第3章_弹塑性本构模型理论

合集下载

混凝土cdp本构

混凝土cdp本构

混凝土cdp本构混凝土是一种常见的建筑材料,具有良好的强度和耐久性。

在设计和分析混凝土结构时,混凝土的本构模型是非常重要的。

本文将介绍混凝土的本构模型之一——混凝土弹塑性本构模型(Concrete Damaged Plasticity Model,简称CDP)。

一、混凝土弹塑性本构模型的基本原理混凝土弹塑性本构模型是基于弹塑性力学理论开发的一种模型,用于描述混凝土在受力过程中的弹性和塑性行为。

该模型考虑了混凝土的弹性、损伤和塑性三个阶段,并能够准确地模拟混凝土在不同受力状态下的力学行为。

混凝土的弹性本构行为可以通过胡克定律来描述,即应力与应变之间的线性关系。

而混凝土的塑性本构行为则需要引入一些额外的参数来描述,如损伤变量、塑性应变等。

二、混凝土弹塑性本构模型的特点1. 考虑非线性行为:混凝土在受力过程中会出现非线性行为,如应力-应变曲线的非线性、弹塑性转变等。

CDP模型能够准确地描述这些非线性行为。

2. 考虑损伤效应:混凝土在受力过程中会发生损伤,即出现裂缝或破坏。

CDP模型通过引入损伤变量来描述混凝土的损伤过程,并能够准确地模拟混凝土的裂缝扩展和破坏。

3. 考虑三轴应力状态:混凝土在实际工程中往往会受到多向应力的作用,如拉压、剪切等。

CDP模型考虑了三轴应力状态下混凝土的力学行为,能够准确地模拟混凝土在不同应力状态下的响应。

4. 考虑温度效应:混凝土在受力过程中的温度变化也会对其力学性能产生影响。

CDP模型可以考虑温度效应,并通过引入温度参数来描述混凝土的热力学行为。

三、混凝土弹塑性本构模型的应用混凝土弹塑性本构模型在工程实践中应用广泛,特别是在大型混凝土结构的设计和分析中起到了重要的作用。

例如,在水坝工程中,为了准确地评估混凝土坝体的稳定性和安全性,需要使用CDP模型来模拟混凝土在洪水冲击和地震作用下的力学行为。

在桥梁、隧道、建筑物等混凝土结构的设计中,CDP模型也可以用于预测混凝土的变形和破坏,从而指导结构的设计和施工。

(完整)弹塑性力学简答题

(完整)弹塑性力学简答题

弹塑性力学简答题第一章 应力1、 什么是偏应力状态?什么是静水压力状态?举例说明?静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。

2、应力边界条件所描述的物理本质是什么?物体边界点的平衡条件。

3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系?相同。

110220330S S S σσσσσσ=+=+=+.4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法?不规则,内部受力不一样。

5、解释应力空间中为什么应力状态不能位于加载面之外?保证位移单值连续。

连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。

6、Pie 平面上的点所代表的应力状态有何特点?该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。

固体力学解答必须满足的三个条件是什么?可否忽略其中一个?第二章 应变1、从数学和物理的不同角度,阐述相容方程的意义。

从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值.从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入",即产生不连续.2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么?相同。

应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关.3、应力状态是否可以位于加载面外?为什么?不可以.保证位移单值连续。

连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续.4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么?满足。

弹塑性本构模型理论课件

弹塑性本构模型理论课件


材料屈服强度影响规律
屈服强度定义
材料开始发生明显塑性变形的最小应力值,反映了材料抵抗塑性变 形的能力。
屈服强度对弹塑性行为的影响
屈服强度越大,材料抵抗塑性变形的能力越强,进入塑性阶段所需 的应力水平越高,材料的塑性变形能力越差。
屈服强度的影响因素
材料的晶体结构、化学成分、温度、应变速率等都会影响屈服强度 的大小。
材料弹性模量影响规律
弹性模量定义
01
材料在弹性阶段内,应力与应变之比,反映了材料抵抗弹性变
形的能力。
弹性模量对弹塑性行为的影响
02
弹性模量越大,材料的刚度越大,相同应力作用下产生的弹性
变形越小,进入塑性阶段所需的应力水平越高。
弹性模量的影响因素
03
材料的晶体结构、化学成分、温度等都会影响弹性模量的大小
弹性阶段
材料在受力初期表现出弹性行为,应 力与应变呈线性关系,卸载后无残余 变形。
屈服阶段
当应力达到屈服强度时,材料进入塑 性阶段,应力不再增加但应变继续增 加,卸载后有残余变形。
强化阶段
材料在塑性阶段表现出应变硬化特性 ,随着塑性应变的增加,屈服强度逐 渐提高。
理想弹塑性模型
无强化阶段的弹塑性模型,屈服后应 力保持恒定,应变无限增加。
通过实验测定金属材料的弹性模量、屈服强度、硬化模量等参 数,为模拟提供准确数据。
利用有限元软件建立金属材料的弹塑性行为模型,进行加载、 卸载等模拟过程。
将模拟结果与实验结果进行对比,验证弹塑性本构模型在金属 材料行为模拟中的准确性和可靠性。
实例二:混凝土结构弹塑性损伤评估
损伤模型选择
针对混凝土结构的损伤特点,选择合适 的弹塑性损伤本构模型,如塑性损伤模

弹塑性本构关系简介

弹塑性本构关系简介

2) 势能原理的数学表达
应变能
总势能
Ve=Vε+VP =1/2∫VσijεijdV 外力势能
-∫VFbiuidV- ∫SσFsiuidS = min
2 虚力原理
1)虚力原理的表述
给定位移状态协调的充分必要条件为:对 一切自平衡的虚应力,恒有如下虚功方程成 立(矩阵)
∫V[ε]Tδ[σ]dV=∫Su([L]δ[σ])T [u ]0dS
收敛准则
1、位移模式必须包含单元的刚体位移
2、位移模式必须能包含单元的常应变
3、位移模式在单元内要连续、并使相邻单元间的位移必须协调
满足条件1、2的单元为完备单元
满足条件3的单元为协调单元 多项式位移模式阶次的选择——按照帕斯卡三角形选
几何各向同性:位移模式应与局部坐标系的方位无关
多项式应有偏惠的坐标方向,多项式项数等于单元边界结点的自由度总
变间关系为 octσoct
GKtt
oct 3K s oct oct Gs oct
并有
Gs G
1
a
oct
B c
m
KGss
εoct
oct
K G e s
s (c oct ) p
KG
其中G、K分别为初始切线剪切和体积模量,
B c
为混凝土单轴抗压强度,a、m、c和p为由试验
确定的常数。
POCT
弹性张量Dijkl
ij
Dijkl kl
( 2G 1 2
ij kl
2Giklj ) kl
i 1, j 2, k 1,l 2
12
D1212 12
( 2G 1 2
1212
2G1122 )12
11 1 12 0 22 1

岩石弹塑性本构模型课件

岩石弹塑性本构模型课件
非线性弹性本构模型
考虑了应力和应变之间的非线性关系, 适用于大应变情况。
塑性本构模型
理想塑性本构模型 弹塑性本构模型
岩石材料的变形特性
01
02
03
岩石的弹性变形
岩石的塑性变形
岩石的破裂
03
岩石弹塑性本构模型的 建立
CHAPTER
基于物理基础的岩石本构模型
物质连续性假设
物理基础
弹性常数
经验本构模型
课程内容概述
包括岩石弹塑性本构模型的物理基础、数学模型建立、模型参数确定方法、模型在岩石工程中的应用及局限性等。 其中,重点讲解岩石弹塑性本构模型的数学模型建立方法和模型参数确定方法,同时介绍模型在岩石工程中的应 用案例及局限性。
02
岩石弹塑性本构模型的 基本概念
CHAPTER
弹性本构模型
线性弹性本构模型
04
岩石弹塑性本构模型的 参数确定和验证
CHAPTER
参数确定的方法
实验测定
通过室内实验和现场试验测定材 料的弹性模量、泊松比、屈服强
度等参数。
反演分析
利用已知的地质资料和工程数据, 采用反演分析方法确定模型参数。
数值模拟
利用数值模拟软件进行模型参数 的拟合和优化。
模型验证的方法和步骤
数据来源
基于实验数据
参数拟合 局限性
唯象本构模型
现象描述
材料常数
唯象本构模型主要基于实验现象的观 察和描述,对岩石的弹塑性行为进行 建模。
唯象本构模型的材料常数通常根据实 验测定,如剪切模量、体积模量等, 用于描述岩石的弹塑性行为。
屈服条件
唯象本构模型通常基于屈服条件,如 Mohr-Coulomb准则、DruckerPrager准则等,描述岩石的屈服行为。

弹塑性材料本构模型与仿真方法

弹塑性材料本构模型与仿真方法

弹塑性材料本构模型与仿真方法弹塑性材料本构模型是描述材料在受力作用下的变形和应力响应的数学模型。

它是工程力学和材料科学中重要的理论基础,用于预测材料在不同应力条件下的行为,从而指导工程设计和材料选择。

弹塑性材料是一类具有弹性和塑性行为的材料,其在小应变范围内表现出弹性行为,而在大应变范围内则表现出塑性行为。

弹性行为是指材料在受力后能够恢复原状的性质,而塑性行为则是指材料在受力后会发生不可逆的形变。

常见的弹塑性材料本构模型包括线性弹性模型、塑性模型和弹塑性模型等。

线性弹性模型是最简单的弹塑性材料本构模型之一,它假设材料的应力和应变之间存在线性关系。

在小应变范围内,材料的应力和应变之间满足胡克定律,即应力等于杨氏模量乘以应变。

这种模型适用于强度较高、刚度较大的材料,如金属和陶瓷。

塑性模型是描述材料塑性行为的本构模型,它考虑了材料在大应变范围内的非线性行为。

常见的塑性模型包括屈服准则、硬化规律和流动规律等。

屈服准则描述了材料在何种应力条件下开始发生塑性变形,硬化规律描述了材料的塑性变形随应力增大而增加,流动规律描述了材料的塑性变形随时间的变化。

弹塑性模型是综合考虑了弹性和塑性行为的本构模型,它能够较好地描述材料在整个应变范围内的行为。

常见的弹塑性模型包括von Mises模型和Tresca模型等。

von Mises模型基于屈服准则,假设材料在达到一定应力条件时开始发生塑性变形,而Tresca模型基于硬化规律,假设材料的塑性变形随应力增大而增加。

仿真方法是利用计算机模拟材料行为的一种方法。

在弹塑性材料的仿真中,常用的方法包括有限元法、离散元法和网格法等。

有限元法是一种广泛应用的仿真方法,它将材料分割成有限数量的小单元,通过求解各个单元的力平衡方程和位移连续性方程,得到整个材料的应力和应变分布。

离散元法是一种基于颗粒模型的仿真方法,它将材料看作由许多离散的颗粒组成,通过模拟颗粒之间的相互作用,得到材料的变形和应力响应。

弹塑性本构关系

弹塑性本构关系
பைடு நூலகம்
F p d kk 3d S;deijp d ij e p p d d G K kk ij 2G eij kk mn 2 mn Sij k
(2) Druker-Prager 模型
Druker-Prager模型采用广义的 Mises屈服函数,其表达式为:

m
3K
ij
弹性变形 + 塑性变形 又可写成:
ij Sij m ij K kk ij 2G eij d d d d e d e
K kk d kk ij 2G eij eijp p d d d F F K kk ij 2G eij d 3K ij 2G d d kk Sij
F σ ij J 2 I1 k 0 +

F kk
F Sij 2 Sij J2
得 d ij dSij d m ij d F 2G 3K

F ij Sij kk
Sij m Sij d d d ij 2G 3K ij 2 J2
2G
m为对应于 m体应变
拉梅常数 E (1 )(1 2 )
xy
2
x 3 m 2G x y 3 m 2G y z 3 m 2G z xy 2G xy G xy
yz zx
2 2
2G
G
E 2(1 )
2G
基本方程 yz 2G yz G yz zx 2G zx G zx
张量形式
张量形式
ij ij

塑性力学-塑性本构关系

塑性力学-塑性本构关系

第三章塑性本构关系全量和增量理论•全量理论(形变理论):在塑性状态下仍有应力和应变之间的关系。

Il’yushin(伊柳辛)理论。

•增量理论(流动理论):在塑性状态下是塑性应变增量和应力及应力增量之间的关系。

Levy-Mises理论和Prandtl-Reuss理论。

3-5 全量理论的适用范围简单加载定律变形:小变形加载:简单加载适用范围:物体内每一点应力的各个应力分量,在加载过程中成比例增长简单加载:()0ij ijt σασ=0ijσ非零的参考应力状态()t α随着加载单调增长加载时物体内应力和应变特点:应力和应变的主方向都保持不变应力和应变的主分量成比例增长应力Lode参数和应力Lode角保持常数应力点的轨迹在应力空间是直线小变形前提下,判断简单加载的条件:荷载按比例增长(包括体力);零位移边界材料不可压缩应力强度和应变强度幂函数关系m i iA σε=实际应用:满足荷载比例增长和零位移边界条件3-6 卸载定律卸载:按照单一曲线假设,应力强度减小•外载荷减小,应力水平降低•塑性变形发展,应力重分布,局部应力强度降低简单卸载定律:•各点的应力分量按比例减少•不发生新的塑性变形¾以卸载时的荷载改变量为假想荷载,按弹性计算得到应力和应变的改变量¾卸载前的应力和应变减去卸载过程中的改变量塑性本构关系的基本要素•初始屈服条件–判断弹性或者塑性区•后继屈服条件–描述材料硬化特性,内变量演化•流动法则–应变增量和应力以及应力增量之间的关系,包括方向和分配关系Saint-Venant(1870):应变增量和应力张量主轴重合•继承这个方向关系•提出分配关系()0ij ij d d S d ελλ=≥应变增量分量和应力偏量分量成比例Levy-Mises 流动法则(M. Levy,1871 & Von Mises,1913)适用范围:刚塑性材料3-7 流动法则--Levy-Mises & Prandtl-Reuss。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主应力空间与八面体平面
八面体法向应力
p
1 3
1
2
3
I1 3
八面体剪应力
q
1 2
1 2 2 2 3 2 3 1 2
1 2
3J 2
应变与应变增量
应变状态
11 12 13
i, j 21 22 23
31 32 33
x
1 2
yx
1 2
zx
1 2
xy
y
1 2
zy
1 2
xz
1 2
屈服轨迹在e-q平面
上的投影
“湿黏土”是加工硬 化材料,符合相适应 流动规则
VSC曲线代表经过S点 的屈服轨迹在p-q平
面上的投影
该屈服轨迹在e-q平面
上的投影落在一根各 向等压固结回弹曲线 上,即:
e e ln p
屈服轨迹在p-q平面上的投影( VSC )
由:
p v
v
1 e
p
q 2 M
1
0
p
流动规则
定义:也称正交定律,是确定塑性应变增量各分量 间的相互关系,也即塑性应变增量方向的一条规定
假定经过应力空间任一点M,必有一塑性势面,这
个面在p-q平面上将成为一根塑性势线
g(I1, J2, J3, H ) 0 g( p, q, H ) 0
流动规则规定上述任意点M处的塑性应变增量与该 点处的应力存在正交关系
3
e
p曲线
VICL表达式: e ea0 ln p
VICL回弹曲线:
e e ln p
临界物态线EF(CSL):破坏状态线,在这种状态
下土体将发生很大的剪切变形
CSL在p-q面上投影表达式:
q Mp
CSL在e-p面上投影表达式:
e eam ln p
弹性能与塑性能
单位体积土体应变能
D1
d
g
Dep
Dep
D
D
g
A
f
f
T
D
T
D
g
4 弹塑性本构模型示例
E-V弹性模型 K-G弹性模型 南京水科所模型 剑桥模型 KW模型 LD模型 罗威剪胀模型
E-V弹性模型
假定常规三轴试验曲线为双曲线
1
3
a
a b a
邓肯张建议:
1 3 1
a Rf a
g
ij
A
(1)
f WP
ij
g
ij
假定2:
H p p
ijp
p ij
A
()
f
p
g g
ij ij
假定3:
H H(ijp )
A () f H g
H ij ij
假定3:
H
H
(
p v
,
p)
A () f H
H
p v
g p
H
p
g
q
弹塑性模量矩阵
总应变增量:
e
p
p
p
(或)
n
q p
M
ln
px p
1
物态边界面的形式
屈服轨迹沿着VICL线或CSL线移动所产生的曲面
为屈服面,即物态边界面
沿VICL线移动
由: e ea0 ln p 屈服轨迹在e-q平面上的投影
n q M ln p0 屈服轨迹在p-q平面上的投影
p
p
得:
n
q p
M
ea0
e
ln
p
物态边界面形式一
fc I12 2I2 H c (Wc )
Hc (Wc )
pa2
(
Wc cpa
1
)k

f
p
H (Wp )
Wp / pa
abwp (Wp 曲线得:pa
)1/
n
n
W log(
ppeak
W p 60
)
(1
W p 60 W ppe ak
) loge
log( n f )
f p60
a n ( ) epa 1/ n f Wppeak
第3章 弹塑性本构模型理论
应力与应变 应力-应变试验与试验曲线 增量弹塑性理论 弹塑性本构模型示例
1 应力与应变
应力
一点的应力状态
i, j
11 12 13 21 22 23 31 32 33
x xy xz yx y yz zx zy z
1
2
3
应力不变量
加工硬化规律
定义:确定一个给定的应力增量引起的塑性应变增量 的一条规则
假定:
d
1 A
f
ij
d ij
()
1 A
f H
dH
f 屈服面函数
A 硬化参数H的函数
硬化参数A的确定
假定1: H Wp ijijp
f
ij
d ijp
ij
()
f H
d g ij
dH
p ij
1 A
f WP
WP
3 I12 I2 I3 0 I1 1 2 3 I2 1 2 2 3 31
I3 1 2 3
偏差应力
sij ij ij (I1 / 3)
偏差应力不变量
ij
1,i 0,i
j j
J1 s11 s22 s33 0
J2
1 2
s12 s22 s32
J3 s1s2s3
E(1 v) (1 v)(1 2v)
1 v 0
y
z
zx
0
v 1 v
1 v 1 v 0
0
v 1 v
v 1 v
1
0
0
0
0
0 1 2v 2(1 v)
0
0 0 0
0
0
0
0
0 1 2v 2(1 v)
0
0
0 0 0
x y
xzy
0
yz
zx
1 2v
2(1 v)
以剪切模型与体积模量表达
g1 p
d2
g2 p
p
d1
g1 q
d2
g2 q
塑性势面的确定:通过三轴试验,找出试验曲线 上任何一点处的塑性应变增量方向,在p-q平面 上画一箭头代替方向,连接箭头方向形成流线(虚 线),与这组流线相垂直的一组实线即为塑性势线
相适应的流动规则:屈服轨迹与塑性势线重合, 则为相适应的流动规则,否则为不相适应的流动 规则
破坏条件
I1
J2 kf
屈服面:
定义:
特征
理想简单塑性材料:材料进入屈服状态,就可以认为材料 破坏了,屈服面与破坏面重合
加工硬化材料:屈服应力随荷载的提高与变形的增大而提 高,因此屈服面不同于破坏面,不是一种固定的面
加工硬化
当材料中的应力状态处于某一个屈服面上时,如果因加荷 使它发生超越这个屈服面的应力变化,就会在材料中同时 引起新的弹性与塑性变形,形成新的屈服面。加荷使屈服 面膨胀、移动或改变形式,这些改变取决于材料的应力历 史与应力水平,这种现象称为加工硬化(软化)
等向硬化:屈服面大小不同
运动硬化:屈服面位置发生移动
屈服面的数学表达式
f (I1, J2, J3, H ) 0
H Wp
ij
p ij
H 硬化参数
Wp 塑性能
帽子模型
屈服面的数学表达式(p-q平面)
f ( p, q, H ) 0
f *( p, q) k f
双屈服面
f1( p, q, H1) 0 f2 ( p, q, H2 ) 0
Ei (1 3 ) f
1 Ei a
b Rf
(1 3) f
Rf
(1 3) f (1 3 )ult
破坏时强度
(1 3)的极限值
起始弹性模量:
Ei
Kpa
3
pa
n
K,n 试验常数
pa 大气压
切线弹性模量:
1
Et
(1 3 ) a
1
Ei
Ei
Rfa (1 3 ) f
1
Rf (1 sin )(1 3 2c cos 2 3 sin
)2
(
q Mpx
)2
1
(0 椭圆形帽子)
其中:px p0 R(Mpx )
三向等压固结试验求关系
p0
~
p v
常规三轴压缩试验求关系
px
~
p v
应力-应变关系
由:
d
df
Fv
f p
Fv
f
p v
f p0
p0
p v
f px
px
p v
得:
p v
df Fv'
p
df
. f
Fv'
f p
q
LD模型
K的测定
试验方法:各向等压固结试验
试验曲线:e-p
e ea0
ln
p Kt
dp
d v
1 e0
p
G的测定
试验方法:p为常数的三轴压缩试验
2
Gt
Gi
1
Rf
(q / 3) 10 ( p
pceic
)
南京水科所模型
应力应变关系
v
f1 ( f2(
p, q) p, q)

v
f1 p
yz
z
12
3
体积应变增量 v 1 2 3
偏差应变增量
eij
ij
ij
ev
相关文档
最新文档