥平面BB 1C 1C ,∴∠AC 1B 为直线AC 1与平面BB 1C 1C 所成的角,∴∠AC 1B =30°.又AB =BC =2,在Rt △ABC 1中,AC 1=2sin 30°=4,在Rt △ACC 1中,CC 1=AC 21-AC 2=42-(22+22)=22,∴V 长方体=AB ×BC ×CC 1 =2×2×22=8 2. 故选C. 答案:C1.活用求几何体的表面积的方法(1)求表面积问题的基本思路是将立体几何问题转化为平面几何问题,即空间图形平面化,这是解决立体几何的主要出发点.(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差得几何体的表面积.2.活用求空间几何体体积的常用方法 (1)公式法:直接根据相关的体积公式计算.(2)等积法:根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容易,或是求出一些体积比等.(3)割补法:把不能直接计算体积的空间几何体进行适当分割或补形,转化为易计算体积的几何体.空间几何体与球的切、接问题授课提示:对应学生用书第36页[悟通——方法结论]1.解决与球有关的“切”“接”问题,一般要过球心及多面体中的特殊点或过线作截面,把空间问题转化为平面问题,从而寻找几何体各元素之间的关系.2.记住几个常用的结论:(1)正方体的棱长为a ,球的半径为R . ①正方体的外接球,则2R =3a ; ②正方体的内切球,则2R =a ; ③球与正方体的各棱相切,则2R =2a .(2)在长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为3∶1.(1)(2017·高考全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2 D.π4解析:设圆柱的底面半径为r ,则r 2=12-⎝ ⎛⎭⎪⎫122=34,所以,圆柱的体积V =34π×1=3π4,故选B.答案:B(2)(2017·高考全国卷Ⅰ)已知三棱锥S ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ABC 的体积为9,则球O 的表面积为________.解析:如图,连接AO ,OB , ∵SC 为球O 的直径,∴点O 为SC 的中点, ∵SA =AC ,SB =BC , ∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC , ∴AO ⊥平面SCB , 设球O 的半径为R , 则OA =OB =R ,SC =2R . ∴V S ABC =V A SBC =13×S △SBC ×AO=13×⎝ ⎛⎭⎪⎫12×SC ×OB ×AO , 即9=13×⎝ ⎛⎭⎪⎫12×2R ×R ×R ,解得R =3,∴球O 的表面积为S =4πR 2=4π×32=36π. 答案:36π掌握“切”“接”问题的处理方法(1)“切”的处理:解决与球有关的内切问题主要是指球内切多面体与旋转体,解答时要先找准切点,通过作截面来解决.如果内切的是多面体,则多通过多面体过球心的对角面来作截面.(2)“接”的处理:把一个多面体的几个顶点放在球面上即球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.[练通——即学即用]1.(2018·湘东五校联考)已知等腰直角三角形ABC 中,AB =AC =2,D ,E 分别为AB ,AC 的中点,沿DE 将△ABC 折成直二面角(如图),则四棱锥A D ECB 的外接球的表面积为________.解析:取DE 的中点M ,BC 的中点N ,连接MN (图略),由题意知,MN ⊥平面ADE ,因为△ADE 是等腰直角三角形,所以△ADE 的外接圆的圆心是点M ,四棱锥A DECB 的外接球的球心在直线MN 上,又等腰梯形DECB 的外接圆的圆心在MN 上,所以四棱锥A DECB 的外接球的球心就是等腰梯形DECB 的外接圆的圆心.连接BE ,易知△BEC 是钝角三角形,所以等腰梯形DECB 的外接圆的圆心在等腰梯形DECB 的外部.设四棱锥A DECB 的外接球的半径为R ,球心到BC 的距离为d ,则⎩⎪⎨⎪⎧R 2=d 2+(2)2,R 2=(d +22)2+(22)2,解得R 2=52,故四棱锥A DECB 的外接球的表面积S =4πR 2=10π.答案:10π2.(2018·合肥模拟)如图,已知平面四边形ABCD 满足AB =AD =2,∠A =60˚,∠C =90˚,将△ABD 沿对角线BD 翻折,使平面ABD ⊥平面CBD ,则四面体ABCD 外接球的体积为________.解析:在四面体ABCD 中,∵AB =AD =2,∠BAD =60˚,∴△ABD 为正三角形,设BD 的中点为M ,连接AM ,则AM ⊥BD ,又平面ABD ⊥平面CBD ,平面ABD ∩平面CBD =BD ,∴AM ⊥平面CBD .∵△CBD 为直角三角形,∴其外接圆的圆心是斜边BD 的中点M ,由球的性质知,四面体ABCD 外接球的球心必在线段AM 上,又△ABD 为正三角形,∴球心是△ABD 的中心,则外接球的半径为23×2×32=233,∴四面体ABCD 外接球的体积为43×π×(233)3=323π27.答案:323π27授课提示:对应学生用书第135页一、选择题1.(2018·广州模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )解析:由题意可得该几何体可能为四棱锥,如图所示,其高为2,底面为正方形,面积为2×2=4,因为该几何体的体积为13×4×2=83,满足条件,所以俯视图可以为一个直角三角形.故选D.答案:D2.(2018·高考全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1、O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π解析:设圆柱的轴截面的边长为x ,则由x 2=8,得x =22,∴S 圆柱表=2S 底+S 侧=2×π×(2)2+2π×2×22=12π.故选B. 答案:B3.(2018·合肥模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .5π+18B .6π+18C .8π+6D .10π+6解析:由三视图可知,该几何体由一个半圆柱与两个半球构成,故其表面积为4π×12+12×2×π×1×3+2×12×π×12+3×2=8π+6.故选C. 答案:C4.(2018·沈阳模拟)某四棱锥的三视图如图所示,则该四棱锥的侧面积是( )A .4+4 2B .42+2C .8+4 2D .83解析:由三视图可知该几何体是一个四棱锥,记为四棱锥P ABCD ,如图所示,其中PA ⊥底面ABCD ,四边形ABCD 是正方形,且PA =2,AB =2,PB =22,所以该四棱锥的侧面积S 是四个直角三角形的面积和,即S =2×(12×2×2+12×2×22)=4+42,故选A.答案:A5.(2018·聊城模拟)在三棱锥P ABC 中,已知PA ⊥底面ABC ,∠BAC =120˚,PA =AB =AC =2,若该三棱锥的顶点都在同一个球面上,则该球的表面积为( )A .103πB .18πC .20πD .93π解析:该三棱锥为图中正六棱柱内的三棱锥P ABC ,PA =AB =AC =2,所以该三棱锥的外接球即该六棱柱的外接球,所以外接球的直径2R =42+22=25⇒R =5,所以该球的表面积为4πR 2=20π.答案:C6.(2018·高考全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .2 5C .3D .2解析:先画出圆柱的直观图,根据题图的三视图可知点M ,N 的位置如图①所示.圆柱的侧面展开图及M ,N 的位置(N 为OP 的四等分点)如图②所示,连接MN ,则图中MN 即为M 到N 的最短路径.ON =14×16=4,OM =2,∴|MN |=OM 2+ON 2=22+42=2 5. 故选B. 答案:B7.在正三棱柱ABC A 1B 1C 1中,AB =2,AA 1=3,点M 是BB 1的中点,则三棱锥C 1AMC 的体积为( )A. 3B. 2 C .2 2D .2 3解析:取BC 的中点D ,连接AD .在正三棱柱ABC A1B 1C 1中,△ABC 为正三角形,所以AD ⊥BC ,又BB 1⊥平面ABC ,AD ⊂平面ABC ,所以BB 1⊥AD ,又BB 1∩BC =B ,所以AD ⊥平面BCC 1B 1,即AD ⊥平面MCC 1,所以点A 到平面MCC 1的距离就是AD .在正三角形ABC 中,AB =2,所以AD =3,又AA 1=3,点M 是BB 1的中点,所以S △MCC 1=12S 矩形BCC 1B 1=12×2×3=3,所以VC 1-AMC=VA MCC 1=13×3×3= 3.答案:A8.如图,四棱锥P ABCD 的底面ABCD 为平行四边形,NB =2PN ,则三棱锥N PAC 与三棱锥D PAC 的体积比为( )A .1∶2B .1∶8C .1∶6D .1∶3解析:由NB =2PN 可得PN PB =13.设三棱锥N PAC 的高为h 1,三棱锥B PAC 的高为h ,则h 1h=PN PB =13.又四边形ABCD 为平行四边形,所以点B 到平面PAC 的距离与点D 到平面PAC 的距离相等,所以三棱锥N PAC 与三棱锥D PAC 的体积比为V 1V =13S △PAC ×h 113S △PAC ×h =13.答案:D9.已知球的直径SC =4,A ,B 是该球球面上的两点,∠ASC =∠BSC =30˚,则棱锥S ABC 的体积最大为( )A .2B .83 C . 3D .2 3解析:如图,因为球的直径为SC ,且SC =4,∠ASC =∠BSC =30˚,所以∠SAC =∠SBC =90˚,AC =BC =2,SA =SB =23,所以S △SBC =12×2×23=23,则当点A 到平面SBC 的距离最大时,棱锥A SBC 即S ABC的体积最大,此时平面SAC ⊥平面SBC ,点A 到平面SBC 的距离为23sin 30˚=3,所以棱锥S ABC 的体积最大为13×23×3=2,故选A.答案:A 二、填空题10.(2018·洛阳统考)已知点A ,B ,C ,D 均在球O 上,AB =BC =6,AC =2 3.若三棱锥D ABC 体积的最大值为3,则球O 的表面积为________.解析:由题意可得,∠ABC =π2,△ABC 的外接圆半径r =3,当三棱锥的体积最大时,V D ABC =13S △ABC ·h (h 为D 到底面ABC 的距离),即3=13×12×6×6h ⇒h =3,即R +R 2-r 2=3(R 为外接球半径),解得R =2,∴球O 的表面积为4π×22=16π.答案:16π11.已知某几何体的三视图如图,其中正视图中半圆直径为4,则该几何体的体积为________.解析:由三视图可知该几何体为一个长方体挖掉半个圆柱,所以其体积为2×4×8-12×π×22×2=64-4π.答案:64-4π12.某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为________.解析:由三视图可知,几何体的直观图如图所示,平面AED ⊥平面BCDE ,四棱锥A BCDE 的高为1,四边形BCDE 是边长为1的正方形,则S △ABC =S △ABE =12×1×2=22,S △A D E =12,S △ACD =12×1×5=52,故面积最大的侧面的面积为52. 答案:5213.(2018·福州四校联考)已知三棱锥A BCD 的所有顶点都在球O 的球面上,AB 为球O 的直径,若该三棱锥的体积为3,BC =3,BD =3,∠CBD =90˚,则球O 的体积为________.解析:设A 到平面BCD 的距离为h ,∵三棱锥的体积为3,BC =3,BD =3,∠CBD =90˚,∴13×12×3×3×h =3,∴h =2,∴球心O 到平面BCD 的距离为1.设CD 的中点为E ,连接OE ,则由球的截面性质可得OE ⊥平面CBD ,∵△BCD 外接圆的直径CD =23,∴球O 的半径OD =2,∴球O 的体积为32π3.答案:32π3。
2020版高考数学二轮复习第2部分专题4立体几何第2讲空间向量与立体几何教案理

第2讲 空间向量与立体几何[做小题——激活思维]1.在正方体A 1B 1C 1D 1ABCD 中,AC 与B 1D 所成角的大小为( ) A.π6 B.π4 C.π3D.π2D [如图,连接BD ,易证AC ⊥平面BB 1D , ∴AC ⊥B 1D ,∴AC 与B 1D 所成角的大小为π2.] 2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A .45° B .135° C .45°或135°D .90°C [∵m =(0,1,0),n =(0,1,1), ∴|m |=1,|n |=2,m ·n =1,∴cos〈m ,n 〉=m ·n |m ||n |=12=22,设两平面所成的二面角为α,则 |cos α|=22,∴α=45°或135°,故选C.] 3.用a ,b ,c 表示空间中三条不同的直线,γ表示平面,给出下列命题: ①若a ⊥b ,b ⊥c ,则a ∥c ;②若a ∥b ,a ∥c ,则b ∥c ; ③若a ∥γ,b ∥γ,则a ∥b ;④若a ⊥γ,b ⊥γ,则a ∥b . 其中真命题的序号是( ) A .①② B .②③ C .①④D .②④D [对于①,正方体从同一顶点引出的三条直线a ,b ,c ,满足a ⊥b ,b ⊥c ,但是a ⊥c ,所以①错误;对于②,若a ∥b ,a ∥c ,则b ∥c ,满足平行线公理,所以②正确;对于③,平行于同一平面的两条直线的位置关系可能是平行、相交或者异面,所以③错误;对于④,由垂直于同一平面的两条直线平行,知④正确.故选D.]4.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为________.π6[设l 与α所成的角为θ,则 sin θ=|cos 〈m ,n 〉|=12,又θ∈⎣⎢⎡⎦⎥⎤0,π2,∴θ=π6.][扣要点——查缺补漏]1.证明线线平行和线线垂直的常用方法(1)证明线线平行:①利用平行公理;②利用平行四边形进行平行转换;③利用三角形的中位线定理;④利用线面平行、面面平行的性质定理进行平行转换.如T 3.(2)证明线线垂直:①利用等腰三角形底边上的中线即高线的性质;②勾股定理;③线面垂直的性质.2.证明线面平行和线面垂直的常用方法(1)证明线面平行:①利用线面平行的判定定理;②利用面面平行的性质定理. (2)证明线面垂直:①利用线面垂直的判定定理;②利用面面垂直的性质定理. 3.异面直线所成的角求法 (1)平移法:解三角形.(2)向量法:注意角的范围.如T 1. 4.二面角的求法cos θ=cos 〈m ,n 〉=m ·n|m ||n |,如T 2.5.线面角的求法sin θ=|cos 〈m ,n 〉|,如T 4.利用空间向量求空间角(5年15考)[高考解读] 主要考查通过建立空间直角坐标系,解决空间图形中的线线角、线面角和面面角的求解,考查学生的空间想象能力、运算能力、三种角的定义及求法等.(2018·全国卷Ⅱ)如图,在三棱锥P ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C 为30°,求PC 与平面PAM 所成角的正弦值.切入点:(1)借助勾股定理,证明PO ⊥OB ;(2)建立空间直角坐标系,利用二面角M PA C 为30°求出点M 的坐标,进而求出PC 与平面PAM 所成角的正弦值.[解](1)证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3. 连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形, 且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,知PO ⊥平面ABC . (2)如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系O xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP →=(0,2,23).取平面PAC 的一个法向量OB →=(2,0,0).设M (a,2-a,0)(0≤a ≤2),则AM →=(a,4-a,0). 设平面PAM 的法向量为n =(x ,y ,z ). 由AP →·n =0,AM →·n =0得⎩⎨⎧2y +23z =0,ax +-a y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈OB →,n 〉=23a -2a -2+3a 2+a2.由已知可得|cos 〈OB →,n 〉|=32,所以23|a -4|2a -2+3a 2+a2=32, 解得a =-4(舍去),a =43,所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. [教师备选题]1.(2015·全国卷Ⅰ)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.[解](1)证明:如图,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF . 在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC = 3.由BE ⊥平面ABCD ,AB =BC ,可知AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt△EBG 中,可得BE =2,故DF =22. 在Rt△FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322. 从而EG 2+FG 2=EF 2,所以EG ⊥FG . 又AC ∩FG =G ,所以EG ⊥平面AFC . 因为EG平面AEC ,所以平面AEC ⊥平面AFC .(2)如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长度,建立空间直角坐标系G xyz .由(1)可得A (0,-3,0),E (1,0,2),F -1,0,22,C (0,3,0), 所以A E →=(1,3,2),CF →=⎝ ⎛⎭⎪⎫-1,-3,22.故cos 〈A E →,CF →〉=A E →·CF →|A E →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33. 2.(2019·全国卷Ⅰ)如图,直四棱柱ABCD A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A MA 1N 的正弦值.[解](1)连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1DC ,可得B 1C A 1D ,故ME ND ,因此四边形MNDE 为平行四边形,MN ∥ED .又MN平面EDC 1,所以MN ∥平面C 1DE .(2)由已知可得DE ⊥D A.以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz ,则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0).设m =(x ,y ,z )为平面A 1MA 的法向量,则 ⎩⎪⎨⎪⎧m ·A 1M →=0,m ·A 1A →=0.所以⎩⎨⎧-x +3y -2z =0,-4z =0.可取m =(3,1,0).设n =(p ,q ,r )为平面A 1MN 的法向量,则 ⎩⎪⎨⎪⎧n ·MN →=0,n ·A 1N →=0.所以⎩⎨⎧-3q =0,-p -2r =0.可取n =(2,0,-1).于是cos 〈m ,n 〉=m·n |m||n|=232×5=155,所以二面角A MA 1N 的正弦值为105.1.利用向量法求线面角的两种方法(1)法一:分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)法二:通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.2.利用向量计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐(钝)二面角.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.提醒:判断二面角的平面角是锐角还是钝角,可结合图形进行.1.[一题多解](以圆柱为载体)如图,圆柱的轴截面ABCD 为正方形,E 为弧BC 的中点,则异面直线AE 与BC 所成角的余弦值为 ( )A.33 B.55 C.306D.66D [法一:(平移法)取BC 的中点H ,连接EH ,AH ,∠EHA =90°,设AB =2,则BH =HE =1,AH =5,所以AE =6,连接ED ,ED =6,因为BC ∥AD ,所以异面直线AE 与BC 所成角即为∠EAD ,在△EAD 中cos∠EAD =6+4-62×2×6=66,故选D.法二:(向量法)取圆柱底面的圆心O 为原点,建立空间直角坐标系O xyz ,设AB =2,则A (1,0,0),B (1,0,2),C (-1,0,2),E (0,1,2),∴A E →=(-1,1,2),BC →=(-2,0,0)∴cos〈A E →,BC →〉=26×2=66,故选D.] 2.(以棱柱为载体)在三棱柱ABC A1B 1C 1中, AB ⊥平面BCC 1B 1,∠BCC 1=π3, AB =BC =2, BB 1=4,点D 在棱CC 1上,且CD =λCC 1(0<λ≤1).建立如图所示的空间直角坐标系.(1)当λ=12时,求异面直线AB 1与A 1D 的夹角的余弦值;(2)若二面角A B 1D A 1的平面角为π3,求λ的值.[解](1)易知A ()0,0,2, B 1()0,4,0, A 1()0,4,2. 当λ=12时, 因为BC =CD =2, ∠BCC 1=π3,所以C ()3,-1,0,D ()3,1,0.所以AB 1→=()0,4,-2, A 1D →=()3,-3,-2. 所以cos 〈AB 1→,A 1D →〉=AB 1→·A 1D→||AB 1→||A 1D →=0×3+4×()-3+()-2×()-242+()-22·()32+()-32+()-22=-55. 故异面直线AB 1与A 1D 的夹角的余弦值为55. (2)由CD =λCC 1可知, D ()3,4λ-1,0, 所以DB 1→=()-3,5-4λ,0, 由(1)知, AB 1→=()0,4,-2.设平面AB 1D 的法向量为m =()x ,y ,z , 则⎩⎪⎨⎪⎧AB 1→·m =0,DB 1→·m =0,即⎩⎨⎧4y -2z =0,()5-4λy -3x =0,令y =1,解得x =5-4λ3, z =2,所以平面AB 1D 的一个法向量为m =⎝ ⎛⎭⎪⎫5-4λ3,1,2.设平面A 1B 1D 的法向量为n =()x ,y ,z , 则⎩⎪⎨⎪⎧B 1A 1→·n =0,DB 1→·n =0,即⎩⎨⎧2z =0,()5-4λy -3x =0,令y =1,解得x =5-4λ3, z =0,所以平面A 1B 1D 的一个法向量为n =⎝ ⎛⎭⎪⎫5-4λ3,1,0.因为二面角A B 1D A 1的平面角为π3,所以||cos 〈m ,n 〉=|m·n |||m ||n=⎪⎪⎪⎪⎪⎪5-4λ3×5-4λ3+1×1+2×0⎝ ⎛⎭⎪⎫5-4λ32+12+22·⎝ ⎛⎭⎪⎫5-4λ32+12=12, 即()5-4λ2=1,解得λ=32(舍)或λ=1,故λ的值为1.3.(以棱台为载体)如图,在三棱台DEF ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点. (1)求证:BD ∥平面FGH ;(2)若CF ⊥平面ABC ,AB ⊥BC ,CF =DE ,∠BAC =45°,求平面FGH 与平面ACFD 所成的角(锐角)的大小.[解](1)证明:在三棱台DEF ABC 中, 由BC =2EF ,H 为BC 的中点, 可得BH ∥EF ,BH =EF ,所以四边形BHFE 为平行四边形, 可得BE ∥HF .在△ABC 中,G 为AC 的中点,H 为BC 的中点, 所以GH ∥AB .又GH ∩HF =H ,所以平面FGH ∥平面ABED . 因为BD平面ABED ,所以BD ∥平面FGH .(2)设AB =2,则CF =1.在三棱台DEF ABC 中,G 为AC 的中点,由DF =12AC =GC ,可得四边形DGCF 为平行四边形, 因此DG ∥FC . 又FC ⊥平面ABC , 所以DG ⊥平面ABC .连接GB ,在△ABC 中,由AB ⊥BC ,∠BAC =45°,G 是AC 的中点, 所以AB =BC ,GB ⊥GC , 因此GB ,GC ,GD 两两垂直.以G 为坐标原点,建立如图所示的空间直角坐标系G xyz .所以G (0,0,0),B (2,0,0),C (0,2,0),D (0,0,1).可得H ⎝⎛⎭⎪⎫22,22,0,F (0,2,1). 故GH →=⎝ ⎛⎭⎪⎫22,22,0,GF →=(0,2,1).设n =(x ,y ,z )是平面FGH 的法向量,则 由⎩⎪⎨⎪⎧n ·GH →=0,n ·GF →=0,可得⎩⎨⎧x +y =0,2y +z =0.可得平面FGH 的一个法向量n =(1,-1,2). 因为GB →是平面ACFD 的一个法向量,GB →=(2,0,0), 所以cos 〈GB →,n 〉=GB →·n |GB →|·|n |=222=12.所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°. 4.(以五面体为载体)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,平面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D AF E 与二面角C BE F 都是60°.(1)证明:平面ABEF ⊥平面EFDC ; (2)求二面角E BC A 的余弦值.[解](1)证明:由已知可得AF ⊥DF ,AF ⊥FE ,DF ∩EF =F , 所以AF ⊥平面EFDC .又AF 平面ABEF ,故平面ABEF ⊥平面EFDC .(2)过D 作DG ⊥EF ,垂足为G ,由(1)知DG ⊥平面ABEF . 以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G xyz .由(1)知∠DEF 为二面角D AF E 的平面角,故∠DFE =60°,则|DF |=2,|DG |=3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知得,AB ∥EF ,所以AB ∥平面EFDC . 又平面ABCD ∩平面EFDC =CD , 故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C BE F 的平面角,∠CEF =60°.从而可得C (-2,0,3).连接AC ,所以E C →=(1,0,3),E B →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0). 设n =(x ,y ,z )是平面BCE 的法向量,则 ⎩⎪⎨⎪⎧n ·E C →=0,n ·E B →=0,即⎩⎨⎧x +3z =0,4y =0.所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4). 则cos 〈n ,m 〉=n ·m |n ||m |=-21919. 故二面角E BC A 的余弦值为-21919.利用空间向量解决折叠性问题(5年3考)[高考解读] 以平面图形的翻折为载体,考查空间想象能力,在线面位置关系的证明中考查逻辑推理能力,在空间角的求解中,考查转化化归及数学运算的核心素养.1.(2018·全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. 切入点:(1)对照折叠前后的线面关系给予证明; (2)建立空间直角坐标系通过向量法求解. [解](1)由已知可得,BF ⊥PF ,BF ⊥EF ,又PF 平面PEF ,EF平面PEF ,且PF ∩EF =F ,所以BF ⊥平面PEF .又BF平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD . 以H 为坐标原点,HF →的方向为y 轴正方向,|BF →|为单位长,建立如图所示的空间直角坐标系H xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,PF 2+PE 2=EF 2,故PE ⊥PF .可得PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,DP →=⎝ ⎛⎭⎪⎫1,32,32,HP →=⎝⎛⎭⎪⎫0,0,32为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪HP →·DP →|HP →||DP →|=343=34. 所以DP 与平面ABFD 所成角的正弦值为34. [教师备选题](2016·全国卷Ⅱ)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B D ′A C 的正弦值. [解](1)证明:由已知得AC ⊥BD ,AD =CD .又由AE =CF 得A EAD =CFCD,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4.由EF ∥AC ,得OH DO =A E AD =14.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD . (2)如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H xyz ,则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的法向量,则 ⎩⎪⎨⎪⎧ m ·AB →=0,m ·AD ′→=0,即⎩⎪⎨⎪⎧ 3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的法向量,则 ⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎪⎨⎪⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1).于是cos 〈m ,n 〉=m·n |m||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B D ′A C 的正弦值是29525.平面图形翻折问题的求解方法(1)解决与折叠有关的问题的关键是搞清折叠前后的变和不变,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.(以梯形为载体)如图,等腰梯形ABCD 中,AB ∥CD ,AD =AB =BC =1,CD =2,E 为CD 中点,以AE 为折痕把△ADE 折起,使点D 到达点P 的位置(P 平面ABCE ).(1)证明:AE ⊥PB ;(2)若直线PB 与平面ABCE 所成的角为π4,求二面角A PE C 的余弦值.[解](1)证明:连接BD ,设AE 的中点为O , ∵AB ∥CE ,AB =CE =12CD ,∴四边形ABCE 为平行四边形,∴AE =BC =AD =DE , ∴△ADE ,△ABE 为等边三角形, ∴OD ⊥AE ,OB ⊥AE , 又OP ∩OB =O , ∴AE ⊥平面POB ,又PB 平面POB ,∴AE ⊥PB .(2)在平面POB 内作PQ ⊥平面ABCE ,垂足为Q ,则Q 在直线OB 上, ∴直线PB 与平面ABCE 夹角为∠PBO =π4,又OP =OB ,∴OP ⊥OB ,∴O 、Q 两点重合,即PO ⊥平面ABCE ,以O 为原点,OE 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系, 则P ⎝ ⎛⎭⎪⎫0,0,32,E ⎝ ⎛⎭⎪⎫12,0,0,C ⎝ ⎛⎭⎪⎫1,32,0,∴P E →=⎝ ⎛⎭⎪⎫12,0,-32,E C →=⎝ ⎛⎭⎪⎫12,32,0,设平面PCE 的一个法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·P E →=0,n 1·E C →=0,即⎩⎪⎨⎪⎧12x -32z =0,12x +32y =0,令x =3得n 1=(3,-1,1), 又OB ⊥平面PAE ,∴n 2=(0,1,0)为平面PAE 的一个法向量,设二面角A EP C 为α,则|cos α|=cos 〈n 1,n 2〉=|n 1·n 2||n 1||n 2|=15=55,易知二面角A EP C 为钝角,所以cos α=-55.立体几何的综合问题(5年3考)[高考解读] 将圆的几何性质、空间线面的位置关系、空间几何体的体积等知识融于一体,综合考查学生的逻辑推理能力.(2018·全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD ︵所在平面垂直,M 是CD ︵上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值. 切入点:(1)借助圆的几何性质得出DM ⊥CM ,进而借助面面垂直的判定求解. (2)借助体积公式先探寻M 点的位置,建系借助坐标法求解. [解](1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD ︵上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz . 当三棱锥M ABC 体积最大时,M 为CD ︵的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM →=(-2,1,1),AB →=(0,2,0),DA →=(2,0,0).设n =(x ,y ,z )是平面MAB 的法向量,则⎩⎪⎨⎪⎧n ·AM →=0,n ·AB →=0,即⎩⎪⎨⎪⎧-2x +y +z =0,2y =0.可取n =(1,0,2).DA →是平面MCD 的法向量,因为cos 〈n ,DA →〉=n ·DA →|n ||DA →|=55,sin 〈n ,DA →〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.存在性问题的求解策略(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“是否有解”“是否有规定范围内的解”等.(2)对于位置探究型问题,通常是借助向量,引入参数,综合条件和结论列方程,解出参数,从而确定位置.(3)在棱上是否存在一点时,要充分利用共线向量定理.(探索位置型)如图所示,四棱锥P ABCD 中,PA ⊥底面ABCD .四边形ABCD 中,AB ⊥AD ,AB +AD =4,CD =2,∠CDA =45°,且AB =AP .(1)若直线PB 与平面PCD 所成的角为30°,求线段AB 的长;(2)在线段AD 上是否存在一点G ,使得点G 到点P ,B ,C ,D 的距离都相等?说明理由. [解] (1)以A 为坐标原点,建立空间直角坐标系A xyz ,如图1所示.图1在平面ABCD 内,作CE ∥AB ,交AD 于点E ,则CE ⊥AD . 在Rt△CDE 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1. 设AB =AP =t (t >0),则B (t,0,0),P (0,0,t ). 由AB +AD =4得AD =4-t ,∴E (0,3-t,0),C (1,3-t,0),D (0,4-t,0), ∴CD →=(-1,1,0),PD →=(0,4-t ,-t ). 设平面PCD 的法向量为n =(x ,y ,z ),由n ⊥CD →,n ⊥PD →得⎩⎪⎨⎪⎧-x +y =0,-t y -tz =0.取x =t ,得平面PCD 的一个法向量n =(t ,t,4-t ). cos 60°=|n ·PB →||n |·|PB →|,即|2t 2-4t |t 2+t 2+-t 2·2t 2=12, 解得t =45或t =4(舍去,因为AD =4-t >0),∴AB =45.(2)法一:(向量法)假设在线段AD 上存在一点G (如图2所示),使得点G 到点P ,B ,C ,D 的距离都相等.设G (0,m,0)(其中0≤m ≤4-t ),则GC →=(1,3-t -m,0),GD →=(0,4-t -m,0),GP →(0,-m ,t ).图2由|GC →|=|GD →|得12+(3-t -m )2=(4-t -m )2, 即t =3-m . ①由|GD →|=|GP →|,得(4-m -t )2=m 2+t 2. ② 由①,②消去t ,化简得m 2-3m +4=0. ③由于方程③没有实数根,所以在线段AD 上不存在点G 到点P ,B ,C ,D 的距离都相等. 法二:(几何法)假设在线段AD 上存在一点G ,使得点G 到点P ,B ,C ,D 的距离都相等.图3由GC =GD 得∠GCD =∠GDC =45°, ∴∠CGD =90°,即CG ⊥AD , ∴GD =CD ·cos 45°=1.设AB =λ,则AD =4-λ,AG =AD -GD =3-λ. 如图3所示,在Rt△ABG 中,GB =AB 2+AG 2=λ2+-λ2=2⎝⎛⎭⎪⎫λ-322+92>1, 这与GB =GD 矛盾.∴在线段AD 上不存在点G 到点P ,B ,C ,D 的距离都相等.。
高中数学高考二轮复习立体几何教案

高中数学高考二轮复习立体几何教案高考点拨:立体几何专题是高考中的热点,主要考查三视图、空间几何体的体积和空间位置关系、空间角,以及空间位置关系的证明和空间角、距离的探求。
本专题主要从“空间几何体表面积或体积的求解”、“空间中的平行与垂直关系”、“立体几何中的向量方法”三个角度进行典例剖析,引领考生明确考情并提升解题技能。
突破点1:空间几何体表面积或体积的求解要点1:对于规则几何体,可以直接利用公式计算。
要点2:对于不规则几何体,可以采用割补法求解;对于某些三棱锥,有时可以采用等体积转换法求解。
要点3:求解旋转体的表面积和体积时,需要注意圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形。
突破点2:球与几何体的外接与内切要点1:正四面体与球:设正四面体的棱长为a,由正四面体本身的对称性,可知其内切球和外接球的球心相同,则内切球的半径r=a/3,外接球的半径R=a/√6.要点2:正方体与球:设正方体ABCD-A1B1C1D1的棱长为a,O为其对称中心,E,F,H,G分别为AD,BC,B1C1,A1D1的中点,J为HF的中点。
正方体的内切球的半径为OJ=a/2,棱切球的半径为OG=a/√2,外接球的半径为OA1=√3a/2.回访1:几何体的表面积或体积题目:如图10-2是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()解析:由三视图可知圆柱的底面直径为4,母线长(高)为4,所以圆柱的侧面积为2π×2×4=16π,底面积为π×2²=4π;圆锥的底面直径为4,高为2/3,所以圆锥的母线长为√(4²+(2/3)²)=4/3,所以圆锥的侧面积为π×2×4/3=8π。
所以该几何体的表面积为S=16π+4π+8π=28π。
2.一个正方体被一个平面截去一部分后,剩余部分的三视图如图10-3.求截去部分体积与剩余部分体积的比值。
2019-2020年高三数学二轮复习 专题六第一讲 空间几何体教案 理

2019-2020年高三数学二轮复习专题六第一讲空间几何体教案理类型一空间几何体与三视图1.一个物体的三视图的排列规则是:俯视图放在正视图的下面,长度与正视图的长度一样,侧视图放在正视图的右面,高度与正视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.画直观图时,与坐标轴平行的线段仍平行,与x轴、z轴平行的线段长度不变,与y轴平行的线段长度减半.[例1] (xx年高考陕西卷)将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的左视图为( )[解析]还原正方体后,将D1,D,A三点分别向正方体右侧面作垂线.D1A的射影为C1B,且为实线,B1C被遮挡应为虚线.[答案] B跟踪训练如图所示,三棱锥PABC的底面ABC是直角三角形,直角边长AB=3,AC=4,过直角顶点的侧棱PA⊥平面ABC,且PA=5,则该三棱锥的正视图是( )解析:三棱锥的正视图.即是光线从三棱锥模型的前面向后面投影所得到投影图形.结合题设条件给出的数据进行分析.可知D 正确. 答案:D类型二 空间几何体的表面积与体积1.柱体的体积公式:V =Sh .2.锥体的体积公式:V =13Sh .3.台体的体积公式:V =13(S ′+SS ′+S )h .4.球的表面积与体积公式:S =4πR 2与V =43πR 3(R 为球的半径).[例2] (xx 年高考北京卷)某三棱锥的三视图如图所示,该三棱锥的表面积是( )A .28+6 5B .30+6 5C .56+12 5D .60+12 5[解析] 根据几何体的三视图画出其直观图,利用直观图的图形特征求其表面积. 由几何体的三视图可知,该三棱锥的直观图如图所示, 其中AE ⊥平面BCD ,CD ⊥BD ,且CD =4,BD =5,BE =2,ED =3,AE =4.∵AE =4,ED =3,∴AD =5.又CD ⊥BD ,CD ⊥AE ,则CD ⊥平面ABD , 故CD ⊥AD ,所以AC =41且S △ACD =10.在Rt△ABE 中,AE =4,BE =2,故AB =2 5.在Rt△BCD 中,BD =5,CD =4,故S △BCD =10,且BC =41. 在△ABD 中,AE =4,BD =5,故S △ABD =10.在△ABC 中,AB =25,BC =AC =41,则AB 边上的高h =6, 故S △ABC =12×25×6=6 5.因此,该三棱锥的表面积为S =30+6 5. [答案] B跟踪训练(xx 年北京西城模拟)某几何体的三视图如图所示,该几何体的体积是( )A .8B.83C .4D.43解析:将三视图还原,直观图如图所示,可以看出,这是一个底面为正方形(对角线长为2),高为2的四棱锥,其体积V =13S 正方形ABCD ×PA =13×12×2×2×2=43,故选D.答案:D类型三 球与空间几何体的切、接问题1.长方体、正方体的外接球其体对角线长为该球的直径. 2.正方体的内切球其棱长为球的直径.3.正三棱锥的外接球中要注意正三棱锥的顶点、球心及底面正三角形中心共线. 4.正四面体的外接球与内切球的半径之比为3∶1.[例3] (xx 年高考课标全国卷)已知三棱锥S ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.26B.36 C.23D.22[解析] 利用三棱锥的体积变换求解.由于三棱锥S ABC 与三棱锥O ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S ABC 的高是三棱锥O ABC 高的2倍,所以三棱锥S ABC 的体积也是三棱锥O ABC 体积的2倍在三棱锥O ABC 中,其棱长都是1,如图所示,S △ABC =34×AB 2=34, 高OD =12-(33)2=63, ∴V S ABC =2V O ABC=2×13×34×63=26.[答案] A跟踪训练1.(xx 年高考广东卷)某几何体的三视图如图所示,它的体积为( )A .72πB .48πC .30πD .24π解析:利用三视图还原几何体,结合直观图求解.由三视图知,该几何体是由圆锥和半球组合而成的,直观图如图所示,圆锥的底面半径为3,高为4,半球的半径为3.V =V 半球+V 圆锥=12·43π·33+13·π·32·4=30π.答案:C2.(xx 年大同模拟)一个正方体的各顶点均在同一球的球面上,若该球的体积为43π,则该正方体的表面积为________.解析:设正方体的棱长为a ,球的半径为R ,则依题意有4πR33=43π,解得R = 3.因为3a =2R =23,所以a =2,故该正方体的表面积为6a 2=24. 答案:24析典题(预测高考)高考真题【真题】 (xx 年高考安徽卷)某几何体的三视图如图所示,该几何体的表面积是________.【解析】 将三视图还原为直观图求解.由几何体的三视图可知,该几何体是底面为直角梯形的直四棱柱(如图所示). 在四边形ABCD 中,作DE ⊥AB ,垂足为E ,则DE =4,AE =3,则AD =5. 所以其表面积为:2×12×(2+5)×4+2×4+4×5+4×5+4×4=92.【答案】 92【名师点睛】 本题考查空间几何体三视图的理解与应用.考查几何体表面积的计算.难度中等.本题解题关键是还原几何体后,确定相关量与数据准确对应. 考情展望空间几何体的考查多以选择、填空题形式出现.主要涉及空间几何体的三视图,以及空间几何体的表面积与体积的计算.难度中档偏下.着重考查学生空间想象能力. 名师押题【押题】 一个几何体按比例绘制的三视图如图所示(单位:m),则该几何体的体积为( )A.73m 3B.92m 3C.72m 3D.94m 3【解析】 结合三视图可知,该几何体是由三个棱长为1的正方体和一个高为1、底面是直角,边长为1的等腰直角三角形的直三棱柱组成的,所以该几何体的体积V =3×1×1×1+12×1×1×1=72m 3.【答案】 C。
2019-2020年高考数学二轮复习第一部分专题三立体几何教学案文

2019-2020年高考数学二轮复习第一部分专题三立体几何教学案文几何体,则该几何体的侧视图为( )(2)(xx·天津高考)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )[解析] (1)从几何体的左面看,棱AD1是原正方形ADD1A1的对角线,在视线范围内,画实线;棱C1F不在视线范围内,画虚线.故选B.(2)先根据正视图和俯视图还原出几何体,再作其侧(左)视图.由几何体的正视图和俯视图可知该几何体如图①所示,故其侧(左)视图如图②所示.故选B.[答案] (1)B (2)B[方法技巧]1.由直观图确定三视图的方法根据空间几何体三视图的定义及画法规则和摆放规则确定.2.由三视图还原到直观图的思路(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.[演练冲关]1.(xx届高三·广州六校联考)已知某几何体的正视图和侧视图均如图所示,给出下列5个图形:其中可以作为该几何体的俯视图的图形个数为( )A.5 B.4C.3 D.2解析:选B 由题知可以作为该几何体的俯视图的图形可以为①②③⑤.故选B.2.(xx·北京高考)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A.3 2 B.2 3C.2 2 D.2解析:选B 在正方体中还原该四棱锥如图所示,从图中易得最长的棱为AC1=AC2+CC21=22+22+22=2 3.3.(xx·福州模拟)如图,网格纸上小正方形的边长为1,实线画出的是某几何体的三视图,则此几何体各面中直角三角形的个数是( )A.2 B.3C.4 D.5解析:选C 由三视图知,该几何体是如图所示的四棱锥PABCD,易知四棱锥PABCD的四个侧面都是直角三角形,即此几何体各面中直角三角形的个数是4,故选C.考点(二) 主要考查空间几何体的结构特征、表面积与体积公式的应用,涉及的几何体多为柱体、锥体,且常与三视空间几何体的表面积与体积图相结合考查.[典例感悟][典例] (1)(xx·全国卷Ⅲ)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A.18+36 5 B.54+18 5C.90 D.81(2)(xx·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90π B.63πC.42π D.36π(3)(xx届高三·广西三市联考)如图是某几何体的三视图,则该几何体的体积为( )A .6B .9C .12D .18[解析] (1)由三视图可知该几何体是底面为正方形的斜四棱柱,其中有两个侧面为矩形,另两个侧面为平行四边形,则表面积为(3×3+3×6+3×35)×2=54+18 5.故选B.(2)法一:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,故其体积V =π×32×10-12×π×32×6=63π.法二:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,其体积等价于底面半径为3,高为7的圆柱的体积,所以它的体积V =π×32×7=63π.(3)该几何体是一个直三棱柱截去14所得,如图所示,其体积为34×12×3×4×2=9.[答案] (1)B (2)B (3)B[方法技巧]1.求解几何体的表面积与体积的技巧(1)求三棱锥的体积:等体积转化是常用的方法,转化原则是其高易求,底面放在已知几何体的某一面上.(2)求不规则几何体的体积:常用分割或补形的方法,将不规则几何体转化为规则几何体求解.(3)求表面积:其关键思想是空间问题平面化. 2.根据几何体的三视图求其表面积或体积的步骤 (1)根据给出的三视图还原该几何体的直观图. (2)由三视图中的大小标识确定该几何体的各个度量. (3)套用相应的面积公式或体积公式计算求解.[演练冲关]1.(xx·合肥质检)一个几何体的三视图及其尺寸如图所示,则该几何体的体积为( )A.283B .2823C .28D .22+6 3解析:选A 由三视图知,该几何体为三棱台,其上、下底面分别是直角边为2,4的等腰直角三角形,高为2,所以该几何体的体积V =13×12×2×2+12×4×4+⎝ ⎛⎭⎪⎫12×2×2⎝ ⎛⎭⎪⎫12×4×4 ×2=283,故选A. 2.(xx·沈阳质检)如图,网格纸上小正方形的边长为1,实线画出的是某多面体的三视图,则该多面体的表面积是( )A .36+610B .36+310C .54D .27解析:选A 由三视图知该几何体为底面是梯形的四棱柱,其表面积为S =2×12×(2+4)×3+2×3+4×3+2×3×10=36+610,故选A.3.(xx·山东高考)由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为________.解析:该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2.答案:2+π2考点(三)主要考查与多面体、旋转体构成的简单组合体的有关切、接球表面积、体积的计算问题,其本质是计算球的半径.与球有关的组合体的计算问题[典例感悟][典例] (1)(xx·全国卷Ⅲ)在封闭的直三棱柱ABC A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4π B.9π2 C .6πD.32π3(2)(xx 届高三·湖北七市(州)联考)一个几何体的三视图如图所示,则该几何体外接球的表面积为( ),A .36πB .112π3C .32πD .28π[解析] (1)设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43×π×⎝ ⎛⎭⎪⎫323=9π2.故选B. (2)根据三视图,可知该几何体是一个四棱锥,其底面是一个边长为4的正方形,高是2 3.将该四棱锥还原成一个三棱柱,如图所示,该三棱柱的底面是边长为4的正三角形,高是4,其中心到三棱柱的6个顶点的距离即为该四棱锥外接球的半径.∵三棱柱的底面是边长为4的正三角形,∴底面三角形的中心到三角形三个顶点的距离为23×23=433,∴其外接球的半径R =⎝ ⎛⎭⎪⎫4332+22=283,则外接球的表面积S =4πR 2=4π×283=112π3,故选B.[答案] (1)B (2)B[方法技巧]求解多面体、旋转体与球接、切问题的策略(1)过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题. (2)利用平面几何知识寻找几何体中元素间的关系,或通过画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.[演练冲关]1.(xx·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2D.π4解析:选B 设圆柱的底面半径为r ,则r 2=12-⎝ ⎛⎭⎪⎫122=34,所以圆柱的体积V =34π×1=3π4.2.(xx·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.解析:设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR3=32.答案:323.(xx·全国卷Ⅰ)已知三棱锥S ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ABC 的体积为9,则球O 的表面积为________.解析:如图,连接AO ,OB , ∵SC 为球O 的直径, ∴点O 为SC 的中点,∵SA =AC ,SB =BC , ∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC , ∴AO ⊥平面SCB , 设球O 的半径为R , 则OA =OB =R ,SC =2R . ∴V S ABC =V A SBC =13×S △SBC ×AO=13×⎝ ⎛⎭⎪⎫12×SC ×OB ×AO , 即9=13×⎝ ⎛⎭⎪⎫12×2R ×R ×R ,解得 R =3,∴球O 的表面积为S =4πR 2=4π×32=36π. 答案:36π4.(xx 届高三·浙江名校联考)某简单几何体的三视图如图所示,则该几何体的体积为________,其外接球的表面积为________.解析:由三视图得该几何体是一个底面为对角线为4的正方形,高为3的直四棱柱,则其体积为4×4×12×3=24.又直四棱柱的外接球的半径R =⎝ ⎛⎭⎪⎫322+22=52,所以四棱柱的外接球的表面积为4πR 2=25π.答案:24 25π考点(四)主要考查利用空间点、直线、平面位置关系的定义,四个公理、八个定理来判断与点、线、面有关命题的真假或判断简单的线面平行垂直的位置关系.空间线面位置关系的判断 [典例感悟][典例] (1)(xx·成都模拟)在直三棱柱ABC A 1B 1C 1中,平面α与棱AB ,AC ,A 1C 1,A 1B 1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确的命题有( )A.①② B.②③ C.①③ D.①②③(2)(xx届高三·广东五校联考)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若m⊥α,m∥n,n∥β,则α⊥βC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若α∥β,m⊂α,n⊂β,则m∥n[解析] (1)由题意画出草图如图所示,因为AA 1∥平面α,平面α∩平面AA1B1B=EH,所以AA1∥EH.同理AA1∥GF,所以EH∥GF.又ABCA1B1C1是直三棱柱,易知EH=GF=AA1,所以四边形EFGH是平行四边形,故①正确;若平面α∥平面BB1C1C,由平面α∩平面A1B1C1=GH,平面BCC1B1∩平面A1B1C1=B1C1,知GH∥B1C1,而GH∥B1C1不一定成立,故②错误;由AA1⊥平面BCFE,结合AA1∥EH知EH⊥平面BCFE,又EH⊂平面α,所以平面α⊥平面BCFE,故③正确.综上可知,故选C.(2)选项A,若α⊥β,m⊂α,n⊂β,则m∥n与m,n是异面直线均有可能,不正确;选项C,若m⊥n,m⊂α,n⊂β,则α,β有可能相交但不垂直,不正确;选项D,若α∥β,m⊂α,n⊂β,则m,n有可能是异面直线,不正确,故选B.[答案] (1)C (2)B[方法技巧]判断与空间位置关系有关命题真假的方法(1)借助空间线面平行、面面平行、线面垂直、面面垂直的判定定理和性质定理进行判断.(2)借助空间几何模型,如从长方体模型、四面体模型等模型中观察线面位置关系,结合有关定理,进行肯定或否定.(3)借助反证法,当从正面入手较难时,可利用反证法,推出与题设或公认的结论相矛盾的命题,进而作出判断.[演练冲关]1.(xx·惠州调研)如图是一几何体的平面展开图,其中四边形ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面4个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE⊥平面PAD.其中正确的有( )A.1个B.2个C.3个D.4个解析:选B 将展开图还原为几何体(如图),因为E,F分别为PA,PD的中点,所以EF∥AD∥BC,即直线BE与CF共面,①错;因为B∉平面PAD,E ∈平面PAD,E∉AF,所以BE与AF是异面直线,②正确;因为EF∥AD∥BC,EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC,③正确;平面PAD与平面BCE不一定垂直,④错.故选B.2.(xx·全国卷Ⅲ)在正方体ABCDA1B1C1D1中,E为棱CD的中点,则( )A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC解析:选C 法一:由正方体的性质,得A1B1⊥BC1,B1C⊥BC1,A1B1∩B1C=B1,所以BC1⊥平面A1B1CD.又A1E⊂平面A1B1CD,所以A1E⊥BC1.法二:∵A1E在平面ABCD上的投影为AE,而AE不与AC,BD垂直,∴B、D错;∵A1E在平面BCC1B1上的投影为B1C,且B1C⊥BC1,∴A1E⊥BC1,故C正确;(证明:由条件易知,BC1⊥B1C,BC1⊥CE,又CE∩B1C=C,∴BC1⊥平面CEA1B1.又A1E⊂平面CEA1B1,∴A1E⊥BC1.)∵A1E在平面DCC1D1上的投影为D1E,而D1E不与DC1垂直,故A错.3.(xx·全国卷Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )解析:选A 法一:对于选项B ,如图所示,连接CD ,因为AB ∥CD ,M ,Q 分别是所在棱的中点,所以MQ ∥CD ,所以AB ∥MQ .又AB ⊄平面MNQ ,MQ ⊂平面MNQ ,所以AB ∥平面MNQ .同理可证选项C 、D 中均有AB ∥平面MNQ .故选A.法二:对于选项A ,设正方体的底面对角线的交点为O (如图所示),连接OQ ,则OQ ∥AB .因为OQ 与平面MNQ 有交点,所以AB 与平面MNQ 有交点,即AB 与平面MNQ 不平行,根据直线与平面平行的判定定理及三角形的中位线性质知,选项B 、C 、D 中AB ∥平面MNQ .故选A.[必备知能·自主补缺] (一) 主干知识要记牢 1.简单几何体的表面积和体积(1)S 直棱柱侧=ch (c 为底面的周长,h 为高). (2)S 正棱锥侧=12ch ′(c 为底面周长,h ′为斜高).(3)S 正棱台侧=12(c ′+c )h ′(c 与c ′分别为上、下底面周长,h ′为斜高).(4)圆柱、圆锥、圆台的侧面积公式S 圆柱侧=2πrl (r 为底面半径,l 为母线长), S 圆锥侧=πrl (r 为底面半径,l 为母线长),S 圆台侧=π(r ′+r )l (r ′,r 分别为上、下底面的半径,l 为母线长).(5)柱、锥、台体的体积公式V 柱=Sh (S 为底面面积,h 为高), V 锥=13Sh (S 为底面面积,h 为高),V 台=13(S+SS ′+S ′)h (S ,S ′为上、下底面面积,h 为高).(6)球的表面积和体积公式S 球=4πR 2,V 球=43πR 3.2.两类关系的转化 (1)平行关系之间的转化(2)垂直关系之间的转化3.证明空间位置关系的方法已知a ,b ,l 是直线,α,β,γ是平面,O 是点,则 (1)线线平行:⎭⎪⎬⎪⎫a ∥b a ∥c ⇒c ∥b ,⎭⎪⎬⎪⎫a ∥αa ⊂βα∩β=b ⇒a ∥b ,⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b ,⎭⎪⎬⎪⎫α∥βα∩γ=a β∩γ=b ⇒a ∥b . (2)线面平行:⎭⎪⎬⎪⎫a ∥b b ⊂αa ⊄α⇒a ∥α,⎭⎪⎬⎪⎫α∥βa ⊂β⇒a ∥α,⎭⎪⎬⎪⎫α⊥βa ⊥βa ⊄α⇒a ∥α. (3)面面平行:⎭⎪⎬⎪⎫a ⊂α,b ⊂αa ∩b =Oa ∥β,b ∥β⇒α∥β,⎭⎪⎬⎪⎫a ⊥αa ⊥β⇒α∥β,⎭⎪⎬⎪⎫α∥βγ∥β⇒α∥γ.(4)线线垂直:⎭⎪⎬⎪⎫a ⊥αb ⊂α⇒a ⊥b ,⎭⎪⎬⎪⎫a ⊥αb ∥α⇒a ⊥b .(5)线面垂直:⎭⎪⎬⎪⎫a ⊂α,b ⊂αa ∩b =O l ⊥a ,l ⊥b ⇒l ⊥α,⎭⎪⎬⎪⎫α⊥βα∩β=l a ⊂α,a ⊥l ⇒a ⊥β, ⎭⎪⎬⎪⎫α∥βa ⊥α⇒a ⊥β,⎭⎪⎬⎪⎫a ∥b a ⊥α⇒b ⊥α. (6)面面垂直:⎭⎪⎬⎪⎫a ⊂βa ⊥α⇒α⊥β,⎭⎪⎬⎪⎫a ∥βa ⊥α⇒α⊥β.(二) 二级结论要用好1.长方体的对角线与其共点的三条棱之间的长度关系d 2=a 2+b 2+c 2;若长方体外接球半径为R ,则有(2R )2=a 2+b 2+c 2.[针对练1] (xx 届高三·西安八校联考)设三棱锥的三条侧棱两两互相垂直,且长度分别为2,23,4,则其外接球的表面积为( )A .48πB .32π C.20π D .12π解析:选B 依题意,设题中的三棱锥外接球的半径为R ,可将题中的三棱锥补形成一个长方体,则R =1222+232+42=22,所以该三棱锥外接球的表面积为S =4πR 2=32π. 2.棱长为a 的正四面体的内切球半径r =612a ,外接球的半径R =64a .又正四面体的高h =63a ,故r =14h ,R =34h .[针对练2] 正四面体ABCD 的外接球半径为2,过棱AB 作该球的截面,则截面面积的最小值为________.解析:由题意知,面积最小的截面是以AB 为直径的圆,设AB 的长为a ,因为正四面体外接球的半径为2,所以64a =2,解得a =463,故截面面积的最小值为π⎝ ⎛⎭⎪⎫2632=8π3. 答案:8π3(三) 易错易混要明了应用空间线面平行与垂直关系中的判定定理和性质定理时,忽视判定定理和性质定理中的条件,导致判断出错.如由α⊥β,α∩β=l ,m ⊥l ,易误得出m ⊥β的结论,就是因为忽视面面垂直的性质定理中m ⊂α的限制条件.[针对练3] 设α,β是两个不同的平面,m 是直线且m ⊂α,则“m ∥β ”是“α∥β ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 当m ∥β时,过m 的平面α与β可能平行也可能相交,因而m ∥β⇒/ α∥β;当α∥β时,α内任一直线与β平行,因为m ⊂α,所以m ∥β.综上可知,“m ∥β ”是“α∥β ”的必要不充分条件.[课时跟踪检测]A 组——12+4提速练一、选择题1.如图为一个几何体的侧视图和俯视图,则它的正视图为( )解析:选B 根据题中侧视图和俯视图的形状,判断出该几何体是在一个正方体的上表面上放置一个四棱锥(其中四棱锥的底面是边长与正方体棱长相等的正方形、顶点在底面上的射影是底面一边的中点),结合选项知,它的正视图为B.2.(xx·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16解析:选B 由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为2+4×22×2=12,故选B.3.(xx·合肥质检)若平面α截三棱锥所得截面为平行四边形,则该三棱锥中与平面α平行的棱有( )A.0条 B.1条 C.2条 D.0条或2条解析:选C 因为平行于三棱锥的两条相对棱的平面截三棱锥所得的截面是平行四边形,所以该三棱锥中与平面α平行的棱有2条,故选C.4.(xx·成都模拟)已知m,n是空间中两条不同的直线,α,β是两个不同的平面,且m⊂α,n⊂β.有下列命题:①若α∥β,则m,n可能平行,也可能异面;②若α∩β=l,且m⊥l,n⊥l,则α⊥β;③若α∩β=l,且m⊥l,m⊥n,则α⊥β.其中真命题的个数是( )A.0 B.1 C.2 D.3解析:选B 对于①,直线m,n可能平行,也可能异面,故①是真命题;对于②,直线m,n同时垂直于公共棱,不能推出两个平面垂直,故②是假命题;对于③,当直线n∥l时,不能推出两个平面垂直,故③是假命题.故真命题的个数为1.故选B.5.(xx·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是( )A.π2+1 B.π2+3C.3π2+1 D.3π2+3解析:选A 由几何体的三视图可得,该几何体是一个底面半径为1,高为3的圆锥的一半与一个底面为直角边长为2的等腰直角三角形,高为3的三棱锥的组合体,故该几何体的体积V=13×12π×12×3+13×12×2×2×3=π2+1.6.(xx·郑州质检)某几何体的三视图如图所示,则该几何体的体积为( )A .80B .160C .240D .480解析:选B 如图所示,题中的几何体是从直三棱柱ABC A ′B ′C ′中截去一个三棱锥A A ′B ′C ′后所剩余的部分,其中底面△ABC 是直角三角形,AC ⊥AB ,AC =6,AB =8,BB ′=10.因此题中的几何体的体积为⎝ ⎛⎭⎪⎫12×6×8×10-13×12×6×8×10=23×⎝ ⎛⎭⎪⎫12×6×8×10=160,故选B.7.(xx·合肥质检)一个几何体的三视图如图所示(其中正视图的弧线为四分之一圆周),则该几何体的表面积为( )A .72+6πB .72+4πC .48+6πD .48+4π解析:选 A 由三视图知,该几何体由一个正方体的34部分与一个圆柱的14部分组合而成(如图所示),其表面积为16×2+(16-4+π)×2+4×2×2+14×2π×2×4=72+6π,故选A.8.某几何体的三视图如图所示,则其体积为( )A .207B .216-9π2C .216-36πD .216-18π解析:选B 由三视图知,该几何体是一个棱长为6的正方体挖去14个底面半径为3,高为6的圆锥而得到的,所以该几何体的体积V =63-14×13×π×32×6=216-9π2,故选B.9.(xx·贵阳检测)三棱锥P ABC 的四个顶点都在体积为500π3的球的表面上,底面ABC 所在的小圆面积为16π,则该三棱锥的高的最大值为( )A .4B .6C .8D .10解析:选C 依题意,设题中球的球心为O ,半径为R ,△ABC 的外接圆半径为r ,则4πR33=500π3,解得R =5,由πr 2=16π,解得r =4,又球心O 到平面ABC 的距离为R 2-r 2=3,因此三棱锥P ABC 的高的最大值为5+3=8,故选C.10.(xx·洛阳统考)已知三棱锥P ABC 的四个顶点均在某球面上,PC 为该球的直径,△ABC 是边长为4的等边三角形,三棱锥P ABC 的体积为163,则此三棱锥的外接球的表面积为( )A.16π3 B.40π3 C.64π3D.80π3解析:选D 依题意,记三棱锥P ABC 的外接球的球心为O ,半径为R ,点P 到平面ABC 的距离为h ,则由V P ABC =13S △ABC h =13×⎝ ⎛⎭⎪⎫34×42×h =163得h =433.又PC 为球O 的直径,因此球心O 到平面ABC 的距离等于12h =233.又正△ABC 的外接圆半径为r =AB 2sin 60°=433,因此R 2=r 2+⎝ ⎛⎭⎪⎫2332=203,所以三棱锥P ABC 的外接球的表面积为4πR 2=80π3,故选D.11.某几何体的三视图如图所示,则该几何体的体积为( )A.15π2 B .8π C.17π2D .9π解析:选B 依题意,题中的几何体是由两个完全相同的圆柱各自用一个不平行于其轴的平面去截后所得的部分拼接而成的组合体(各自截后所得的部分也完全相同),其中一个截后所得的部分的底面半径为1,最短母线长为3、最长母线长为5,将这两个截后所得的部分拼接恰好形成一个底面半径为1,母线长为5+3=8的圆柱,因此题中的几何体的体积为π×12×8=8π,故选B.12.(xx 届高三·湘中名校联考)已知某几何体的三视图如图所示,则该几何体的体积为( )A.1603 B .32 C.323D.3523解析:选A 由三视图可知, 该几何体是由底面为等腰直角三角形(腰长为4)、高为8的直三棱柱截去一个等底且高为4的三棱锥而得到的,所以该几何体的体积V =12×4×4×8-13×12×4×4×4=1603,故选A.二、填空题13.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为________.解析:设圆柱高为h ,底面圆半径为r ,周长为c ,圆锥母线长为l .由图得r =2,h =4,则c =2πr =4π,由勾股定理得:l=22+232=4,则S 表=πr 2+ch +12cl =4π+16π+8π=28π.答案:28π14.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为________.解析:由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V 1V 2=1656=15. 答案:1515.高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的________.解析:由侧视图、俯视图知该几何体是高为2、底面积为 12×2×(2+4)=6的四棱锥,其体积为13×6×2=4.而直三棱柱的体积为12×2×2×4=8,则该几何体的体积是原直三棱柱的体积的12. 答案:1216.(xx·兰州诊断考试)已知球O 的半径为13,其球面上有三点A ,B ,C ,若AB =123,AC =BC =12,则四面体OABC 的体积为________.解析:如图,过点A ,B 分别作BC ,AC 的平行线,两线相交于点D ,连接CD ,∵AC =BC =12,AB =123,在△ABC 中,cos ∠ACB =AC 2+BC 2-AB 22AC ·BC=-12, ∴∠ACB =120°,∴在菱形ACBD 中,DA =DB =DC =12,∴点D 是△ABC 的外接圆圆心,连接DO ,在△ODA 中,OA 2=DA 2+DO 2, 即DO 2=OA 2-DA 2=132-122=25,∴DO =5,又DO ⊥平面ABC ,∴V O ABC =13×12×12×12×32×5=60 3.答案:60 3B 组——能力小题保分练1.(xx·石家庄质检)某几何体的三视图如图所示,则该几何体的体积是( )A.16 B.20 C.52 D.60解析:选B 由三视图知,该几何体由一个底面为直角三角形(直角边分别为3,4),高为6的三棱柱截去两个等体积的四棱锥所得,且四棱锥的底面是矩形(边长分别为2,4),高为3,如图所示,所以该几何体的体积V=12×3×4×6-2×13×2×4×3=20,故选B.2.(xx·成都模拟)如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该四棱锥外接球的表面积为( )A.136π B.34πC.25π D.18π解析:选B 由三视图知,该四棱锥的底面是边长为3的正方形,高为4,且有一条侧棱垂直于底面,所以可将该四棱锥补形为长、宽、高分别为3,3,4的长方体,该长方体外接球的半径R即为该四棱锥外接球的半径,所以2R=32+32+42,解得R=342,所以该四棱锥外接球的表面积为4πR2=34π,故选B.3.(xx届高三·湖南五市十校联考)如图,小方格是边长为1的正方形,一个几何体的三视图如图所示,则该几何体的表面积为( )A.45π+96 B.(25+6)π+96C.(45+4)π+64 D.(45+4)π+96解析:选D 由三视图可知,该几何体为一个圆锥和一个正方体的组合体,正方体的棱长为4,圆锥的高为4,底面半径为2,所以该几何体的表面积为S=6×42+π×22+π×2×42+22=(45+4)π+96.4.(xx·石家庄质检)四棱锥PABCD的底面ABCD是边长为6的正方形,且PA=PB=PC=PD,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高为( )A.6 B.5C.92D.94解析:选D 过点P作PH⊥平面ABCD于点H.由题知,四棱锥PABCD是正四棱锥,内切球的球心O应在四棱锥的高PH上.过正四棱锥的高作组合体的轴截面如图,其中PE ,PF 是斜高,M 为球面与侧面的一个切点.设PH =h ,易知Rt △PMO ∽Rt△PHF ,所以OM FH =PO PF ,即13=h -1h 2+32,解得h =94,故选D.5.(xx·云南模拟)某几何体的三视图如图所示,若这个几何体的顶点都在球O 的表面上,则球O 的表面积是( )A .2πB .4πC .5πD .20π解析:选C 由三视图知,该几何体为三棱锥,其中边长为1的侧棱与底面垂直,底面为底边长为2的等腰直角三角形,所以可以将该三棱锥补形为长、宽、高分别为2,2,1的长方体,所以该几何体的外接球O 的半径R =22+22+122=52,则球O 的表面积S =4πR 2=5π,故选C.6.(xx·武昌调研)在矩形ABCD 中,AB <BC ,现将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折的过程中,给出下列结论:①存在某个位置,使得直线AC 与直线BD 垂直; ②存在某个位置,使得直线AB 与直线CD 垂直; ③存在某个位置,使得直线AD 与直线BC 垂直. 其中正确结论的序号是________.解析:①假设AC 与BD 垂直,过点A 作AE ⊥BD 于点E ,连接CE ,如图所示,则AE ⊥BD ,BD ⊥AC .又AE ∩AC =A ,所以BD ⊥平面AEC ,从而有BD ⊥CE ,而在平面BCD 中,CE 与BD 不垂直,故假设不成立,①错误.②假设AB ⊥CD ,∵AB ⊥AD ,AD ∩CD =D ,∴AB ⊥平面ACD ,∴AB ⊥AC ,由AB <BC 可知,存在这样的直角三角形BAC ,使AB ⊥CD ,故假设成立,②正确.③假设AD ⊥BC ,∵DC ⊥BC ,AD ∩DC =D ,∴BC ⊥平面ADC ,∴BC ⊥AC ,即△ABC 为直角三角形,且AB 为斜边,而AB <BC ,故矛盾,假设不成立,③错误.答案:②第二讲 大题考法——立体几何题型(一)平行、垂直关系的证明是高考的必考内容,平行、垂直关系的证明主要考查线面面面平行、垂直的判定定理及性质定理的应用,以及平行与垂直关系的转化等.[典例感悟][典例1] (xx·山东高考)在如图所示的几何体中,D是AC的中点,EF∥DB.(1)已知AB=BC,AE=EC,求证:AC⊥FB;(2)已知G,H分别是EC和FB的中点,求证:GH∥平面ABC.[证明] (1)因为EF∥DB,所以EF与DB确定平面BDEF.如图①,连接DE.因为AE=EC,D为AC的中点,所以DE⊥AC.同理可得BD⊥AC.又BD∩DE=D,所以AC⊥平面BDEF.因为FB⊂平面BDEF,所以AC⊥FB.(2)如图②,设FC的中点为I,连接GI,HI.在△CEF中,因为G是CE的中点,所以GI∥EF.又EF∥DB,所以GI∥DB.在△CFB中,因为H是FB的中点,所以HI∥BC.又HI∩GI=I,所以平面GHI∥平面ABC.因为GH⊂平面GHI,所以GH∥平面ABC.[备课札记][方法技巧]平行、垂直关系的证明思路[演练冲关]1.如图,在四棱锥PABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD ,PA ⊥AD ,E 和F 分别为CD 和PC 的中点,求证:(1)PA ⊥底面ABCD ; (2)BE ∥平面PAD ; (3)平面BEF ⊥平面PCD .证明:(1)因为平面PAD ⊥底面ABCD ,且PA 垂直于这两个平面的交线AD ,所以PA ⊥底面ABCD . (2)因为AB ∥CD ,CD =2AB ,E 为CD 的中点,所以AB ∥DE ,且AB =DE .所以四边形ABED 为平行四边形.所以BE ∥AD .又因为BE ⊄平面PAD ,AD ⊂平面PAD ,所以BE ∥平面PAD .(3)因为AB ⊥AD ,且四边形ABED 为平行四边形,所以BE ⊥CD ,AD ⊥CD .由(1)知PA ⊥底面ABCD ,所以PA ⊥CD ,又AD ∩PA =A ,所以CD ⊥平面PAD .所以CD ⊥PD .因为E 和F 分别是CD 和PC 的中点,所以PD ∥EF ,所以CD ⊥EF .又因为CD ⊥BE ,EF ∩BE =E ,所以CD ⊥平面BEF .又CD ⊂平面PCD ,所以平面BEF ⊥平面PCD .题型(二)本部分的计算题目多设两问,第1问考查空间位置关系的证明,第2问考查空间几何体体积的求法或点到平面距离的求法.体积、距离的计算[典例感悟][典例2] (xx·成都模拟)如图,已知梯形CDEF 与△ADE 所在的平面垂直,AD ⊥DE ,CD ⊥DE ,AB ∥CD ∥EF ,AE =2DE =8,AB =3,EF =9,CD =12,连接BC ,BF .(1)若G 为AD 边上一点,DG =13DA ,求证:EG ∥平面BCF ;(2)求多面体ABCDEF 的体积.[解] (1)证明:如图,作GM ∥CD ,交BC 于点M ,连接MF . 作BH ∥AD ,交GM 于点N ,交DC 于点H . ∵EF ∥CD ,∴GM ∥EF .∵AB ∥CD ,∴四边形ABNG 与四边形ABHD 都是平行四边形, ∴GN =DH =AB =3,HC =9. ∵AB ∥GM ∥DC , ∴NM HC =BM BC =AG AD =23, ∴NM =6,∴GM =GN +NM =9,∴GM 綊EF , ∴四边形GMFE 为平行四边形,∴GE ∥MF . 又MF ⊂平面BCF ,GE ⊄平面BCF ,。
2019高考数学(理)二轮练习教案四:立体几何

2019高考数学(理)二轮练习教案四:立体几何【一】高考动向:考查思维能力和空间想象能力,特别是使用向量代数方法解决立体几何几何问题的能卷来看,一般是三小一大,估计26分左右。
客观题仍是侧重于点线面位置关系及空间角,有可能涉及求表面积和体积问题,难度不会太大,主观题估计向新课标靠拢。
锥体和柱体作为载体,传统法和向量法都好解决问题仍是主旋律,主要考查线面的平行与垂直,角与距离考查可能减少,也可能出现新的题型,如开放性试题,立体几何背景下的点的轨迹问题等,试题新颖,立意巧妙,要注意训练。
【二】主干知识整合1、空间几何体的三视图(1)正视图:光线从几何体的前面向后面正投影得到的投影图;(2)侧视图:光线从几何体的左面向右面正投影得到的投影图;(3)俯视图:光线从几何体的上面向下面正投影得到的投影图、几何体的正视图、侧视图和俯视图统称为几何体的三视图、2、斜二测画水平放置的平面图形的基本步骤(1)建立直角坐标系,在水平放置的平面图形中取互相垂直的Ox,Oy,建立直角坐标系;(2)画出斜坐标系,在画直观图的纸上(平面上)画出对应的Ox′,Oy′,使∠x′Oy′=45°(或135°),它们确定的平面表示水平平面;(3)画对应图形,在图形中平行于x轴的线段,在直观图中画成平行于x′轴,且长度保持不变;在图形中平行于y轴的线段,在直观图中画成平行于y′轴,且长度变为原来的一半;(4)擦去辅助线,图画好后,要擦去x轴、y轴及为画图添加的辅助线(虚线)、3、基本面积公式4、空间几何体的体积计算公式5、平行关系的转化两平面平行问题常常转化为直线与平面的平行,而直线与平面平行又可转化为直线与直线平行,所以要注意转化思想的应用,以下为三种平行关系的转化示意图、6、解决平行问题时要注意以下结论的应用(1)经过平面外一点有且只有一个平面与平面平行、(2)两个平面平行,其中一个平面内的任一直线必平行于另一个平面、(3)一条直线与两平行平面中的一个相交,那么它与另一个也相交、(4)平行于同一条直线的两条直线平行、(5)平行于同一个平面的两个平面平行、(6)如果一条直线与两个相交平面都平行,那么这条直线必与它们的交线平行、7、垂直关系的转化与平行关系之间的转化类似,它们之间的转化如下示意图、在垂直的相关定理中,要特别注意记忆面面垂直的性质定理:两个平面垂直,在一个平面内垂直于它们交线的直线必垂直于另一个平面、当题目中有面面垂直的条件时,一般都要用此定理进行转化、8、空间向量(1)加减法和线性运算; (2)共线向量定理; (3)共面向量定理; (4)空间向量基本定理;(5)空间两个向量的夹角;空间两向量夹角的范围是[0,π],即0≤〈a ,b 〉≤π; (6)向量的数量积; (7)空间向量的坐标运算、 9、夹角计算公式(1)线线角:直线与直线所成的角为θ,如两直线的方向向量分别为a ,b ,那么cos θ=|cos 〈a ,b 〉|;(2)线面角:直线与平面所成的角为θ,如直线的方向向量为a ,平面的法向量为n ,那么sin θ=|cos 〈a ,n 〉|;(3)面面角:两相交平面所成的角为θ,两平面的法向量分别为n 1和n 2,那么cos θ=|cos 〈n 1,n 2〉|,其特殊情况是两个半平面所成的角即二面角,也可以用这个公式解决,但要判定二面角的平面角是锐角还是钝角的情况以决定cos θ=|cos 〈n 1,n 2〉|还是cos θ=-|cos 〈n 1,n 2〉|.10、距离公式(1)点点距:点与点的距离,以这两点为起点和终点的向量的模;(2)点线距:点M 到直线a 的距离,如直线的方向向量为a ,直线上任一点为N ,那么点M 到直线a 的距离d =|MN →|sin 〈MN →,a 〉;(3)线线距:两平行线间的距离,转化为点线距离;两异面直线间的距离,转化为点面距离或者直接求公垂线段的长度;(4)点面距:点M 到平面α的距离:如平面α的法向量为n ,平面α内任一点为N ,那么点M 到平面α的距离d =|MN →||cos 〈MN →,n 〉|=|MN →·n ||n |;(5)线面距:直线和与它平行的平面间的距离,转化为点面距离; (6)面面距:两平行平面间的距离,转化为点面距离. 【三】课前热身:1.(1)[2017·山东卷]如图12-3是长和宽分别相等的两个矩形、给定以下三个命题:①存在三棱柱,其正(主)视图、俯视图如图12-3;②存在四棱柱,其正(主)视图、俯视图如图12-3;③存在圆柱,其正(主)视图、俯视图如图12-3.其中真命题的个数是()图12-3A 、3B 、2C 、1D 、0〔2〕一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长均为1的等腰梯形,那么这个平面图形的面积是()A.12+22B 、1+22 C 、1+2D 、2+ 2(1)A(2)D 【解析】(1)①可以是放倒的三棱柱,所以正确;容易判断②正确;③可以是放倒的圆柱,所以也正确、(2)如图,设直观图为O ′A ′B ′C ′,建立如下图的坐标系,按照斜二测画法的规那么,在原来的平面图形中,OC ⊥OA ,且OC =2,BC =1,OA =1+2×22=1+2,故其面积为12×()1+1+2×2=2+ 2.2.(1)[2017积为()图12-4A 、48B 、32+817C 、48+817D 、80(2)[2017·湖南卷]设图12-5是某几何体的三视图,那么该几何体的体积为()图12-5A 、92π+12B 、92π+18 C 、9π+42D 、36π+18 (1) C(2)B 【解析】(1)由三视图可知此题所给的是一个底面为等腰梯形的放倒的直四棱柱(如下图),所以该直四棱柱的表面积为S =2×12×(2+4)×4+4×4+2×4+2×1+16×4=48+817.(2)由三视图可得这个几何体是由上面是一个直径为3的球,下面是一个长、宽都为3、高为2的长方体所构成的几何体,那么其体积为:V =V 1+V 2=43×π×⎝ ⎛⎭⎪⎫323+3×3×2=92π+18,应选B.【点评】我们常见的柱体一般是把底面放在水平面上,锥体也往往是把底面放在水平面上,但是柱体和锥体也可以把其侧面或者一条母线放在水平面上,也可以以其他各种可能的方式放置在空间,这时其三视图就会出现各种可能,在根据空间几何体的三视图还原空间几何体的形状时,要克服思维定势、3.[2017·辽宁卷]球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,那么棱锥S -ABC 的体积为()A 、33B 、23C.3D 、1C 【解析】如图,过A 作AD 垂直SC 于D ,连接BD .由于SC 是球的直径,所以∠SAC =∠SBC =90°,又∠ASC =∠BSC =30°,又SC 为公共边,所以△SAC ≌△SBC .由于AD ⊥SC ,所以BD ⊥SC .由此得SC ⊥平面ABD .所以V S -ABC =V S -ABD +V C -ABD =13S △ABD ·SC .由于在Rt △SAC 中∠ASC =30°,SC =4,所以AC =2,SA =23,由于AD =SA ·CASC = 3.同理在Rt △BSC 中也有BD =SB ·CBSC = 3.又AB =3,所以△ABD 为正三角形,所以V S -ABC =13S △ABD ·SC =13×12×(3)2·sin60°×4=3,所以选C.【点评】此题考查空间想象能力、逻辑推理能力和运算能力、此题的难点在于对三棱锥S -ABC 的结构特征的分析判断,其中的体积分割法是求解体积问题时经常使用的技巧、4.设m ,n 是平面α内的两条不同直线;l 1,l 2是平面β内的两条相交直线,那么α∥β的一个充分而不必要条件是()A 、m ∥β且l 1∥αB 、m ∥l 1且n ∥l 2C 、m ∥β且n ∥βD 、m ∥β且n ∥l 2【解析】B 选项A 作条件,由于这是两个平面中各有一条直线与另一个平面平行,是不能得到α∥β的,但α∥β却能得到选项A ,应选项A 是必要而不充分条件;选项B 作条件,此时m ,n 一定是平面α内的两条相交直线(否那么,根据公理4得直线l 1∥l 2,与矛盾),这就符合两个平面平行判定定理的推论“一个平面内如果有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行”,故条件是充分的,但是在α∥β时,由于直线m ,n 在平面α内的位置不同,只能得到m ,n 与平面β平行,得不到m ∥l 1,n ∥l 2的结论,故条件是不必要的,应选项B 中的条件是充分而不必要的;选项C 作条件,由于m ,n 只是平面α内的两条不同直线,这两条直线可能相互平行,故得不到α∥β的必然结论,这个条件是不充分的,但α∥β却能得到选项C ,应选项C 是必要而不充分条件;选线D 作条件,由n ∥l 2可得n ∥β,这样平面α的直线m ,n 分别与平面β平行,由于m ,n 可能平行,故也得不到α∥β的必然结论,故这个条件是不充分的,当α∥β时,只能得到m ∥β但得不到n ∥l 2,故条件也不是必要的,选项D 中的条件是既不充分也不必要的、5.〔辽宁理8〕。
2019-2020年高中数学 1.20《立体几何复习》教案 苏教版必修2
2019-2020年高中数学 1.20《立体几何复习》教案苏教版必修2一、【学习导航】知识网络学习要求1.温故本章内容,使知识系统化,条理化.分清重点,明确难点,再现注意点,达到巩固与知新的效果。
2. 会证线线、线面、面面的平行与垂直的问题,会求简单的线线、线面、面面间的角与距离以及简单几何体的面积与体积的问题.【课堂互动】自学评价1.空间几何体(柱锥台球,三视图) 的概念:2.平面的基本性质(3个公理与3个推论) :.3.空间两直线的位置关系(3种关系):4. 直线和平面的位置关系(3种关系):5.平面和平面的位置关系(2种关系) :6.空间几何体的表面积和体积公式.7.三种角与六种距离的简单计算方法:8.物体按正投影向投影面投射所得到的图形叫视图.光线自物体的前面向后投射所得的投影称为主视图,自上向下的称为俯视图.自左向右的称为左视图.【精典范例】例1:已知平面外两平行直线中的一条平行于这个平面,求证另一条直线也平行于这个平面.略证.先写已知,求证,再进行证明.突出使用线面平行的性质与判定定理.例2:已知直线AC,DF被三个平行平面α,β,γ所截,交点为A,B,C及D,E,F.求证:证明:连AF交β于K.连BK,KE,CF,AD.由β∥γ得BK∥CF.因α∥β得AD∥KE.所以AB/BC=AK/KF.AK/KF=DE/EF所以AB/BC=DE/EF.例3.在正方体ABCD-A1B1C1D1中,O为AC和BD的交点,G为CC1中点,求证:A1O⊥面GBD.略证:连OG.易证:.又易证为直角三角形.所以所以面GBD.例4.四面体ABCD中,AB,BC,BD两两垂直,且AB=BC=2,E是AC的中点,异面直线AD与BE所成角的余弦值为,求四面体ABCD的体积.思路:用作证求角法或建空间直角坐标系的方法可求出BD=4,所以四面体ABCD的体积=.例5.设P、A、B、C是球O表面上的四点, PA、PB、PC两两垂直, 且PA=PB=PC=1, 则球的体积为, 球的表面积为 .例6.平面四边形ABCD中,AB=BC=CD=a,∠B=90°,∠DCB=135°,沿对角线AC将四边形折成直二面角,求证:(1)求证:AB⊥面BCD(2)求面ABD与面ACD成的角.略证:(1)易证略(2)作CH⊥DB于H,作CE⊥DA于E,连HE,可证得∠CEH为所求二面角的平面角.在直角三角形CEH中可求得sin∠CEH=,所以∠CEH=所以所求二面角的大小为.追踪训练1.已知a//b,且c与a,b都相交,求证:a,b,c共面.易证略2.空间四边形ABCD 中, AB=CD , 且AB 与CD 成60°角, E 、F 分别为AC 、BD 的中点, 则EF 与AB 所成角的度数为.3.设长方体三棱长分别为a,b,c,若长方体所有棱长的和为24,一条对角线长为5,体积为2,则 ( A )A B C D4.正四棱台的斜高与上、下底面边长之比为5:2:8,体积为14, 则棱台的高为 ( B )A 3B 2C 5D 45. 一个正四面体的所有棱长都为,四个顶点都在同一个球面上,则这个球的表面积为 ( A ) A 3π B 4π C 5π D 6π第23课时立体几何复习课作业1.经过空间任意三点作平面 ( )A .只有一个B .可作二个C .可作无数多个D .只有一个或有无数多个2. 两个完全相同的长方体的长、宽、高分别为5cm ,4cm ,3cm ,把它们重叠在一起组成一 个新长方体,在这些新长方体中,最长的对角线的长度是 ( )A .B .C .D .3.已知α,β是平面,m ,n 是直线.下列命题中不.正确的是 ( ) A .若m ∥n ,m ⊥α,则n ⊥α B .若m ∥α,α∩β=n ,则m ∥nC .若m ⊥α,m ⊥β,则α∥βD .若m ⊥α,,则α⊥β4.在正三棱柱所成的角的大小为与则若中B C AB BB AB C B A ABC 111111,2,=- ( )A .60°B .90°C .105°D .75°5.正三棱锥的侧面与底面所成的二面角的余弦值为,则其相邻两侧面所成的二面角的余 弦值是 ( )A . B . C . D .06.若AC、BD分别是夹在两个平行平面α、β间的两条线段,且AC=13,BD=15,AC、BD 在平面β上的射影长的和是14,则α、β间的距离为.7.二面角内一点到平面和棱的距离之比为,则这个二面角的平面角是度.8.在北纬圈上有甲乙两地,它们在纬度圈上的弧长为(为地球的半径),则甲乙两地的球面距离为.9若平面α内的直角△ABC的斜边AB=20,平面α外一点O到A、B、C三点距离都是25,求:点O到平面的距离.10.正四棱柱ABCD-A1B1C1D1的底面边长是,侧棱长是3,点E,F分别在BB1,DD1上,且AE ⊥A1B,AF⊥A1D.①求证:A1C⊥面AEF;②求二面角A-EF-B的大小;③点B1到面AEF的距离;④平面AEF延伸将正四棱柱分割成上下两部分,求V上∶V下2019-2020年高中数学 1.21 简单的逻辑联结词(1)教案苏教版选修2-1学习目标: 1了解逻辑联结词“且”、“或”的含义,使学生能正确地表述相关数学内容.2理解真值表的意义,能用真值表解决简单问题活动过程:活动一:理解简单的逻辑联结词“且”、“或”“非”的含义1. 讨论:下列每组命题间有什么关系?(1)①菱形的对角线互相垂直;(2)①(3)①7是35的约数;②菱形的对角线互相平分;②②7不是35的约数.③菱形的对角线互相垂直且平分. ③2定义归纳:命题:一般地,用联结词“”把命题和命题联结起来,就得到一个新命题,记作,读作“”.命题:一般地,用联结词“”把命题和命题联结起来,就得到一个新命题,记作,读作“”.命题:①一般地,对一个命题全盘否定,就得到一个新命题,记作,读作“非”或“的否定.”活动二:利用“或”“且”“非”表述相关内容.例1.分别用“”、“”“”填空:(1)命题“6是自然数且是偶数”是的形式;(2)命题“3大于或等于2”是的形式;(3)命题“正数或0的平方根是实数”是的形式.(4)命题“”是的形式;练习:①下列各组命题构成“且”形式的命题,并判断它们的真假:(1):正方形的四条边相等,:正方形的四个角相等;(2):35是15的倍数,:35是7的倍数;(3):三角形两条边的和大于第三边,:三角形两条边的差小于第三边.②写出由下列各组命题构成的“”、“”、“”形式的复合命题,并判断它们的真假,并思考“”、“”、“”形式的复合命题的真假与命题p、q的真假之间有什么关系?(1):9是质数,:8是12的约数;(2):,:;(3):,:;(4):平行线不相交.活动三:掌握真值表归纳小结:一般地, “p且q”, “p或q”, “非p”形式的命题的真假性可以用下下面当,都是真命题时,是命题;当,两个命题中有一个命题是假命题时,是命题.当,两个命题中有一个命题是真命题时,是命题;当,两个命题都是命题时,是假命题.活动四:理解命题的否定与命题的否命题⑤写出下列命题的否定,并判断它们的真假:(1):是周期函数;(2):;(3):至多有一个解(4):若,则全为0;(5):若都是偶数,则是偶数.(6)或小结:(1)若是真命题,则必是假命题;若是假命题,则必是真命题.(2)命题的否定与命题的否命题的区别。
高考数学二轮:专题复习教学案:专题二立体几何
江苏 新高考高考对本专题内容的考察一般是“一小一大 ”,小题主要考察体积和表面积的计算问题,而大题主要证明线线、线面、面面的平行与垂直问题,其考察形式单一,难度一般.第 1 课时 立体几何中的计算 (基础课 ) [常考题型打破 ]空间几何体的表面积与体积 [必备知识 ]空间几何体的几组常用公式(1) 柱体、锥体、台体的侧面积公式:① S 柱侧 = ch(c 为底面周长, h 为高 );②S 锥侧= 1 c h ′(c 为底面周长, h ′为斜高 ); 2③ S 台侧= 1 (c + c ′)h ′(c , c 分别为上下底面的周长, h ′为斜高 ).2(2) 柱体、锥体、台体的体积公式: ① V 柱体 = Sh( S 为底面面积, h 为高 );1 ② V 锥体 =3Sh(S 为底面面积, h 为高 );1③ V 台 = 3( S + S S ′+ S ′)h(不要求记忆 ). (3) 球的表面积和体积公式:① S 球= 4πR 2(R 为球的半径 );② V 球 =43πR 3(R 为球的半径 ).[题组练透 ]1.现有一个底面半径为 3 cm ,母线长为 5 cm 的圆锥状实心铁器,将其高温融化后铸成一个实心铁球 (不计消耗 ),则该铁球的半径为 ________cm.分析: 由于圆锥底面半径为 3 cm ,母线长为 5 cm ,所以圆锥的高为52- 32= 4 cm ,其体积为 1π×32× =12π3,设铁球的半径为 r ,则 4πr 3= 12π,所以该铁球的半径是 3cm.34 cm 3 9答案:392.(2017 苏·锡常镇二模 )已知直四棱柱底面是边长为 2 的菱形,侧面对角线的长为 23,则该直四棱柱的侧面积为 ________.分析:由题意得,直四棱柱的侧棱长为32- 22= 2 2,所以该直四棱柱的侧面积为 S= cl= 4×2×2 2= 16 2.答案:16 23.(2017 南·通、泰州一调 )如图,在正四棱柱 ABCD -A1B1C1 D1中,AB=3 cm, AA1= 1 cm,则三棱锥 D 1-A1BD 的体积为 _______cm3.分析:三棱锥 D 1-A1BD 的体积等于三棱锥B-A1D 1D 的体积,由于三棱锥B-A1D1D 的高等于 AB,△ A1D1D 的面积为矩形AA1D 1D 的面积的1,所以三棱锥B-A1 D1D 的体积是正2四棱柱 ABCD -A1B1C1D 1的体积的1,所以三棱锥D1-A1BD 的体积等于123 66×3 ×1= .2答案:324.以下图是一个直三棱柱 ( 以 A1B1C1为底面 )被一个平面所截获得的几何体,截面为 ABC,已知 A1B1= B1C1= 1,∠ A1B1C1= 90°,A1A= 4,B1B= 2,C1C= 3,则此几何体的体积为 ________.分析:在 A1A 上取点 A2,在 C1C 上取点 C2,使 A1A2= C1C2= BB1,连结 A2B,BC2, A2C2,∴V= V A1B1 C1- A2 BC2+VB- A2 ACC 211×+× 2×23=×1×1×2+2= .2322答案:325.设甲,乙两个圆柱的底面积分别为S1, S2,体积分别为V 1, V2.若它们的侧面积相等且V1=3,则S1的值是 ________.V22S2分析:设甲,乙两个圆柱的底面半径分别为r1,r2,高分别为h1,h2,则有 2πr1h1= 2πr2h2,即 r1h1= r2h2,又V 1πr12h1,∴V1=r1r13,则S1r129=2V2,∴ ==r2= . V 2πr2h2r2r22S24答案:94[方法概括 ]求几何体的表面积及体积的解题技巧(1) 求几何体的表面积及体积问题,能够多角度、多方向地考虑,熟记公式是重点所在.求三棱锥的体积,等体积转变是常用的方法,转变原则是其高易求,底面放在已知几何体的某一面上.(2)求不规则几何体的体积,常用切割或补形的思想,将不规则几何体转变为规则几何体以易于求解.多面体与球的切接问题[必备知识 ]解决球与其余几何体的切、接问题(1)解题的重点:认真察看、剖析,弄清有关元素的地点关系和数目关系.(2)选准最正确角度作出截面:要使这个截面尽可能多地包括球、几何体的各样元素以及表现这些元素之间的关系,达到空间问题平面化的目的.(3) 认识球与正方体组合的 3 种特别截面:(4)熟记 2 个结论:①设小圆O1半径为 r, OO 1= d,则 d2+ r2= R2;∠AO1B∠ AOB②若 A, B 是圆 O1上两点,则 AB= 2rsin= 2Rsin.22[题组练透 ]1.(2017 江·苏高考 )如图,在圆柱 O1O2内有一个球 O,该球与圆柱的上、下底面及母线均相切.记圆柱O1O2的体积为 V 1,球 O 的体积为 V2,则V1的V2值是 ________.分析:设球 O 的半径为R,由于球 O 与圆柱 O1O2的上、下底面及母线均相切,所以圆V1πR2·2R3柱的底面半径为R、高为 2R,所以==.V243πR32答案:322. (2017 全·国卷Ⅲ改编 )已知圆柱的高为1,它的两个底面的圆周在直径为 2 的同一个球的球面上,则该圆柱的体积为________.分析:设圆柱的底面半径为22-12333πr,则 r= 12=,所以圆柱的体积V=×π×1=4. 44答案:3π43.已知矩形ABCD的极点都在半径为 2 的球O 的球面上,且AB= 3,BC=3,过点D 作DE垂直于平面ABCD ,交球O 于E,则棱锥E-ABCD的体积为________.分析:以下图,BE过球心O,∴DE=42- 32-32=2,1∴V E -ABCD=3×3× 3×2= 2 3.答案:2 34.(2017 ·京、盐城一模南) 将矩形ABCD绕边AB旋转一周获得一个圆柱,AB=3,BC = 2,圆柱上底面圆心为O,△ EFG 为下底面圆的一个内接直角三角形,则三棱锥O-EFG 体积的最大值是________.分析:由于将矩形ABCD 绕边 AB 旋转一周获得一个圆柱, AB= 3, BC= 2,圆柱上底面圆心为O,△ EFG 为下底面圆的一个内接直角三角形,所以三棱锥 O-EFG 的高为圆柱的高,即高为AB,所以当三棱锥 O-EFG 体积取最大值时,△EFG 的面积最大,当 EF 为直径,且 G 在 EF 的垂直均分线上时, (S△EFG )max=1×4×2= 4, 211×4×3= 4.所以三棱锥 O-EFG 体积的最大值 ( V O-EFG )max=×(S△EFG )max×AB=33答案:4[方法概括 ]多面体与球的切接问题的解题技巧方法解读合适题型解答时第一要找准切点,经过作截面来解截面法决.假如内切的是多面体,则作截面时主要球内切多面体或旋转体抓住多面体过球心的对角面来作第一确立球心地点,借助外接的性质——球结构直角三心到多面体的极点的距离等于球的半径,寻求球心究竟面中心的距离、半径、极点究竟正棱锥、正棱柱的外接球角形法面中心的距离结构成直角三角形,利用勾股定理求半径因正方体、长方体的外接球半径易求得,故三条侧棱两两垂直的三棱锥,补形法将一些特别的几何体补形为正方体或长方从正方体或长方体的八个顶体,即可借助外接球为同一个的特色求解点中选用点作为极点构成的三棱锥、四棱锥等平面图形的翻折问题[必备知识 ]将平面图形沿此中一条或几条线段折起,使其成为空间图形,把这种问题称为平面图形的翻折问题.平面图形经过翻折成为空间图形后,原有的性质有的发生了变化,有的没有发生变化,弄清它们是解决问题的重点.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.解决这种问题就是要据此研究翻折此后的空间图形中的线面关系和几何量的胸怀值,这是化解翻折问题难点的主要方法.[题组练透 ]2π1. (2017 南·通三模 )已知圆锥的侧面睁开图是半径为3,圆心角为的扇形,则这个圆3锥的高为 ________.3,圆心角为 2πl = 3, 分析:由于圆锥的侧面睁开图是半径为3 的扇形,所以圆锥的母线长设圆锥的底面半径为r ,则底面周长2π 2 22πr = 3× ,所以 r = 1,所以圆锥的高为3 -1 =2 2.3答案:2 22. (2017 ·京考前模拟南 )如图,正△ ABC 的边长为 2, CD 是 AB 边上的高, E , F 分别为边 AC 与 BC 的中点,现将△ ABC 沿 CD 翻折,使平面 ADC ⊥平面 DCB ,则棱锥 E-DFC 的体积为 ________.11 32= 3 , E 到平面 DFC 的距离 h 等于 1 1 分析: S △ DFC = S △ABC =××AD = .4442422V E -DFC = 1△3 .×S DFC ×h =243答案:3243.(2017 全·国卷Ⅰ )如图,圆形纸片的圆心为O ,半径为 5 cm ,该纸片上的等边三角形 ABC 的中心为 O.D ,E ,F 为圆 O 上的点, △DBC ,△ ECA ,△FAB 分别是以 BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以 BC , CA , AB 为折痕折起△ DBC ,△ ECA ,△ FAB ,使得 D , E , F 重合,获得三棱锥. 当△ ABC 的边长变化时, 所得三棱锥体积 (单位:cm 3)的最大值为 ________.分析: 法一: 由题意可知,折起后所得三棱锥为正三棱锥,当△ ABC 的边长变化时,设△ ABC 的边长为 a(a>0)cm ,则△ ABC 的面积为3 23 4 a ,△ DBC 的高为 5- 6 a ,则正三棱锥的高为5- 3a 2 -225- 5 33a =3a ,66∴25-53 3 a>0,∴ 0<a<5 3,∴所得三棱锥的体积1 × 3 25 3 a = 345 35.V = 4 a × 25-3 12 × 25a -3a3令 t = 25a4- 53 3a 5,3 25 34则 t ′= 100a - 3 a , 由 t ′= 0,得 a = 4 3,此时所得三棱锥的体积最大,为4 15 cm 3.法二: 如图,连结 OD 交 BC 于点 G ,由题意知,OD ⊥ BC.易得 OG3=6BC ,设 OG = x ,则 BC = 2 3x ,DG = 5- x ,S △ ABC = 12×2 3x ×3x = 3 3x 2,故所得三棱锥的体积 V =1 ×3 3 x 2× - x 2- x 2 = 3 x 2× 25- 10x = 3345× 25x - 10x .令 f( x)= 25x 4- 10x 5, x ∈ 0,52,则 f ′(x)= 100x 3- 50x 4,令 f ′(x)>0,即 x 4-2x 3 <0,得 0<x<2,5则当 x ∈ 0, 2 时, f(x)≤f(2) = 80, ∴ V ≤ 3× 80=4 15.∴所求三棱锥的体积的最大值为4 15.答案: 4 15[方法概括 ]解决翻折问题需要掌握的两个重点点(1) 解决与翻折有关的问题的重点是搞清翻折前后的变化量和不变量.一般状况下,折线同一侧的,线段的长度是不变量,地点关系可能会发生变化,抓住两个“不变性 ”.①与折线垂直的线段,翻折前后垂直关系不改变;②与折线平行的线段,翻折前后平行关系不改变.(2)解决问题时,要综合考虑翻折前后的图形,既要剖析翻折后的图形,也要剖析翻折前的图形.[课时达标训练 ][A组——抓牢中档小题 ]1.已知正方体 ABCD - A1B1C1D1的棱长为 1,点 E 是棱 B1B 的中点,则三棱锥 B1-ADE 的体积为 ________.11111.分析: VB 1-ADE = VD- AEB1= S△ AEB1·DA =× × ×1×1=123322答案:1122.若两球表面积之比是4∶ 9,则其体积之比为 ________.分析:设两球半径分别为r1, r2,由于4πr12∶ 4πr22= 4∶ 9,所以 r ∶ r = 2∶ 3,所以两球体积之比为4 3 43=r13=23= 8∶ 27.π ∶πr23123 r13r2答案: 8∶ 273.(2017 天·津高考 )已知一个正方体的全部极点在一个球面上,若这个正方体的表面积为 18,则这个球的体积为 ________.分析:设正方体的棱长为a,则 6a2= 18,得 a= 3,设该正方体外接球的半径为R,则 2R= 3a= 3,得 R=3,所以该球的体积为4π3=4π27=9π.2 3R3×829答案:2π4.已知圆锥的母线长为10 cm,侧面积为2,则此圆锥的体积为 ________cm3. 60π cm分析:设圆锥底面圆的半径为r,母线长为l,则侧面积为πrl= 10πr= 60π,解得 r= 6,则圆锥的高 h= l2- r2= 8,则此圆锥的体积为1πr2h=1π×36×8= 96π.33答案: 96π5. (2017 扬·州期末 )若正四棱锥的底面边长为22(单位: cm),侧面积为 8(单位: cm ),则它的体积为________(单位: cm3 ).分析:由于正四棱锥的底面边长为2,侧面积为8,所以底面周长1c= 8, ch′= 8,所2以斜高 h′= 2,正四棱锥的高为 h=3,所以正四棱锥的体积为12433×2×3=3.4 3答案:6.设棱长为 a 的正方体的体积和表面积分别为V1,S1,底面半径和高均为r 的圆锥的体积和侧面积分别为V 2,S 2,若V 1= 3,则 S 1的值为 ________.V 2πS 2分析: 由题意知, V = a 3,S = 6a 2,V =13,S = 2πr 2,由 V 1= 3得, a3= 3,得 a1 12 3πr2V 2 π 13ππr3= r ,进而 S 1= 6 =3 2. S 22π π答案:32π7.(2017 苏·北三市三模 )如图,在正三棱柱ABC-A 1B 1C 1 中,已知 AB=AA 1=3,点 P 在棱 CC 1 上,则三棱锥P-ABA 1 的体积为 ________.19分析: 三棱锥的底面积 S △ABA 1= 2×3×3= 2,点 P 究竟面的距离为△ ABC 的高 h = 2 - 3 2 = 3 3VP-ABA 1= 1 S △32,故三棱锥的体积329 3ABA 1×h = 4 .答案:9348. (2017 无·锡期末 )已知圆锥的侧面睁开图为一个圆心角为2π3π的扇形, 3 ,且面积为则该圆锥的体积等于 ________.分析: 设圆锥的母线为 l ,底面半径为 r ,由于 3π= 1πl 2,所以 l = 3,所以 πr ×3= 3π,3221 22 2π所以 r = 1,所以圆锥的高是3 - 1 = 2 2,所以圆锥的体积是3×π×1 ×2 2=3 .答案:22π39.(2017 徐·州古邳中学摸底 )表面积为 24π的圆柱,当其体积最大时,该圆柱的底面半径与高的比为 ________.分析: 设圆柱的高为 h ,底面半径为 r ,则圆柱的表面积 S = 2πr 2+ 2πrh = 24π,即 r 2+ rh = 12,得 rh = 12- r 2,223∴ V = πr h = πr(12 - r )= π (12r - r ), 令 V ′= π(12- 3r 2)= 0,得 r = 2,∴函数 V = πr 2h 在区间 (0,2] 上单一递加,在区间 [2,+ ∞)上单一递减,∴ r = 2 时, V 最大,r 1 此时 2h= 12- 4= 8,即 h= 4,h=2.答案:1 210.三棱锥P-ABC 中, PA⊥平面ABC, AC⊥ BC, AC= BC= 1, PA= 3,则该三棱锥外接球的表面积为________.分析:把三棱锥 P-ABC 看作由平面截一个长、宽、高分别为1、 1、3的长方体所得的一部分 (如图 ).易知该三棱锥的外接球就是对应长方体的外接球.又长方体的体对角线长为12+ 12+32=5,故外接球半径为5,表面积为 4π×52= 5π. 22答案: 5π11.已知正三棱锥P-ABC 的体积为22,底面边长为2,则侧棱 PA 的长为 ________.3分析:设底面正三角形ABC 的中心为 O,又底面边长为 2,故 OA=2 3,由 V P-ABC=31·S△ABC,得221PO×32=26,所以 PA=22= 2.PO3=4×2, PO3PO+AO33答案:212. (2017 苏·州期末 )一个长方体的三条棱长分别为3,8,9,若在该长方体上边钻一个圆柱形的孔后其表面积没有变化,则圆孔的半径为________.分析:圆柱两底面积等于圆柱的侧面积.孔的打法有三种,所以有三种状况:①孔高为 3,则 2πr 2= 2πr×3,解得 r=3;②孔高为8,则 r= 8;③孔高为 9,则 r= 9.而实质状况是,当 r= 8, r= 9 时,由于长方体有个棱长为3,所以受限制不可以打,所以只有①切合.答案:313.以下图,在体积为9 的长方体 ABCD -A1B1C1D1中,对角线 B1D与平面 A1BC1交于点 E ,则四棱锥 E-A1B1C1D1的体积 V= ________.分析:连结 B1D1交 A1C1于点 F ,连结 BD , BF ,则平面 A1BC1∩平面 BDD 1B1=BF ,由于 E∈平面 A1BC1, E∈平面 BDD 1B1,所以 E∈ BF .由于 F 是 A1C1的中点,所以 BF 是中线,又1FE1 B1F 綊 BD,所以EB=,22故点 E 到平面 A1B1C1D 1的距离是 BB1的1,所以四棱锥E- A1B1C1D1的体积 V=1×S 四边形3311V 长方体 ABCD -A1B1C1 D1= 1.A1B1C1D1× BB 1=39答案:114.半径为 2 的球 O 中有一内接正四棱柱(底面是正方形,侧棱垂直底面 ).当该正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差是________.分析 :依题意,设球的内接正四棱柱的底面边长为a 、高为h ,则有16= 2a 2+ h 2≥2 2ah ,即 4ah ≤16 2,该正四棱柱的侧面积S = 4ah ≤16 2,当且仅当h = 2a = 2 2时取等号.因此,当该正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差是4π×22- 162= 16( π-2).答案 : 16( π-2)[B 组 —— 力求难度小题 ]1.已知三棱锥 S-ABC 所在极点都在球 O 的球面上,且 SC ⊥平面 ABC ,若 SC = AB =AC =1,∠ BAC = 120 °,则球 O 的表面积为 ________.分析 : ∵ AB = AC = 1,∠ BAC = 120°,∴ BC = 12+ 12- 2×1×1×- 1= 3,2∴三角形 ABC 的外接圆直径2r =3 = 2,sin 120°∴ r = 1.∵ SC ⊥平面 ABC , SC = 1,2SC 25 ∴该三棱锥的外接球半径 R = r +2 = 2 ,2∴球 O 的表面积 S = 4πR = 5π.2.(2017 南·京三模 )如图,在直三棱柱 ABC- A 1B 1C 1 中, AB = 1,BC =2,BB 1= 3,∠ ABC = 90°,点 D 为侧棱 BB 1 上的动点.当 AD + DC 1 最小时,三棱锥 D-ABC 1 的体积为 ________.分析:在直三棱柱 ABC-A 1B 1C 1 中,BB 1⊥平面 ABC ,所以 BB 1⊥ AB ,又由于∠ ABC = 90°,即 BC ⊥ AB ,又 BC ∩BB 1= B ,所以 AB ⊥平面 BB 1C 1 C,由于 AB = 1,BC = 2,点 D 为侧棱 BB 1 上的动点, 所以侧面睁开, 当 AD + DC 1 最小时, BD= 1,所以 S △ BDC 1= 1×BD ×B 1C 1= 1,所以三棱锥 D-ABC 1 的体积为 1×S △ BDC 1×AB = 1 .23 3 答案:133.设四周体的六条棱的长分别为1,1,1,1, 2和 a ,且长为 a 的棱与长为 2的棱异面,则 a 的取值范围是 ________.分析 :以下图, AB =2,CD = a ,设点 E 为 AB 的中点,则 ED ⊥AB ,EC ⊥ AB ,则 ED =22=2 2 AD- AE ,同理 EC =2.由构成三角形的2条件知 0< a<ED + EC =2,所以 0< a< 2.答案: (0,2)4.如图,已知 AB 为圆 O 的直径, C 为圆上一动点, PA⊥圆 O 所在的平面,且 PA= AB= 2,过点 A 作平面α⊥ PB,分别交 PB,PC 于 E , F ,当三棱锥P-AEF 的体积最大时, tan∠BAC= ________.分析:∵ PB⊥平面 AEF ,∴AF ⊥ PB.又 AC⊥ BC, AP⊥ BC,∴ BC⊥平面 PAC,∴ AF ⊥ BC,∴ AF ⊥平面 PBC,∴∠ AFE =90°.设∠ BAC=θ,在 Rt △PAC 中,AF =AP·AC=2×2cos θ=2cos θ,PC 2 1+ cos2θ1+ cos2θ在 Rt △PAB 中, AE = PE= 2,∴EF = AE2-AF 2,112∴ V P-AEF=AF ·EF ·PE =AF· 2-AF · 266=2242· -2226· 2AF-AF =6AF -+ 1≤,∴当 AF = 1 时, V P-AEF获得最大值62,此时 AF =2cos θ= 1,∴ cos θ=1, sin θ=2,∴ tan θ= 2.61+ cos2θ33答案:2第 2 课时平行与垂直(能力课) [常考题型打破]线线、线面地点关系的证明[例 1] (2017 ·苏高考江 )如图,在三棱锥 A-BCD 中, AB⊥AD ,BC⊥BD ,平面 ABD ⊥平面 BCD ,点 E,F (E 与 A,D 不重合 )分别在棱 AD, BD 上,且 EF ⊥ AD. 求证: (1)EF ∥平面 ABC;(2)AD ⊥AC.[证明 ] (1)在平面 ABD 内,由于AB⊥ AD , EF ⊥ AD,所以 EF ∥ AB.又由于 EF ?平面 ABC, AB?平面 ABC,所以 EF ∥平面 ABC .(2)由于平面 ABD⊥平面 BCD,平面 ABD ∩平面 BCD= BD ,BC?平面 BCD, BC⊥ BD ,所以 BC⊥平面 ABD .由于 AD?平面 ABD,所以 BC⊥ AD .又 AB⊥ AD, BC∩AB= B, AB?平面 ABC, BC?平面 ABC ,所以 AD ⊥平面 ABC.又由于 AC?平面 ABC,所以 AD ⊥AC .[方法概括 ]立体几何证明问题的注意点(1)证明立体几何问题的主要方法是定理法,解题时一定依照定理建立的条件进行推理.如线面平行的判断定理中要求此中一条直线在平面内,另一条直线一定说明它在平面外;线面垂直的判断定理中要求平面内的两条直线一定是订交直线等,假如定理的条件不完好,则结论不必定正确.(2)证明立体几何问题,重要密联合图形,有时要利用平面几何的有关知识,所以需要多画出一些图形协助使用.[变式训练 ]1.(2017 ·锡常镇一模苏 )如图,在斜三棱柱 ABC-A1B1C1中,侧面 AA1C1C 是菱形, AC1与 A1C 交于点 O, E 是棱 AB 上一点,且 OE∥平面 BCC1B1.(1)求证: E 是 AB 的中点;(2)若 AC 1⊥A1B,求证: AC1⊥ BC.证明: (1)连结 BC1,由于OE ∥平面BCC1B1, OE ?平面 ABC1,平面BCC1B1∩平面 ABC1= BC1,所以 OE ∥ BC1 .由于侧面AA1C1C 是菱形, AC 1∩A1C= O,所以 O 是 AC1中点,所以AE=AO= 1,E 是 AB 的中点 . EB OC1(2)由于侧面 AA1C1C 是菱形,所以 AC1⊥ A1C,又 AC1⊥ A1B, A1C∩A1B=A1, A1C?平面 A1BC, A1B?平面 A1BC,所以 AC1⊥平面A1BC,由于 BC ? 平面 A 1BC ,所以 AC 1⊥ BC.2. (2017 ·苏州模拟 ) 在以下图的空间几何体ABCDPE 中,底面ABCD 是边长为 4 的正方形, PA ⊥平面 ABCD ,PA ∥ EB ,且 PA = AD = 4,EB =2.(1) 若点 Q 是 PD 的中点,求证: AQ ⊥平面 PCD ;(2) 证明: BD ∥平面 PEC .证明: (1)由于 PA = AD , Q 是 PD 的中点,所以AQ ⊥ PD.又 PA ⊥平面 ABCD ,所以 CD ⊥PA.又 CD ⊥ DA , PA ∩DA = A ,所以 CD ⊥平面 ADP .又由于 AQ ? 平面 ADP ,所以 CD ⊥AQ ,又 PD ∩CD =D ,所以 AQ ⊥平面 PCD .(2) 取 PC 的中点 M ,连结 AC 交 BD 于点 N ,连结 MN ,ME ,1在△ PAC 中,易知 MN = 2PA , MN ∥ PA ,1 又PA ∥ EB , EB=2PA ,所以 MN =EB ,MN ∥EB ,所以四边形 BEMN 是平行四边形,所以EM ∥ BN.又 EM ? 平面 PEC ,BN ?平面 PEC ,所以 BN ∥平面 PEC ,即 BD ∥平面 PEC.两平面之间地点关系的证明[例 2](2017 ·京模拟南 )如图,直线 PA 垂直于圆 O 所在的平面,△ABC 内接于圆 O ,且 AB 为圆 O 的直径, M 为线段 PB 的中点, N 为线段 BC 的中点.求证: (1)平面 MON ∥平面 PAC ;(2) 平面 PBC ⊥平面 MON .[证明 ] (1)由于 M , O , N 分别是 PB , AB , BC 的中点,所以 MO ∥ PA , NO ∥ AC ,又 MO ∩NO = O ,PA ∩AC = A ,所以平面MON ∥平面 PAC.(2)由于 PA⊥平面 ABC, BC?平面 ABC ,所以 PA⊥ BC.由(1)知,MO ∥PA,所以 MO ⊥ BC.连结 OC,则 OC= OB,由于 N 为 BC 的中点,所以 ON ⊥BC .又 MO ∩ON= O, MO?平面 MON ,ON?平面 MON ,所以 BC⊥平面 MON .又 BC?平面 PBC,所以平面PBC⊥平面 MON .[方法概括 ]1.证明面面平行依照判断定理,只需找到一个面内两条订交直线与另一个平面平行即可,进而将证明面面平行转变为证明线面平行,再转变为证明线线平行.2.证明面面垂直常用面面垂直的判断定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转变为证明线面垂直,一般先从现有直线中找寻,若图中不存在这样的直线,则借助中线、高线或增添协助线解决.[变式训练 ]1. (2017 ·锡期末无 )在四棱锥 P-ABCD 中,底面 ABCD 为矩形, AP⊥平面 PCD , E, F 分别为 PC, AB 的中点.求证:(1)平面 PAD⊥平面 ABCD ;(2)EF ∥平面 PAD.证明: (1)由于 AP⊥平面 PCD , CD?平面 PCD,所以 AP⊥ CD,由于四边形ABCD 为矩形,所以AD ⊥ CD,又由于 AP∩AD= A, AP?平面 PAD, AD?平面 PAD,所以 CD ⊥平面 PAD,由于 CD ?平面 ABCD ,所以平面PAD⊥平面 ABCD .(2)连结 AC, BD 交于点 O,连结 OE , OF ,由于四边形ABCD 为矩形,所以O 点为 AC 的中点,由于 E 为 PC 的中点,所以 OE ∥PA,由于 OE ?平面 PAD, PA?平面 PAD,所以 OE ∥平面 PAD,同理可得: OF ∥平面 PAD,又由于 OE ∩OF = O,所以平面OEF ∥平面 PAD,由于 EF ?平面 OEF ,所以 EF ∥平面 PAD.2.(2016 江·苏高考 )如图,在直三棱柱 ABC-A1B1 C1中,D,E 分别为 AB,BC 的中点,点 F 在侧棱 B1B 上,且 B1D⊥ A1F, A1C1⊥ A1B1.求证: (1)直线 DE ∥平面 A1C1F;(2)平面 B1DE ⊥平面 A1C1F.证明: (1)在直三棱柱ABC -A1B1C1中, A1C1∥ AC.在△ ABC 中,由于D, E 分别为 AB, BC 的中点,所以 DE ∥AC ,于是 DE ∥ A1C1.又由于 DE ?平面 A1C1F, A1C1?平面 A1C1F,所以直线DE∥平面 A1C1F .(2)在直三棱柱ABC-A1B1C1中, A1A⊥平面 A1B1C1.由于 A1C1?平面 A1B1C1,所以 A1A⊥ A1C1.又由于 A1C1⊥ A1B1, A1A?平面 ABB1A1, A1B1?平面 ABB1A1, A1A∩A1B1= A1,所以 A1C1⊥平面 ABB1A1.由于 B1D?平面 ABB1A1,所以 A1C1⊥ B1D .又由于 B1D ⊥ A1F, A1C1?平面 A1C1F, A1F?平面 A1 C1F, A1C1∩A1F =A1,所以 B1D ⊥平面 A1C1F.由于直线B1D ?平面 B1DE ,所以平面B1DE ⊥平面 A1C1F .空间线面地点关系的综合问题[例 3] (2017 ·北三市模拟苏 )如图, AB 为圆 O 的直径,点 E ,F 在圆 O上,且 AB∥ EF ,矩形 ABCD 所在的平面和圆 O 所在的平面相互垂直.(1)求证:平面 AFC ⊥平面 CBF .(2)在线段 CF 上能否存在一点 M,使得 OM ∥平面 ADF ?并说明理由.[解 ] (1)证明:∵平面 ABCD ⊥平面 ABEF ,CB⊥ AB,平面 ABCD ∩平面 ABEF = AB,∴CB⊥平面 ABEF .∵AF ?平面 ABEF ,∴ AF ⊥ CB.又 AB 为圆 O 的直径,∴AF ⊥ BF .又 BF ∩CB= B,∴AF ⊥平面 CBF .∵AF ?平面 AFC ,∴平面 AFC ⊥平面 CBF .(2)当 M 为 CF 的中点时, OM ∥平面 ADF .证明以下:取 CF 中点 M ,设 DF 的中点为N,连结 AN,MN ,则MN綊1C D,又 AO 綊1C D,则 MN 綊 AO,22∴四边形MNAO 为平行四边形,∴OM ∥ AN,又 AN ?平面 DAF , OM ?平面 DAF ,∴OM ∥平面 DAF .[方法概括 ]与平行、垂直有关的存在性问题的解题步骤[变式训练 ]1.如图,四边形ABCD 是矩形,平面ABCD ⊥平面 BCE,BE ⊥ EC.(1) 求证:平面AEC⊥平面 ABE;BF(2) 点 F 在 BE 上,若 DE ∥平面 ACF ,求BE的值.解: (1)证明:∵四边形ABCD 为矩形,∴ AB⊥ BC,∵平面 ABCD ⊥平面 BCE,∴AB⊥平面 BCE,∴ CE⊥ AB.又∵ CE⊥ BE, AB∩BE= B,∴CE⊥平面 ABE,又∵ CE?平面 AEC ,∴平面AEC ⊥平面 ABE .(2)连结 BD 交 AC 于点 O,连结 OF .∵DE ∥平面 ACF , DE?平面 BDE ,平面 ACF ∩平面 BDE =OF .∴DE ∥ OF ,又在矩形 ABCD 中, O 为 BD 中点,∴F 为 BE 中点,即BFBE=12.2.如图,在矩形ABCD 中, E, F 分别为 BC, DA 的中点.将矩形ABCD 沿线段 EF折起,使得∠DFA= 60°.设 G 为 AF 上的点.(1)试确立点 G 的地点,使得 CF ∥平面 BDG ;(2)在 (1)的条件下,证明: DG⊥ AE .解: (1)当点 G 为 AF 的中点时, CF ∥平面 BDG .证明以下:由于 E, F 分别为 BC, DA 的中点,所以 EF ∥ AB∥ CD.连结 AC 交 BD 于点 O,连结 OG,则 AO= CO.又G为 AF的中点,所以 CF ∥OG.由于 CF ?平面 BDG ,OG ?平面 BDG .所以 CF ∥平面 BDG .(2)由于 E,F 分别为 BC, DA 的中点,所以EF ⊥ FD ,EF ⊥ FA .又 FD ∩FA=F,所以EF ⊥平面ADF ,由于 DG?平面 ADF,所以 EF ⊥DG.由于 FD =FA,∠ DFA = 60°,所以△ ADF 是等边三角形,DG⊥ AF ,又 AF∩EF=F,所以 DG ⊥平面 ABEF .由于 AE ?平面 ABEF ,所以 DG ⊥AE .[课时达标训练]1.如图,在三棱锥 V-ABC 中, O, M 分别为 AB, VA 的中点,平面VAB⊥平面 ABC ,△ VAB 是边长为 2 的等边三角形, AC⊥ BC 且 AC= BC.(1)求证: VB ∥平面 MOC ;(2)求线段 VC 的长.解: (1)证明:由于点O,M 分别为 AB, VA 的中点,所以 MO ∥VB.又 MO ?平面 MOC , VB?平面 MOC ,所以 VB ∥平面 MOC .(2)由于 AC= BC, O 为 AB 的中点, AC⊥ BC, AB= 2,所以OC⊥AB,且 CO= 1.连结 VO,由于△ VAB 是边长为 2 的等边三角形,所以 VO = 3.又平面 VAB⊥平面 ABC, OC⊥ AB,平面 VAB∩平面 ABC= AB, OC?平面ABC,所以 OC⊥平面 VAB,所以 OC⊥ VO,所以 VC =OC2+ VO 2= 2.2.(2017 南·通二调 )如图,在直三棱柱ABC-A1B1C1中, AC⊥ BC,A1B与 AB1交于点 D, A1C 与 AC1交于点 E.求证: (1)DE ∥平面 B1BCC1;(2)平面 A1BC⊥平面 A1ACC1.证明: (1)在直三棱柱ABC-A1B1C1中,四边形 A1ACC1为平行四边形.又 E 为 A1C 与 AC1的交点,所以E为A1C的中点.同理, D 为 A1B 的中点,所以DE ∥ BC.又 BC?平面 B1BCC 1, DE ?平面 B1BCC1,所以 DE ∥平面 B1BCC1.(2) 在直三棱柱 ABC-A1B1C1中, AA1⊥平面 ABC,又BC?平面 ABC,所以 AA 1⊥ BC.又 AC⊥ BC, AC∩AA1= A, AC?平面 A1ACC 1, AA1?平面 A1ACC1,所以 BC⊥平面A1ACC 1.由于 BC?平面 A1BC,所以平面A1BC⊥平面 A1ACC1.3.(2017南·京三模)如图,在三棱锥A-BCD中, E,F分别为棱BC,CD上的点,且BD∥平面AEF .(1)求证: EF ∥平面 ABD ;(2)若 BD ⊥ CD , AE⊥平面 BCD ,求证:平面 AEF ⊥平面 ACD .证明: (1)由于 BD ∥平面 AEF ,BD?平面 BCD,平面 AEF ∩平面 BCD= EF ,所以BD ∥EF .由于 BD ?平面 ABD ,EF ?平面 ABD,所以EF ∥平面 ABD .(2) 由于 AE⊥平面 BCD, CD ?平面 BCD ,所以 AE⊥CD.由于 BD ⊥CD , BD∥ EF ,所以CD ⊥ EF ,又 AE∩EF =E,AE?平面 AEF ,EF ?平面 AEF ,所以 CD ⊥平面 AEF .又 CD ?平面 ACD ,所以平面 AEF ⊥平面 ACD.4.在四棱锥P-ABCD 中, PA⊥底面 ABCD , AB∥ CD ,AB⊥ BC,AB=BC= 1, DC = 2,点 E 在 PB 上.(1)求证:平面 AEC⊥平面 PAD;(2)当 PD ∥平面 AEC 时,求 PE∶ EB 的值.解: (1)证明:在平面ABCD 中,过 A 作 AF ⊥ DC 于 F ,则 CF = DF = AF = 1,∴∠ DAC=∠ DAF +∠ FAC= 45°+ 45°= 90°,即 AC⊥ DA.又 PA⊥平面 ABCD , AC?平面 ABCD ,∴ AC⊥ PA.∵PA?平面 PAD, AD ?平面 PAD,且 PA∩AD= A,∴AC⊥平面 PAD.又 AC?平面 AEC ,∴平面 AEC ⊥平面 PAD.(2)连结 BD 交 AC 于 O,连结 EO.∵PD∥平面 AEC , PD ?平面 PBD,平面 PBD∩平面 AEC = EO,∴PD∥EO,则 PE∶ EB=DO∶OB.又△ DOC ∽△ BOA,∴DO∶ OB=DC ∶ AB= 2∶ 1,∴PE∶ EB 的值为 2.5.(2017 扬·州考前调研 )如图,在四棱锥 P-ABCD 中,底面 ABCD 为梯形,CD∥ AB, AB= 2CD , AC 交 BD 于 O,锐角△ PAD 所在平面⊥底面 ABCD , PA⊥ BD,点 Q 在侧棱 PC 上,且 PQ= 2QC.求证: (1)PA∥平面 QBD ;(2)BD ⊥AD.证明: (1)连结 OQ,由于 AB∥ CD ,AB= 2CD,所以 AO= 2OC,又 PQ= 2QC,所以 PA∥ OQ,由于 OQ ?平面 QBD , PA?平面 QBD ,所以 PA∥平面 QBD .(2)在平面 PAD 内过 P 作 PH ⊥AD 于 H,由于侧面PAD⊥底面 ABCD ,平面 PAD ∩平面 ABCD =AD , PH ?平面 PAD ,所以 PH ⊥平面 ABCD ,又 BD?平面 ABCD,所以 PH⊥BD.又 PA⊥ BD,且 PA∩PH = P, PA?平面 PAD, PH ?平面 PAD,所以 BD ⊥平面 PAD,又 AD?平面 PAD,所以 BD⊥AD.6.如图,在多面体 ABCDFE 中,四边形 ABCD 是矩形,四边形 ABEF为等腰梯形,且 AB∥EF , AF = 2, EF = 2AB= 4 2,平面 ABCD ⊥平面 ABEF .(1)求证: BE⊥DF ;(2)若 P 为 BD 的中点,试问:在线段 AE 上能否存在点 Q,使得 PQ∥平面 BCE?若存在,找出点 Q 的地点;若不存在,请说明原因.解: (1)证明:如图,取 EF 的中点 G,连结 AG,由于 EF = 2AB ,所以 AB= EG ,又 AB∥ EG,所以四边形 ABEG 为平行四边形,所以 AG∥ BE ,且AG=BE=AF=2.1在△ AGF 中, GF=2EF =2 2,AG=AF=2,所以 AG2+ AF 2= GF 2,所以 AG⊥ AF .由于四边形ABCD 为矩形,所以AD ⊥ AB,又平面 ABCD ⊥平面 ABEF ,且平面 ABCD ∩平面 ABEF = AB, AD?平面 ABCD ,所以 AD ⊥平面 ABEF ,又 AG?平面 ABEF ,所以 AD ⊥ AG.由于 AD ∩AF = A,所以 AG⊥平面 ADF .由于 AG∥BE ,所以 BE ⊥平面 ADF .由于 DF ?平面 ADF ,所以 BE⊥ DF .(2)存在点 Q,且点 Q 为 AE 的中点,使得 PQ∥平面 BCE .证明以下:连结AC,由于四边形ABCD 为矩形,所以 P 为 AC 的中点.在△ ACE 中,由于点P, Q 分别为 AC, AE 的中点,所以 PQ∥ CE.又 PQ?平面 BCE, CE ?平面 BCE ,高考数学二轮:专题复习教教案:专题二立体几何所以 PQ∥平面 BCE .21 / 21。
2019-2020年高三数学立体几何专题复习教案
,
2
2
EF d 2 m2 n2 2mncos
③向量方法: 只要在两个半平面内各有棱的垂线、 (不必相 交),则向量、 所成的角的大小等于所求二面 角或其补角的大小。 另法: 设、分别为两个半平面的 法向量 ,则 它们所成的角的大小等于所求二面角或其补 角的大小。 对于棱未给出的二面角的求法可通过“作平 行线”法或“找公共点”法寻求棱。
问题十: 求距离 1. 立体几何主要研究以下八种距离:点点
距、点线距、点面距、线线距(平行线间 距离与异面直线间的距离) 、线面距、面 面 距及球面上两点间的 距离(课本 9.10 )。 ( 1)无论哪种距离, 其定义原则有以下两条: 一是惟一性,二是最短原则。 ( 2)以上距离之间有些可以互相转化, 如两 平行线间距离可以转化成点线距,线面距与
距离公式可求出二面角,公式为:
问题八: 求平面的斜线与平面所成角 1. 传统几何方法: ①转化为求斜线与它在平面内的射影所成的 角,通过直角三角形求解。 ②利用三面角定理(即最小角定理)求。 2. 向量方法: 设为平面的 法向量 ,直线与平
面所成的角为,则
a, n , a, n 0,
2
2
a, n
, a, n
d l 2 m2 n 2 2mncos
①定义。在具体问题中异面直线的给出是异
③三垂线定理及其逆定理:过一个半平面内
面线段形式表示的,因此由异面直线所成角
一点作另一半平面的垂线,过垂足在另一个
的定义我们可以选择两条线段的四个端点,
半平面内作棱的垂线得棱上一点(即斜足) ,
过其中一个端点作另外一条线段的平行线,
斜足与面上一点的连线和斜足与垂足连线所
①求公垂线段的长度
同一个半平面内的几何元素之间的关系是 不
2019-2020年高三数学二轮复习 专题四 第1讲 空间几何体教案
2019-2020年高三数学二轮复习 专题四 第1讲 空间几何体教案自主学习导引真题感悟1.(xx ·辽宁)一个几何体的三视图如图所示,则该几何体的表面积为________.解析 将三视图还原为直观图后求解.根据三视图可知几何体是一个长方体挖去一个圆柱,所以S =2×(4+3+12)+2π-2π=38. 答案 382.(xx·辽宁)已知正三棱锥P ABC ,点P 、A 、B 、C 都在半径为3的球面上,若PA 、PB 、PC 两两相互垂直,则球心到截面ABC 的距离为________.解析 先求出△ABC 的中心,再求出高,建立方程求解. 如图,设PA =a , 则AB =2a ,PM =33a . 设球的半径为R ,所以⎝⎛⎭⎪⎫33a -R 2+⎝ ⎛⎭⎪⎫63a 2=R 2, 将R =3代入上式,解得a =2,所以d =3-233=33.答案33考题分析高考考查本部分内容时一般把三视图与空间几何体的表面积与体积相结合,题型以小题为主,解答此类题目需仔细观察图形,从中获知线面的位置关系与数量大小,然后依据公式计算.网络构建高频考点突破考点一:空间几何体与三视图【例1】已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一直角边为2的直角三角形,则该三棱锥的正视图可能为[审题导引] 条件中的俯视图与侧视图给出了边长,故可根据三视图的数量关系进行选择.[规范解答] 空间几何体的正视图和侧视图的“高平齐”,故正视图的高一定是2,正视图和俯视图“长对正”,故正视图的底面边长为2,根据侧视图中的直角说明这个空间几何体最前面的面垂直于底面,这个面遮住了后面的一个侧棱,综合以上可知,这个空间几何体的正视图可能是C.[答案] C【规律总结】解决三视图问题的技巧空间几何体的数量关系也体现在三视图中,正视图和侧视图的“高平齐”,正视图和俯视图的“长对正”,侧视图和俯视图的“宽相等”.也就是说正视图、侧视图的高就是空间几何体的高,正视图、俯视图中的长就是空间几何体的最大长度,侧视图、俯视图中的宽就是空间几何体的最大宽度.在绘制三视图时,分界线和可见轮廓线都用实线画出,被遮挡的部分的轮廓线用虚线表示出来,即“眼见为实、不见为虚”.在三视图的判断与识别中要特别注意其中的“虚线”.【变式训练】1.(xx·丰台二模)一个正四棱锥的所有棱长均为2,其俯视图如图所示,则该正四棱锥的正视图的面积为A. 2B. 3 C .2 D .4 解析 正四棱锥的直观图如图所示,BH =2,SB =2, ∴SH =2,其正视图为底面边长为2,高为2的等腰三角形, ∴正四棱锥的正视图的面积为S =12×2×2= 2.答案 A考点二:空间几何体的表面积与体积【例2】 (1)一个几何体按比例绘制的三视图如图所示(单位:m),则该几何体的体积为A .4 m 3 B.92m 3 C .3m 3D.94m 3(2)(xx ·丰台一模)若正四棱锥的正视图和俯视图如图所示,则该几何体的表面积是A .4B .4+410C .8D .4+411[审题导引] (1)把三视图还原为几何体,画出其直观图,然后分别计算各个部分的体积,最后整合得到结果;(2)作出几何体的直观图,根据正视图中的几何体的数量可得直观图的数量,可求其表面积. [规范解答] (1)这个空间几何体的直观图如图所示,把右半部分割补到上方的后面以后,实际上就是三个正方体,故其体积是3 m 3.故选C.(2)正四棱锥的直观图如图所示,由正视图与俯视图可知SH =3,AH =2,AB =2,∴△SAB 的高SE =SH 2+EH 2=10, ∴所求的表面积为S =4×12×2×10+2×2=4+410.[答案] (1)C (2)B 【规律总结】组合体的表面积和体积的计算方法实际问题中的几何体往往不是单纯的柱、锥、台、球,而是由柱、锥、台、球或其一部分组成的组合体,解决这类组合体的表面积或体积的基本方法就是“分解”,将组合体分解成若干部分,每部分是柱、锥、台、球或其一个部分,分别计算其体积,然后根据组合体的结构,将整个组合体的表面积或体积转化为这些“部分的表面积或体积”的和或差.[易错提示] 空间几何体的面积有侧面积和表面积之分,表面积就是全面积,是一个空间几何体中“暴露”在外的所有面的面积,在计算时要注意区分是“侧面积还是表面积”.多面体的表面积就是其所有面的面积之和,旋转体的表面积除了球之外,都是其侧面积和底面面积之和.对于简单的组合体的表面积,一定要注意其表面积是如何构成的,在计算时不要多算也不要少算,组合体的表面积要根据情况决定其表面积是哪些面积之和. 【变式训练】2.(xx ·济南模拟)已知某几何体的三视图如图所示,则该几何体的体积为________.解析 由三视图可知该几何体为三棱锥,其高为3, 底面积为S =12×3×1=32,∴体积V =13×32×3=32.答案 323.某品牌香水瓶的三视图如图所示(单位:cm),则该几何体的表面积为________cm 2解析 这个空间几何体上面是一个四棱柱、中间部分是一个圆柱、下面是一个四棱柱.上面四棱柱的面积为2×3×3+12×1-π4=30-π4;中间部分的面积为2π×12×1=π,下面部分的面积为2×4×4+16×2-π4=64-π4.故其面积是94+π2.答案 94+π2考点三:球与球的组合体【例3】正四棱锥S -ABCD 的底面边长和各侧棱长都为2,点S 、A 、B 、C 、D 都在同一个球面上,则该球的体积为________.[审题导引] 如图所示,根据对称性,只要在四棱锥的高线SE 上找到一个点O 使得OA =OS ,则四棱锥的五个顶点就在同一个球面上.[规范解答] 如图所示,在Rt △SEA 中,SA =2,AE =1,故SE =1.设球的半径为r ,则OA =OS =r ,OE =1-r .在Rt △OAE 中,r 2=(1-r )2+1,解得r =1,即点O 即为球心,故这个球的体积是4π3.[答案]4π3【规律总结】巧解球与多面体的组合问题求解球与多面体的组合问题时,其关键是确定球心的位置,可以根据空间几何体的对称性判断球心的位置,然后通过作出辅助线或辅助平面确定球的半径和多面体中各个几何元素的关系,达到求解解题需要的几何量的目的. 【变式训练】4.(xx·普陀区模拟)若一个底面边长为32,侧棱长为6的正六棱柱的所有顶点都在一个球面上,则此球的体积为________.解析 设正六棱柱的上,下底面的中心分别为O 1,O 2, 则O 1O 2的中点即为球心O , 如图所示,AO 2=32,O 2O =62, ∴R =AO =AO 22+O 2O 2=32,∴V =43πR 3=43π×⎝ ⎛⎭⎪⎫323=92π.答案 92π名师押题高考【押题1】某三棱锥的侧视图和俯视图及部分数据如图所示,则该三棱锥的体积为________.解析 由于侧视图和俯视图“宽相等”,故侧视图的底边长是2,由此得侧视图的高为23,此即为三棱锥的高;俯视图的面积为6,由题设条件,此即为三棱锥的底面积.所以所求的三棱锥的体积是13×6×23=4 3.答案 4 3[押题依据] 几何体的三视图是高考的热点问题,通常与几何体的体积和表面积结合考查.本题给出几何体的三视图及其数量大小,要求考生据此计算几何体的体积,此类型可以说是高考的必考点,故押此题.【押题2】正四面体的四个顶点都在同一个球面上,且正四面体的高为4,则这个球的表面积是________.解析 我们不妨设该正四面体的棱长为a ,其外接球的半径是R ,内切球的半径是r ,则该正四面体的高h =R +r ,如图所示,则在Rt △OO 1A 中,OO 1=r ,OA =R ,O 1A =33a ,从而有⎩⎪⎨⎪⎧R +r =63a ,R 2-r 2=13a 2,解得R =64a ,r =612a . 根据R =64a ,h =63a =4⇒R =3⇒S =4πR 2=36π. 答案 36π[押题依据] 本题主要考查空间几何体与球的组合体知识,这类题是高考考查球及其组合体的常考题型,有两类重要组合模型,即球的内接与球的外切.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高考数学二轮复习立体几何专题教案一、本章知识结构:二、重点知识回顾1、空间几何体的结构特征(1)棱柱、棱锥、棱台和多面体棱柱是由满足下列三个条件的面围成的几何体:①有两个面互相平行;②其余各面都是四边形;③每相邻两个四边形的公共边都互相平行;棱柱按底面边数可分为:三棱柱、四棱柱、五棱柱等.棱柱性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.棱锥是由一个底面是多边形,其余各面是有一个公共顶点的三角形所围成的几何体.棱锥具有以下性质:①底面是多边形;②侧面是以棱锥的顶点为公共点的三角形;③平行于底面的截面和底面是相似多边形,相似比等于从顶点到截面和从顶点到底面距离的比.截面面积和底面面积的比等于上述相似比的平方.棱台是棱锥被平行于底面的一个平面所截后,截面和底面之间的部分.由棱台定义可知,所有侧棱的延长线交于一点,继而将棱台还原成棱锥.多面体是由若干个多边形围成的几何体.多面体有几个面就称为几面体,如三棱锥是四面体.(2)圆柱、圆锥、圆台、球分别以矩形的一边,直角三角形的一直角边,直角梯形垂直于底边的腰所在的直线,半圆以它的直径所在直线为旋转轴,旋转一周而形成的几何体叫做圆柱、圆锥、圆台、球圆柱、圆锥和圆台的性质主要有:①平行于底面的截面都是圆;②过轴的截面(轴截面)分别是全等的矩形、等腰三角形、等腰梯形;③圆台的上底变大到与下底相同时,可以得到圆柱;圆台的上底变小为一点时,可以得到圆锥.2、空间几何体的侧面积、表面积(1)棱柱侧面展开图的面积就是棱柱的侧面积,棱柱的表面积就是它的侧面积与两底面面积的和.因为直棱柱的各个侧面都是等高的矩形,所以它的展开图是以棱柱的底面周长与高分别为长和宽的矩形.如果设直棱柱底面周长为c,高为h,则侧面积S ch=侧.若长方体的长、宽、高分别是a、b、c,则其表面积2() S ab bc ca=++表.(2)圆柱的侧面展开图是一个矩形.矩形的宽是圆柱母线的长,矩形的长为圆柱底面周长.如果设圆柱母线的长为l,底面半径为r,那么圆柱的侧面积2πS rl=侧,此时圆柱底面面积2πS r=底.所以圆柱的表面积222π2π2π()S S S rl r r r l=+=+=+侧底.(3)圆锥的侧面展开图是以其母线为半径的扇形.如果设圆锥底面半径为r,母线长为l,则侧面积πS rl=侧,那么圆锥的表面积是由其侧面积与底面面积的和构成,即为2πππ()S S S rl r r r l=+=+=+侧底.(4)正棱锥的侧面展开图是n个全等的等腰三角形.如果正棱锥的周长为c,斜高为h',则它的侧面积12S ch'=侧.(5)正棱台的侧面积就是它各个侧面积的和.如果设正棱台的上、下底面的周长是c c',,斜高是h',那么它的侧面积是12S ch'=侧.(6)圆台侧面展开图是以截得该圆台的圆锥母线为大圆半径,圆锥与圆台的母线之差为小圆半径的一个扇环.如果设圆台的上、下底面半径分别为r r',,母线长为l,那么它的侧面积是π()S r r l'=+侧.圆台的表面积等于它的侧面积与上、下底面积的和, 即2222π()πππ()S S S S r r l r r r r r l rl ''''=++=+++=+++侧上底下底.(7)球的表面积24πS R =,即球的表面积等于其大圆面积的四倍. 3、空间几何体的体积(1)柱体(棱柱、圆柱)的体积等于它的底面积S 和高h 的积,即V Sh=柱体.其中底面半径是r ,高是h 的圆柱的体积是2πV r h=圆柱.(2)如果一个锥体(棱锥、圆锥)的底面积是S ,高是h ,那么它的体积是13V Sh=锥体.其中底面半径是r ,高是h 的圆锥的体积是21π3V r h=圆锥,就是说,锥体的体积是与其同底等高柱体体积的13.(3)如果台体(棱台、圆台)的上、下底面积分别是S S ',,高是h ,那么它的体积是1()3V S S h=+台体.其中上、下底半径分别是r R ,,高是h 的圆台的体积是221π()3V r Rr R h=++圆台.(4)球的体积公式:334R V π=.4、中心投影和平行投影(1)中心投影:投射线均通过投影中心的投影。
(2)平行投影:投射线相互平行的投影。
(3)三视图的位置关系与投影规律三视图的位置关系为:俯视图在主视图的下方、左视图在主视图的右方. 三视图之间的投影规律为:主、俯视图———长对正;主、左视图———高平齐;俯、左视图———宽相等. 5、直观图画法斜二测画法的规则:(1)在空间图形中取互相垂直的x 轴和y 轴,两轴交于O 点,再取z 轴,使xOz ∠=90°,且yOz ∠=90°.(2)画直观图时把它们画成对应的x '轴、y '轴和z '轴,它们相交于O ',并使x O y '''∠=45°,x O z '''∠= 90°。
(3)已知图形中平行于x 轴、y 轴或z 轴的线段,在直观图中分别画成平行于x '轴、y '轴和z '轴的线段.(4)已知图形中平行于x 轴和z 轴的线段,在直观图中长度相等;平行于y 轴的线段,长度取一半. 6.平面(1)对平面的理解平面是一个不加定义、只须理解的最基本的原始概念.立体几何中的平面是理想的、绝对平且无限延展的模型,平面是无大小、厚薄之分的.类似于我们以前学的直线,它可以无限延伸,它是不可度量的. (2)对公理的剖析1)公理1的内容反映了直线与平面的位置关系,公理1的条件“线上不重合的两点在平面内”是公理的必要条件,结论是“线上所有点都在面内”.这个结论阐述了两个观点:一是整条直线在平面内;二是直线上所有点在平面内.其作用是:可判定直线是否在平面内、点是否在平面内.2)公理2中的“有且只有一个”的含义要准确理解.这里的“有”是说图形存在,“只有一个”是说图形唯一,确定一个平面中的“确定”是“有且只有”的同义词,也是指存在性和唯一性这两方面.这个术语今后也会常常出现,要理解好. 其作用是:一是确定平面;二是证明点、线共面.3)公理3的内容反映了平面与平面的位置关系,它的条件简而言之是“两面共一点”,结论是“两面共一线,且过这一点,线唯一”.对于本公理应强调对于不重合的两个平面,只要它们有公共点,它们就是相交的位置关系,交集是一条直线.其作用是:其一它是判定两个平面是否相交的依据,只要两个平面有一个公共点,就可以判定这两个平面必相交于过这点的一条直线;其二它可以判定点在直线上,点是两个平面的公共点,线是这两个平面的公共交线,则这点在交线上. 7. 空间直线.(1)空间直线位置分三种:相交、平行、异面. 相交直线—共面有且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内。
(2)异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)(3)平行公理:平行于同一条直线的两条直线互相平行.(4)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.8. 直线与平面平行、直线与平面垂直.(1)空间直线与平面位置分三种:相交、平行、在平面内.(2)直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)(3)直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)(4)直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直. 直线与平面垂直判定定理:如果一条直线和一个平面内的两条相交直线垂直,则这条直线与这个平面垂直。
推论:如果两条直线同垂直于一个平面,那么这两条直线平行. 9. 平面平行与平面垂直.(1)空间两个平面的位置关系:相交、平行.(2)平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.(3)两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)(4)两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直. 两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)(5)两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面. 10. 空间向量.(1)a.共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合.(2)空间向量基本定理:如果三个向量c b a ,,不共面,那么对空间任一向量P ,存在一个唯一的有序实数组x 、y 、z ,使cz b y a x p ++=.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P , 都存在唯一的有序实数组x 、y 、z 使z y x ++=(这里隐含x+y+z≠1).(3)a.空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵轴),z 轴是竖轴(对应为竖坐标). ①令a =(a1,a2,a3),),,(321b b b =,则),,(332211b a b a b a b a ±±±=+,))(,,(321R a a a a ∈=λλλλλ,332211b a b a b a b a ++=⋅ ,∥)(,,332211R b a b a b a ∈===⇔λλλλ332211b a b a b a ==⇔。
332211=++⇔⊥b a b a b a b a 。
222321a a a ++==(用到常用的向量模与向量之间的转化:a a =⇒⋅=)OABCD空间两个向量的夹角公式232221232221332211||||,cos b b b a a a b a b a b a b a b a b a ++⋅++++=⋅⋅>=<(a =123(,,)a a a ,b =123(,,)b b b )。