时温等效原理在车辙预估中的应用

时温等效原理在车辙预估中的应用
时温等效原理在车辙预估中的应用

高中化学等效平衡原理(习题练习)

等效平衡原理及练习 一、等效平衡概念 等效平衡是指在一定条件(恒温恒容或恒温恒压)下,只是起始加入情况不同的同一可逆反应达平衡后,任何相同组分的体积分数或物质的量分数均相等的平衡。 在等效平衡中,有一类特殊的平衡,不仅任何相同组分X的含量(体积分数、物质的量分数)均相同,而且相同组分的物质的量均相同,这类等效平衡又称为同一平衡。同一平衡是等效平衡的特例。 如,常温常压下,可逆反应: 2SO2 + O2 2SO2 ①2mol 1mol 0mol ②0mol 0mol 2mol ③0.5mol 0.25mol 1.5mol ①从正反应开始,②从逆反应开始,③从正逆反应同时开始,由于①、②、③三种情况如果按方程式的计量关系折算成同一方向的反应物,对应各组分的物质的量均相等(如将②、③折算为①),因此三者为等效平衡 二、等效平衡规律 判断是否建立等效平衡,根据不同的特点和外部条件,有以下几种情况: ①在恒温、恒容条件下,对于反应前后气体分子数改变的可逆反应,改变起始时加入物质的物质的量,通过化学计量数计算,把投料量换算成与原投料量同一则物质的物质的量,若保持其数值相等,则两平衡等效。此时,各组分的浓度、反应速率等分别与原平衡相同,亦称为同一平衡。 ②在恒温、恒容条件下,对于反应前后气体分子数不变的可逆反应,改变起始时加入物质的物质的量,通过化学计量数计算,把投料量换算成与原投料量同一则物质的物质的量,只要物质的量的比值与原平衡相同则两平衡等效。此时,各配料量不同,只导致其各组分的浓度反应速率等分别不同于原平衡,而各组分的百分含量相同。 ③在恒温、恒压下,不论反应前后气体分子数是否发生改变,改变起始时加入物质的物质的量,根据化学方程式的化学计量数换算

三相平衡化原理和应用

三相平衡化原理和应用 摘要:本文对三相平衡原理中补偿电抗和补偿电容与负荷阻抗之间的定量关系从电路角度进行了推导,并对其在电气化铁道负序补偿中的应用,做了初步探讨。 关键词:三相不平衡;负序;动态补偿装置 1前言 在电力系统中,存在着种种不平衡因素,可以归结为事故性和正常性两大类。事故性的不平衡是由于系统故障引起的,这种运行工况在系统中是不允许的,一般要通过保护装置切除故障元件,经处理后再恢复系统运行。正常性不平衡是由于三相元件参数或负荷不对称引起的,象电气化铁道中的牵引负荷、冶炼系统中的电弧炉等。系统三相不平衡度如果超过一定范围,将会影响系统的安全运行。因此,针对正常性不平衡运行工况,制定了“三相电压允许不平衡度”的电能质量指标。 本文着重分析三相平衡化原理,并以电气化铁道为例,探讨负序补偿问题。对于不对称工业负荷,要求补偿装置具有快速响应特性和分相调整功能。三相平衡原理及实时平衡化公式的建立,是实现上述功能的基础。目前能实现上述功能的补偿装置以SVC为典型代表。国外一些发达国家如日本、澳大利亚等国已成功地将SVC技术应用在电气化铁道的无功和负序补偿中。在国内,SVC技术在上述领域的应用尚属空白,因此有必要在建立较优的技术经济指标的前提下,开发适用于电气化铁道负荷补偿的SVC装置,这对提高电网的运行质量无疑是有益的。上海礼经电器有限公司 2三相平衡化的基本原理 因平衡的三相系统总功率是恒定的且与时间无关,而不平衡的三相系统的总功率是在其平衡值上下波动的,因此将不平衡三相系统变换成平衡的三相系统时,在平衡装置中应该设有能够暂时存储电磁能量的电磁元件,如:电抗器和电容器,以单相电阻性负荷为例,如图1所示,它是不平衡的三相系统。 在不改变电源和负荷之间的有功功率交换的前提下,分别在U-W和W-V 相间装设电抗器和电容器,如图2所示。

《沉淀溶解平衡原理的应用》教案

第四单元难溶电解质的沉淀溶解平衡 第二课时沉淀溶解平衡原理的应用教学设计 (一)三维目标 知识与技能目标 1、使学生能够运用平衡移动的观点对沉淀的溶解、生成与转化过程进行分析。 2、知道沉淀转化的本质并能够对相关实验的现象以及生活中的一些相关问题进行解 释。 过程与方法目标 初步建立解决沉淀溶解平衡问题的一般思路,尝试运用微粒观、动态观、定量观分析沉淀溶解平衡的相关问题。 情感态度价值观目标 通过对生产、生活中与沉淀溶解平衡有关的某些现象的讨论,使学生体会到化学对于提高人类生活质量、促进社会发展的作用,激发学生学习化学的热情。 (二)教学重点 1.沉淀的转化的基本原理; 2.解决沉淀溶解平衡相关问题的基本思路; ( 三)教学难点 用微粒观、动态观、定量观分析水溶液中的平衡问题。 ( 四)教学过程 【教师】上一节课我们学习了难溶电解质的沉淀溶解平衡,我们要求大家要学会描述沉淀溶解平衡的建立,这里我们以AgCl悬浊液为例,请一位同学来描述一下在这个体系中,沉淀溶解平衡是如何建立的? 【学生】微观上说,在AgCl悬浊液体系,一方面,在水分子的作用下,少量的Ag+和Cl-脱离AgCl表面进入水中,这是沉淀溶解过程;另一方面,溶液中的Ag+和Cl-受AgCl表面阴、阳离子的吸引,回到AgCl表面析出,这是沉淀生成过程。在一定温度下,当沉淀溶解的速率和沉淀生成的速率相等时,达到平衡状态,形成AgCl饱和溶液,这种平衡就是沉淀溶解平衡。 【教师】我们可以用平衡表示式表示沉淀溶解平衡。

【教师】 【教师】为了便于分析,我们省略相关标注。 【教师】沉淀溶解平衡是一个动态平衡,也会因影响因素的变化而发生移动。影响沉淀溶解平衡的因素有温度、离子浓度、pH等。根据平衡移动原理,如果改变影响平衡的条件,平衡将向能够减弱这种改变的方向移动。例如,当AgCl悬浊液体系达到沉淀溶解平衡时,增大体系中Cl-的浓度,平衡就会向生成AgCl沉淀的方向移动;反之,如果减小体系中Cl-的浓度,那么平衡就会向AgCl沉淀溶解的方向移动。因此,根据平衡移动原理,选择适当的条件,使平衡向着需要的方向移动。这就是沉淀溶解平衡的应用。 【板书】第2课时沉淀溶解平衡原理的应用 [讲述] 那么现在我们就通过实验来初步体会沉淀溶解平衡的应用。 (学生完成第90页的“活动与探究”) [学生] 滴加AgNO3溶液后出现白色沉淀,滴加KI溶液后,变成黄色沉淀,滴加Na2S 溶液,变成黑色沉淀。 [引导思考]那么,如何解释这种现象呢?这里我们提供给同学们关于难溶物颜色的资料。刚才看到的不同颜色的沉淀应该分别是哪些呢?发生了什么样的变化。 [PPT演示] AgCl、AgI、Ag2S的颜色 [引导学生表述] 根据所给数据结合已学知识,白色沉淀应该是AgCl,黄色沉淀是AgI,黑色沉淀是Ag2S沉淀。刚才的现象说明了向AgCl溶液中滴加KI溶液,AgCl会转化为AgI;而继续滴加Na2S溶液,则沉淀转化为Ag2S黑色沉淀。 [讲述] 这就是沉淀溶解平衡的一个重要应用——沉淀的转化。 [板书] 一、沉淀的转化 [设疑] 为什么会发生上述沉淀的转化?沉淀转化有什么一般性的规律呢?我在上面给 大家上述沉淀的溶解度数据,大家可以参考这些数据,然后和小组的同学一起讨论。 [组织] 请同学以前后两桌4~6个人为一组进行讨论,然后请各组同学派代表来回答问题。开始讨论! [PPT演示] AgCl、AgI、Ag2S的溶解度(25℃) [学生讨论,老师参与讨论,并适当引导学生得出较为准确的结论] [学生汇报讨论结果,教师及时给予引导] 向NaCl溶液加AgNO3溶液,生成白色的AgCl 沉淀生成。由于AgCl是难溶电解质,在溶液中存在沉淀溶解平衡。(利用已写板书,不再进行书写) 。

等效平衡原理及规律

等效平衡原理及规律 一、等效平衡原理 在一定条件(定温、定压或定温、定容)下,对于同一可逆应,只要起始时加入物质的物质的量不同,而达到平衡时,同种物质的物质的量或物质的量分数(或体积分数)相同,这样的平衡称为等效平衡。 如,常温常压下,可逆反应: 2SO2 + O2 2SO2 ①2mol 1mol 0mol ②0mol 0mol 2mol ③ ①从正反应开始,②从逆反应开始,③从正逆反应同时开始,由于①、②、③三种情况如果按方程式的计量关系折算成同一方向的反应物,对应各组分的物质的量均相等(如将②、③折算为①),因此三者为等效平衡 二、等效平衡规律 根据反应条件(定温、定压或定温、定容)以及可逆反应的特点(反应前后气体分子数是否相等),可将等效平衡问题分成三类: I.在恒温、恒容条件下,对于反应前后气体分子数改变的可逆反应只改变起始时加入物质的物质的量,如通过可逆反应的化学计量数比换算成同一半边的物质的物质的量与原平衡相同,则两平衡等效。 例1.在一固定体积的密闭容器中,加入2 mol A和1 mol B发生反应 2A(g)+B(g)3C(g)+D(g),达到平衡,c的浓度为w mol/L。若维持容器体积和温度不变,下列四种配比作为起始物质,达平衡后,c的浓度仍为w mol/L的是 A. 4 mol A +2 mol B B. 1 mol A+ mol B+ mol C+ mol D C. 3 mol C+1 mol D +1 mol B D. 3 mol C+1 mol D 解析:根据题意: 2A(g)+B(g)==3C(g)+D(g) (反应1)<==> 2A(g)+B(g)==3C(g)+ D(g)(反应2) 2mol 1mol 0 0 0 0 3mol 1mol

均衡价格理论的应用

3.3 均衡价格理论的应用 微观经济学的核心是要论证通过价格机制能够对社会经济自发地做出合理的调节,事实上价格机制的调节作用并不像理论上所讲的那样完善,比如某些生活必须品严重短缺时,价格会大幅度提高,在此价格水平上,收入水平低的家庭便难以维持最低水平的生活,从而不利于社会稳定。因而政府有必要通过制定价格政策来克服这些副作用。政府常用的价格政策主要有限制价格和支持价格政策。 一、限制价格 Maximum price A price ceiling set by the government or some other agency. The price is not allowed to rise above this level (although it is allowed to fall below it). Rationing Where the government restricts the amount of a good that people are allowed to buy. The government may set maximum prices to prevent them from rising above a certain level. This will normally be done for reasons of fairness. In wartime, or times of famine, the government may set maximum prices for basic goods so that poor people can afford to buy them. The resulting shortages, however, create further problems. If the government merely sets prices and does not intervene further, the shortages will lead to the following: ●Allocation on a ‘first come, first serve’ basis. ●Firms deciding which customers should be allowed to buy: for example, giving preference to regular customers. Neither of the above may be considered fair. Certain needy people may be forced to go without. Therefore, the government may adopt a system of rationing. People could be issued with a set number of coupons for each item rationed. A major problem with maximum prices is likely to be the emergence of black markets, where customers, unable to buy enough in legal markets, may well be prepared to pay very high prices. Another problem is that the maximum prices reduce the quantity produced of

第七章作业答案

第7章聚合物的粘弹性 1.举例说明聚合物的动态粘弹性和静态粘弹性的四个典型现象,为什么聚合物具有这些现象?这些现象在材料应用时有哪些利弊? 在一定温度和压力的外界条件下,聚合物的静态粘弹性表现为蠕变和应力松弛,动态粘弹性表现为滞后和力学损耗。 蠕变:在一定温度和恒定应力作用下,聚合物应变随时间增加而逐渐增大的现象。如软质PVC丝钩着一定质量的砝码,就会慢慢地伸长;解下砝码后,丝会慢慢地回缩。这就是软质PVC丝的蠕变和回复现象。坐久了的沙发;晾晒着的毛衣都是蠕变的实例。 应力松弛:在一定温度和恒定应变条件下,试样内部的应力随时间增加而逐渐衰减的现象。如拉伸一块未交联的橡胶至一定长度,并保持长度不变,随时间增加,橡胶的回弹力逐渐减小到零。例如松紧带;密封件在受外力时,密封效果逐渐变差(密封的重要问题) 滞后:在一定温度和交变应力作用下,聚合物应变会落后于应力的现象 内耗:交变应力作用下,由于滞后,则每一循环变化中就会产生能量损耗,以热能形式散发,以热耗散的能量与最大储能模量之比ψ=2πtg δ来表征。 如高速行驶的汽车轮胎会发热。原因:聚合物是具有一定柔性的长链分子的聚集体,在外力作用下,聚合物的链段会发生运动而改变构象,但由于链段运动的摩擦力很大,而使形变具有时间依赖性。 蠕变现象会影响受力材料的长期尺寸稳定性,应力松弛会使弹性材料的受力能力随时间变差。而内耗现象则会使高速行驶的汽车轮胎发热而爆胎,但也可利用内耗来制成吸音防震材料。 2.:画图 1)现有A聚苯乙烯与顺丁橡胶的共混物(20:80重量比);B乳液聚合的丁苯橡胶(无规共聚物,20:80重量比), C SBS(苯乙烯与丁二烯三嵌段共聚物,其中B:S为80:20),和D 高抗冲聚苯乙烯(HIPS)(顺丁橡胶粒子增韧聚苯乙烯,S:B为80:20)在同一张图中画出三个样品的储能模量、力学损耗因子与温度的动态力学曲线。 1) E’ tgδ T℃-110 -55 100

2021高考化学一轮复习第7章化学反应的方向限度与速率第23讲化学平衡移动原理及应用学案

第23讲化学平衡移动原理及应用 目标要求 1.通过实验探究,了解浓度、温度、压强等对化学平衡的影响,能用相关理论解释其一般规律。2.通过对图形、图表的阅读,进行初步加工、吸收、有序存储,并做出合理的解释。 1.化学平衡移动的过程 2.化学平衡移动与化学反应速率的关系 (1)v正>v逆:平衡向正反应方向移动。 (2)v正=v逆:反应达到平衡状态,平衡不移动。 (3)v正<v逆:平衡向逆反应方向移动。 3.影响化学平衡的因素 (1)若其他条件不变,改变下列条件对化学平衡的影响如下: 改变的条件(其他条件不变) 化学平衡移动的方向浓度 增大反应物浓度或减小生成物浓度向正反应方向移动 减小反应物浓度或增大生成物浓度向逆反应方向移动压强(对 有气体参加的反应) 反应前后气体体积改变 增大压强向气体分子总数减小的方向移动 减小压强向气体分子总数增大的方向移动反应前后气体体积不变改变压强平衡不移动 温度 升高温度向吸热反应方向移动 降低温度向放热反应方向移动催化剂同等程度地改变v正、v逆,平衡不移动

(2)勒·夏特列原理 如果改变影响化学平衡的条件之一(如温度、压强以及参加反应的物质的浓度),平衡将向着 能够减弱这种改变的方向移动。 (3)“惰性气体”对化学平衡的影响 ①恒温恒容条件 原平衡体系―――――→充入惰性气体 体系总压强增大―→体系中各组分的浓度不变―→平衡不移动。 ②恒温恒压条件 原平衡体系―――――→充入惰性气体容器容积增大,各反应气体的分压减小 ―→体系中各组分的浓度同倍数减小 (等效于减压) 应用体验 根据化学平衡原理解答下列问题: 在体积不变的密闭容器中发生N 2(g)+3H 2(g)2NH 3(g) ΔH =-92.4 kJ·mol -1 ,只改变一 种外界条件,完成下表: 改变条件 平衡移动方向 氢气的转化率(增大、减小或不变) 氨气的体积分数(增大、 减小或不变) 增大氮气的浓度 增大氨气的浓度 升温 充入适量氩气 答案 (从左到右,从上到下)正向 增大 逆向 减小 增大 逆向 减小 减小 不移动 不变 不变 (1)化学平衡发生移动,化学反应速率一定改变;化学反应速率改变,化学平衡也一定发生移

等效平衡原理及规律

等效平衡原理及规律 Prepared on 22 November 2020

等效平衡原理及规律 一、等效平衡原理 在一定条件(定温、定压或定温、定容)下,对于同一可逆应,只要起始时加入物质的物质的量不同,而达到平衡时,同种物质的物质的量或物质的量分数(或体积分数)相同,这样的平衡称为等效平衡。 如,常温常压下,可逆反应:2SO2 + O2 2SO3 SO2、O2、SO2的物质的量分别为①2mol 1mol 0mol②0mol 0mol 2mol③ ①从正反应开始,②从逆反应开始,③从正逆反应同时开始,由于①、②、③三种情况如果按方程式的计量关系折算成同一方向的反应物,对应各组分的物质的量均相等(如将②、③折算为①),因此三者为等效平衡 二、等效平衡规律 根据反应条件(定温、定压或定温、定容)以及可逆反应的特点(反应前后气体分子数是否相等),可将等效平衡问题分成三类: I.在恒温、恒容条件下,对于反应前后气体分子数改变的可逆反应只改变起始时加入物质的物质的量,如通过可逆反应的化学计量数比换算成同一半边的物质的物质的量与原平衡相同,则两平衡等效。 例1.在一固定体积的密闭容器中,加入2 mol A和1 mol B发生反应 2A(g)+B(g)3C(g)+D(g),达到平衡,c的浓度为w mol/L。若维持容器体积和温度不变,下列四种配比作为起始物质,达平衡后,c的浓度仍为w mol/L的是 A. 4 mol A +2 mol B B. 1 mol A+ mol B+ mol C+ mol D C. 3 mol C+1 mol D +1 mol B D. 3 mol C+1 mol D 解析:根据题意:

等效平衡原理及规律技巧归纳

等效平衡原理及规律技巧 归纳 Prepared on 22 November 2020

等效平衡原理及规律技巧归纳 人教版教材对等效平衡概念是这样表述的:“实验证明,如果不是从CO和 H2O(g)开始反应,而是各取和,以相同的条件进行反应,生成CO和H2O(g),当达到化学平衡状态时,反应混合物里CO、H2O(g)、CO2、H2各为,其组成与前者完全相同(人教版教材第二册(必修加选修)第38页第四段)。”这段文字说明了,化学平衡状态的达到与化学反应途径无关。即在相同的条件下,可逆反应无论从正反应开始还是从逆反应开始,还是从既有反应物又有生成物开始,达到的化学平衡状态是相同的,平衡混合物中各组成物质的百分含量保持不变,也就是等效平衡。(其实这个例子属于等效平衡中的特例,也称完全等效) 等效平衡的内涵是,在一定条件下(等温等容或等温等压),只是起始加入情况不同的同一可逆反应达到平衡后,任何相同组分的质量分数(或体积分数)都相同,这样的平衡互为等效平衡。 等效平衡的外延是它的分类,即不同类型的等效平衡以及其前提条件,类型大致可分为三种.面对繁多的等效平衡类型,我们要掌握一定的方法,方法指导:解等效平衡的题,有一种基本的解题方法——极限转换法(也称一边倒)。由于等效平衡的建立与途径无关,不论反应时如何投料,都可以考虑成只加入反应物的“等效”情况。所以在解题时,可以将所加的物质“一边倒”为起始物质时,只要满足其浓度与开始时起始物质时的浓度相同或成比例,即为等效平衡。但是,要区分“浓度相同”或“浓度成比例”的情况,必须事先判断等效平衡的类型。分类如下: ①在恒温、恒容条件下,对于反应前后气体分子数改变的可逆反应,改变起始时加入物质的物质的量,通过化学计量数计算,把投料量换算成与原投料量同一则物质的物质的量,若保持其数值相等,则两平衡等效。此时,各组分的浓度、反应速率等分别与原平衡相同,亦称为同一平衡。

对均衡价格理论的及评价运用

对均衡价格理论的及评价运用 摘要:微观经济学的中心是价格理论,即要说明价格如何决定,价格机制又是如何调节社会经济生活的。在当代西方经济学中流行的价格理论是均衡价格理论,对均衡价格理论的分析和运用,特别是对当前房价的控制具有重要的现实意义。 关键词:均衡价格理论、均衡价格理论的运用、政府 一、均衡价格理论的含义 西方经济学借用物理学的“均衡”概念构建了微观经济学的“均衡理论”,“均衡”一词贯穿西方经济学的整个理论体系。均衡价格理论,是当代西方经济学的基础理论和核心内容之一,它由马歇尔、瓦尔拉斯等人创立于与马克思同时代的19世纪后期。均衡的最一般意义指经济事物中有关的变量在一定条件的相互作用下所达到的一种相对静止的状态。在微观经济分析中,均衡价格理论认为在其他条件不变的情况下,商品价值是由商品的供求状况决定的,是由商品的均衡价格衡量。也称为均衡价值理论,是现代经济学价值理论之一。最早由英国资产阶级经济学的杰出代表马歇尔所倡导,并在20世纪初期为经济学家们所广泛采用。该理论认为商品的价值决定于供给价格(即生产者所要去的出售价格),和需求价格(即购买者所愿出的购买价格)相等之点,即需求与供给的均衡点;供给价格决定于商品的生产费,需求价格则决定于这一商品对购买者的“边际效用”。 均衡价格是指一种商品的需求价格和供给价格相一致时的价格,也就是这种商品的市场需求曲线与市场供给曲线相交时的价格。 所谓需求价格,是指消费者对一定量商品所愿意支付的价格。在其他条件不变的情况下,市场上对某种商品的需求一般与其价格呈反方向运动。即价格上涨,需求量减少;价格下跌,需求量增加。所谓供给价格,是指生产者为提供一定量商品所愿意接受的价格。在其他条件不变的情况下,商品的供给与其价格呈同方向运动。即价格上涨,供给增加;价格下跌,供给减少。当然,影响需求与供给变动的因素不仅仅是价格。影响需求变化的其他因素还有消费者收入、替代品价格、互补品价格、对未来价格的预期等;影

相平衡理论及其应用

离子液体的应用综述 摘要:离子液体作为环境友好、“可设计性”溶剂正越来越多地受到关注。已有的研究表明,离子液体具有独特的性能并有着十分广阔的应用前景。该文在介绍离子液体特性的基础上,综述了其在有机合成、聚合反应、电化学、分离过程、新材料制备、生物技术等方面的应用。 关键词:离子液体;绿色溶剂;有机合成;聚合反应;电化学;分离过程离子液体是在室温或室温附近呈液态的由离子构成的物质,具有呈液态的温度区间大、溶解范围广、没有显著的蒸气压、良好的稳定性、极性较强且酸性可调、电化学窗口宽等许多优点,因此,它是继超临界CO2后的又一种极具吸引力的绿色溶剂,是传统挥发性溶剂的理想替代品。 离子液体的阳离子和阴离子可以有多种形式,可设计成为带有特定末端或具有一系列特定性质的基团。因此,离子液体也被称为“designer solvents”,这就意味着它的性质可以通过对阳离子修饰或改变阴离子来进行调节,像熔点、黏性、密度、疏水性等性质,均可以通过改变离子的结构而予以改变[1]。因此,它不仅作为绿色溶剂在分离过程、电化学、有机合成、聚合反应等方面有着十分广阔的应用前景,而且由于其独特的物理化学性质及性能,有望作为新型功能材料使用,是近年来国内外精细化工研究开发的热点领域。 1、在化学反应中的应用 以离子液体作为化学反应的介质,为化学反应提供了不同于传统分子溶剂的环境,有可能通过改变反应机理而使催化剂活性、稳定性更好,转化率、选择性更高。离子液体种类多,选择范围宽,将催化剂溶于离子液体中,与离子液体一起循环利用,催化剂兼有均相催化效率高、多相催化易分离的优点。同时离子液体无蒸气压,液相温度范围宽,产物可通过倾析、萃取、蒸馏等简单的方法分离出来。 1.1在有机合成中的应用 离子液体[EtNH3] [NO3]最先应用于环戊二烯与丙烯酸甲酯和甲基酮的

纳什均衡的启示及其应用

纳什均衡的启示及其应用 【摘要】本文介绍了博弈论中的纳什均衡——非合作博弈的概念、进化、原理和现象,并列举了纳什均衡理论在社会生活、经济生活以及企业管理等方面的应用和作用机理,从而论证了纳什均衡的理论研究意义和其在实践中的价值。 【关键词】纳什均衡企业人才流失商业价格竞争环境污染贸易壁垒 “博弈”一词是从棋弈、扑克和战争等带有竞赛、对抗和决策性质的问题中借用的术语。天才数学家纳什深入研究了非合作领域的博弈现象,对博弈论做出了杰出的贡献。纳什均衡指的是这样一种战略组合,这种策略组合由所有参与人最优策略组成。即在给定别人策略的情况下,没有人有足够理由打破这种均衡。 纳什均衡是完全信息静态博弈解的一般概念,是最常见的均衡,是非合作对策中的一种自然趋向解。纳什均衡理论彻底改变了人们对竞争和市场的看法。他证明了非合作博弈及其均衡解,并证明了均衡解的存在性,从而揭示了博弈均衡与经济均衡的内在联系。纳什的研究奠定了现代非合作博弈论的基石。 一、纳什均衡的进化 “纳什均衡”首先对亚当·斯密的“看不见的手”的原理提出挑战。按照斯密的理论,在市场经济中,每一个人都从利己的目的出发,而最终全社会达到利他的效果。不妨让我们重温一下这位经济学圣人在《国富论》中的名言:“通过追求(个人的)自身利益,他常常会比其实际上想做的那样更有效地促进社会利益。”从“纳什均衡”我们引出了“看不见的手”的原理的一个悖论:从利己目的出发,结果损人不利己,既不利己也不利他。著名的“囚徒故事”中两个囚徒的命运就是如此。从这个意义上说,“纳什均衡”提出的悖论实际上动摇了西方经济学的基石。因此,从“纳什均衡”中我们还可以悟出一条真理:合作是有利的“利己策略”。但它必须符合以下黄金律:按照你愿意别人对你的方式来对别人,但只有他们也按同样方式行事才行。也就是中国人说的“己所不欲勿施于人”。但前提是人所不欲,勿施于我。其次,“纳什均衡”是一种非合作博弈均衡,在现实中非合作的情况要比合作情况普遍。所以“纳什均衡”是对冯·诺依曼和摩根斯特恩的合作博弈理论的重大发展,甚至可以说是一场革命。 从“纳什均衡”的普遍意义中我们可以深刻领悟司空见惯的经济、社会、政治、国防、管理和日常生活中的博弈现象。博弈论在现实中的应用很多。首先,它是一种数学理论,可以用于经济学等领域;再者,它作为一种理论,并非产生直接

高分子物理(最终版)[1]

1、玻璃化转变聚合物由玻璃态向高弹态(或者由高弹态向玻璃态)的转变;次级转变——玻璃化温度下由小尺寸运动单元的“运动”与“冻结”所形成的松驰过程。 2、当高分子溶液的浓度增大到某种程度后,高分子线团互相穿插交叠,整个溶液中的链段分布趋向均一,这种溶液称为亚浓溶液。 3、不同高分子的相对分子质量相同时,其体积不一定相同。但由于[]()232h M ∝η,以[]M ηlg (流体力学体积)对e V (淋出体积)作图,对不同的聚合物试样,所得的GPC 校正曲线是重合的,称之为普适校正曲线。 4、在外力作用下,橡胶分子链由卷曲状态变为伸展状态,熵减小;当外力移去后,由于热运动,分子链自发地趋向熵增大的状态,由伸展再回复卷曲状态,因而形变可逆。橡胶高弹性的这种本质称作为熵弹性。 5、将聚合物电介质置于高压电场中极化,随即冻结极化电荷,可获得静电持久极化。这种具有被冻结的长寿命(相对于观察时间而言)非平衡电矩的聚合物称为聚合物驻极体。 6、GPC ——凝胶渗透色谱,用于测定聚合物分子量大小和分布的仪器;DSC ——示差扫描量热计,一种用于聚合物热分析的仪器。 7、每个负荷对聚合物的力学松弛行为的贡献都是独立的,聚合物的力学松弛行为是其整个历史上诸松弛过程的线性加和的结果。 8、聚合物熔体在挤出模孔后,由剪切应力、拉伸应力作用而储存的能量必须释放出来,造成挤出物的截面积大于模口截面积的现象称为挤出物胀大。它是聚合物熔体弹性的表现。 9、聚合物在张应力的作用下,在材料某些薄弱的地方出现应力集中而产生的局部的塑性形变和取向,以至于在材料的表面或者内部垂直于应力方向出现微细凹槽的现象。10、聚合物熔体具有弹性,在受剪切力作用而流动时会产生法向应力差,导致在剪切流动时有沿旋转棒向上爬的现象称为韦森堡效应。 一、多级结构与内容一级结构包括高分子基本的结构单元的化学结构,包括高分子链的原子种类,排列,取代基和端基的种类,单体单元的链接方式,支链的类型和长度等;包括构型——指原子的取代基在空间的排列,几何异构和立体异构等。二级结构包括构造和构象指单个大分子的大小和在空间的存在的各种形状(形态,构象)例如:伸直链,无规线团,折叠链; 三级结构是指大分子之间的几何排列(如何堆砌的)包括晶态结构,非晶态,取向态,液晶态,织态等结构。 二、三态两转变玻璃态:链段运动被冻结,受力后形变很小,且遵循虎克定律,外力除去立即恢复。玻璃化转变温度:链段此时开始能运动,这个转变温度称为玻璃化转变温度,记作T g 。高弹态:链段运动但整个分子链不产生移动。此时受较小的力 就可发生很大的形变,外力除去后形变可完全恢复,称为高弹形变。流动温度:链段沿作用力方向的协同运动导致大分子的重心发生相对位移,聚合物呈现流动性,此转变温度称为流动温度,记作T f 。粘流态:与小分子液体的流动相似,聚合 物呈现黏性液体状,流动产生了不可逆形变。 三、θ溶剂与Hugings 参数 在某一温度下聚合物溶于某一溶剂中,其分子链段间的相互吸引力与溶剂化以及排斥体积效应所表现出的相斥力相等,高分子处于无扰状态,排斥体积为0,该溶液的行为符合理想溶液行为,溶剂的过量化学位为0,此时的溶剂称为θ溶剂。 使用渗透压法求取第二维利系数(A 2)时,可在某一恒定温度下测量一系列浓度下聚合物稀溶液的渗透压π,根据公式21R T A C C M π??=+ ??? 22 112~21 ρχV A -= 四、阿费拉米(Avrami )方程 阿费拉米(Avrami )方程的表 达式为 exp()t o V V n V V kt ∞ ∞--=- 实际聚合物的结晶过程可分为两个阶段。结晶前期,符合Avrami 方程的直线部分称作主期结晶。结晶后期,由于生长中的球晶相遇而影响生长,方程与实验数据偏离,称为次期结晶。 五、橡胶高弹性特征与原因高弹性的特征:1.弹性模量小,而形变很大; 2.形变需要时间;3.形变有热效应; 橡胶是由线性长链分子组成的,由于热运动,这种长链分子在不断的改变着自己的形状,因此在常温下橡胶的长链分子处于卷曲状态。卷曲分子的均方末端距比完全伸直的分子的均方末端距小100-1000倍,因此卷曲分子拉直就会显示出形变量很大的特点。橡胶受到外力作用时,链段伸展,发生大形变。因是熵减过程,所以不稳定。热运动会促使分子链回到卷曲状态,此时如果受热,则热运动加剧,回缩力加大,足以抵抗使分子链伸展的外力而回缩。 六、时温等效原理升高温度与延长时间对分子运动是等效的,对聚合物的粘弹性也是等效的,这就是时温等效原理。时温等效原理意义:有关材料在室温下长期使用以及超瞬间性能等问题,实验是无法进行测定的,但可以通过时温等效原理来解决。例如,在室温下几年、几百年的应力松驰是不能实现的,但可在高温条件下短期内完成;或者在室温下几十万分之一秒完成的应力松驰,实际上也是做不到的,但可在低温条件下几小时完成。WLF 方程 因此,Hugings 参数χ1和第二维利系数都可以作为判断溶剂优劣的依据,其判断方法为: (1)当χ1<1/2,第二维利系数A 2>0, 溶剂为良溶剂; (2)当χ1>1/2,第二维利系数A 2<0, 溶剂为不良溶剂; (3)当χ1=1/2,第二维利系数A 2=0, 溶剂为θ良溶剂 式中:t V V ∞-为时刻t 时未收缩的体积,0V V ∞-为结晶完全时最大的体积收缩; k 为结晶速度常数,n 为Avrami 指数。 使用比浓渗透压(C π)对浓度C 作图,两者应呈线性关系,从直线斜率便可以计算出第二维利系数A 2。A 2 >0,可判断为良溶剂;A 2<0,可判断为不良溶剂;A 2=0,即对应于θ溶剂。Hugings 参数χ1是反映溶剂与高分子链段之间相互作用能量大小的一个重要参数,它与第二维利系数的关 系为:

核心素养提升24化学平衡移动原理在化工生产中的广泛应用

素养说明:化学平衡在化工生产中有非常重要的应用,尤其是控制合适的反应条件使平衡向着理想的方向移动,是近几年高频考点,充分体现了学以致用的原则。 1.总体原则 (1)化工生产适宜条件选择的一般原则 条件原则 从化学反应速率分析既不能过快,又不能太慢 从化学平衡移动分析既要注意外界条件对速率和平衡影响的一致性,又要注意二者影响的矛盾性 从原料的利用率分析增加易得廉价原料,提高难得高价原料的利用率,从而降低生产成本 从实际生产能力分析如设备承受高温、高压能力等 从催化剂的使用活性分析注意催化剂的活性对温度的限制 (2)平衡类问题需考虑的几个方面 ①原料的来源、除杂,尤其考虑杂质对平衡的影响。 ②原料的循环利用。 ③产物的污染处理。 ④产物的酸碱性对反应的影响。 ⑤气体产物的压强对平衡造成的影响。 ⑥改变外界条件对多平衡体系的影响。 2.典型实例——工业合成氨 (1)反应原理 N2(g)+3H2(g)2NH3(g)ΔH=-92.4 kJ·mol-1 (2)反应特点:①反应为可逆反应;②正反应为放热反应;③反应物、生成物均为气体,且正反应为气体物质的量减小的反应。 (3)反应条件的选择

反应条件对化学反应 速率的影响 对平衡混合物中 氨含量的影响 合成氨条件的选择 增大压强增大反应 速率 平衡正向移动,提高平 衡混合物中氨的含量 压强增大,有利于氨的合成, 但需要动力大,对材料、设 备的要求高。故采用10~30 MPa的高压 升高温度增大反 应速率 平衡逆向移动,降低平 衡混合物中氨的含量 温度要适宜,既要保证反应 有较快的速率,又要使反应 物的转化率不能太低。故采 用400~500 ℃左右的温度, 并且在该温度下催化剂的活 性最大 使用催化剂增大反 应速率 没有影响 工业上一般选用铁触媒作催 化剂 (4)原料气的充分利用 合成氨反应的转化率较低,从原料充分利用的角度分析,工业生产中可采用循环操作的方法可提高原料的利用率。 [题型专练] 1.某工业生产中发生反应:2A(g)+B(g)2M(g)ΔH<0。下列有关该工业生产的说法中正确的是() A.这是一个放热的熵减反应,在低温条件下该反应一定可自发进行 B.若物质B价廉易得,工业上一般采用加入过量的B,以提高A的转化率 C.工业上一般采用较高温度合成M,因温度越高,反应物的转化率越高 D.工业生产中常采用催化剂,因为使用催化剂可提高反应物的转化率 解析这是一个放热的熵减反应,只有当ΔH-TΔS<0时,该反应才能自发进行,A错误;加入过量的B,可以提高A的转化率,B正确;升高温度,平衡逆向移动,反应物的转化率降低,C错误;使用催化剂只能改变反应速率,不能使平衡发生移动,不能提高反应物的转化率,D错误。

宁波大学考研真题882高分子物理2015年-2017年

入学考试试题(B卷)(答案必须写在答题纸上) 考试科目: 高分子物理科目代码:882 适用专业: 无机化学、物理化学、材料工程

入学考试试题(B卷)(答案必须写在答题纸上) 考试科目: 高分子物理科目代码:882 适用专业: 无机化学、物理化学、材料工程

入学考试试题(B卷)(答案必须写在答题纸上) 考试科目: 高分子物理科目代码:882 适用专业: 无机化学、物理化学、材料工程 混合物的和

入学考试试题(B卷)(答案必须写在答题纸上)考试科目:高分子物理科目代码:882适用专业:无机化学、物理化学、材料工程 一、单项选择题(每题2分,共20分) 1.在聚合物的黏流温度以上,描述聚合物的黏度与温度关系的是() (a)Avrami方程(b)Huggins方程(c)Arrhenius方程(d)WLF方程 2.PE(聚乙烯)分子链在晶体中采用的构象是() (a)平面锯齿链(b)扭曲的锯齿链(c)螺旋链(d)无规线团 3.采用光散射法测定的聚合物相对分子质量是() (a)数均相对分子质量(b)重均相对分子质量 (c)Z均相对分子质量(d)黏均相对分子质量 4.韧性聚合物在拉伸过程中产生的剪切带的方向与外力方向()(a)平行(b)垂直(c)呈45o夹角(d)无关 5.高聚物在交变的应力作用下,形变落后于应力的现象称为:() (a)蠕变(b)应力松弛(c)内耗(d)滞后 6.在结晶中添加成核剂,可以使以下哪种参数下降() (a)结晶速度(b)结晶的尺寸(c)结晶产物的透明性(d)断裂强度 7.处在高弹态下的聚合物,下列哪个运动单元被冻结() (a)链节(b)链段(c)侧基(d)分子链 8.下列哪些因素会使聚合物的柔性增加() (a)结晶(b)交联 (c)主链上引入孤立双键(d)形成分子间氢键 9.在分子量相同大致相同的情况下,下列聚合物哪种的熔点最高?() (a)聚乙烯(b)聚丙烯(c)聚丁烯(d)聚氧乙烯 10.自由结合链的尺寸扩大10倍,则聚合度需扩大()(a)10倍(b)100倍(c)√10倍(d)ln10倍

核心素养提升25化学平衡移动原理在化工生产中的广泛应用

核心素养提升○ 25化学平衡移动原理在化工生产中的广泛 应用[科学精神与社会责任] 素养说明:化学平衡在化工生产中有非常重要的应用,尤其是控制合适的反应条件使平衡向着理想的方向移动,是近几年高频考点,充分体现了学以致用的原则。 1.总体原则 (1)化工生产适宜条件选择的一般原则 条件原则 从化学反应速率分析既不能过快,又不能太慢 从化学平衡移动分析既要注意外界条件对速率和平衡影响的一致性,又要注 意二者影响的矛盾性 从原料的利用率分析增加易得廉价原料,提高难得高价原料的利用率,从而 降低生产成本 从实际生产能力分析如设备承受高温、高压能力等 从催化剂的使用活性分 析 注意催化剂的活性对温度的限制 (2)平衡类问题需考虑的几个方面 ①原料的来源、除杂,尤其考虑杂质对平衡的影响。 ②原料的循环利用。 ③产物的污染处理。 ④产物的酸碱性对反应的影响。 ⑤气体产物的压强对平衡造成的影响。 ⑥改变外界条件对多平衡体系的影响。 2.典型实例——工业合成氨 (1)反应原理 N2(g)+3H2(g)2NH3(g)ΔH=-92.4 kJ·mol-1 (2)反应特点:①反应为可逆反应;②正反应为放热反应;③反应物、生成物均为气体,且正反应为气体物质的量减小的反应。

(3)反应条件的选择 反应条件对化学反应 速率的影响 对平衡混合物中 氨含量的影响 合成氨条件的选择 增大压强增大反应速 率 平衡正向移动, 提高平衡混合物 中氨的含量 压强增大,有利于氨的合成,但 需要动力大,对材料、设备的要 求高。故采用10~30 MPa的高压 升高温度增大反应速 率 平衡逆向移动, 降低平衡混合物 中氨的含量 温度要适宜,既要保证反应有较 快的速率,又要使反应物的转化 率不能太低。故采用400~500 ℃ 左右的温度,并且在该温度下催 化剂的活性最大 使用催化 剂增大反应速 率 没有影响工业上一般选用铁触媒作催化剂 (4)原料气的充分利用 合成氨反应的转化率较低,从原料充分利用的角度分析,工业生产中可采用循环操作的方法可提高原料的利用率。 [题型专练] 1.某工业生产中发生反应:2A(g)+B(g)2M(g)ΔH<0。下列有关该工业生产的说法中正确的是() A.这是一个放热的熵减反应,在低温条件下该反应一定可自发进行 B.若物质B价廉易得,工业上一般采用加入过量的B,以提高A的转化率 C.工业上一般采用较高温度合成M,因温度越高,反应物的转化率越高 D.工业生产中常采用催化剂,因为使用催化剂可提高反应物的转化率 解析这是一个放热的熵减反应,只有当ΔH-TΔS<0时,该反应才能自发进行,A错误;加入过量的B,可以提高A的转化率,B正确;升高温度,平衡逆向移动,反应物的转化率降低,C错误;使用催化剂只能改变反应速率,不能使平衡发生移动,不能提高反应物的转化率,D错误。 答案 B

高中化学等效平衡原理(习题练习)含答案

等效平衡原理 一、等效平衡概念 等效平衡是指在一定条件(恒温恒容或恒温恒压)下,只是起始加入情况不同的同一可逆反应达平衡后,任何相同组分的体积分数或物质的量分数均相等的平衡。 在等效平衡中,有一类特殊的平衡,不仅任何相同组分X的含量(体积分数、物质的量分数)均相同,而且相同组分的物质的量均相同,这类等效平衡又称为同一平衡。同一平衡是等效平衡的特例。 如,常温常压下,可逆反应: 2SO 2 + O 2 2SO 2 ①2mol 1mol 0mol ②0mol 0mol 2mol ③0.5mol 0.25mol 1.5mol ①从正反应开始,②从逆反应开始,③从正逆反应同时开始,由于①、②、③三种情况如果按方程式的计量关系折算成同一方向的反应物,对应各组分的物质的量均相等(如将②、③折算为①),因此三者为等效平衡 二、等效平衡规律 判断是否建立等效平衡,根据不同的特点和外部条件,有以下几种情况: ①在恒温、恒容条件下,对于反应前后气体分子数改变的可逆反应,改变起始时加入物质的物质的量,通过化学计量数计算,把投料量换算成与原投料量同一则物质的物质的量,若保持其数值相等,则两平衡等效。此时,各组分的浓度、反应速率等分别与原平衡相同,亦称为同一平衡。 ②在恒温、恒容条件下,对于反应前后气体分子数不变的可逆反应,改变起始时加入物质的物质的量,通过化学计量数计算,把投料量换算成与原投料量同一则物质的物质的量,只要物质的量的比值与原平衡相同则两平衡等效。此时,各配料量不同,只导致其各组分的浓度反应速率等分别不同于原平衡,而各组分的百分含量相同。 ③在恒温、恒压下,不论反应前后气体分子数是否发生改变,改变起始时加入物质的物质的量,根据化学方程式的化学计量数换算成同一则物质的物质的量只要物质的量之比与原平衡相同,则两平衡等效。此时的情形与(2)相似。 例题、【2003年江苏高考试题】恒温、恒压下,在一个可变容积的容器中发生如下反应:A(g)+B(g) C(g) (1)若开始时放入1 mol A和1 mol B,到达平衡后,生成a mol C,这时A的物质的量为 mol。 (2)若开始时放入3 mol A和3mol B ,到达平衡后,生成C的物质的量 为 mol。 (3)若开始时放入x molA,2molB和1molC,到达平衡后,A和C的物质的量分别是y mol和3a mol,则x= mol,y= mol。 平衡时,B的物质的量(选填一个编号) (A)大于2 mol (B)等于2 mol

相关文档
最新文档