费马小定理和欧拉定理-高中数学知识点讲解

合集下载

欧拉定理 数论

欧拉定理 数论

欧拉定理数论欧拉定理是数论中的一个非常重要的公式,也称欧拉费马定理或欧拉-费马定理。

它表示若a、n为两个整数,且满足a和n互质,则有$a^{\varphi(n)}\equiv 1(\mod n)$。

其中,$\varphi(n)$表示小于或等于n的正整数中与n互质的数的个数。

欧拉定理可以用于求解一些求模运算问题,例如求解$a^b\bmod p$,其中a、b、p均为正整数。

如果p是质数,则欧拉定理可以简化为费马小定理,即$a^{p-1}\equiv 1 (\mod p)$。

如果p不是质数,则我们可以通过欧拉定理的公式来计算$a^b\bmod p$。

欧拉定理是以瑞士数学家欧拉命名的,他是18世纪最著名的数学家之一,被公认为巴塞尔大学数学系的创始人之一。

欧拉在他的著作中提出了许多数学问题,并取得了显著的成果。

欧拉定理是他比较重要的贡献之一。

在使用欧拉定理的过程中,我们需要首先求出$\varphi(n)$。

我们可以通过以下公式来计算$\varphi(n)$:$\varphi(n)=n\prod_{p|n}(1-\frac{1}{p})$其中,p|n表示p是n的因数,并且$\prod_{p|n}$表示对n的每个因数p都进行乘积运算。

这个公式还可以写成下面的形式:$\varphi(p^k)=p^k-p^{k-1}$其中,p是质数,k是一个正整数。

这个公式可以计算小于p的k次幂的正整数中与p互质的数的个数。

在实际应用中,欧拉定理常常用作数据加密和解密算法。

例如,RSA(RSA is a public-key cryptographic algorithm)加密算法就是基于欧拉定理的。

RSA算法是一种非对称加密算法,即加密和解密使用不同的密钥。

它主要用于数字签名、数据加密等方面。

总的来说,欧拉定理是一个非常重要的定理,它不仅可以用于求解一些数论问题,还可以应用于实际的数据加密和解密算法中。

因此,学习欧拉定理对于理解数论的基本概念和应用具有很重要的意义。

苏教版高中数学选修4-6:欧拉定理与费马小定理

苏教版高中数学选修4-6:欧拉定理与费马小定理
欧拉定理·费马小定理
知识背景
费马小定理是初等数论四大定理 (威尔逊定理,欧拉定理(数论中的 欧拉定理),中国剩余定理(又称孙子 定理)和费马小定理)之一,在初等数 论中有着非常广泛和重要的应用。实 际上,它是欧拉定理的一个特殊情况。
新知学习
我们知道模6的剩余类为: 0 mod 6,1 mod 6,2 mod 6, 3 mod 6,4 mod 6,5 mod 6.
其中剩余类1 mod 6,5 mod 6里的所有数均 与6互素,我们称这两个剩余类为与6互素的 剩余类。 给定模m,如果模m的一个剩余类里面的某个 数与m互素,就把这个剩余类叫作一个与模m 互素的剩余类。
新知学习
由此我们可知:在模3的剩余类中,1 mod 3,2 mod 3为与3互素的剩余类,在模4的剩 余类中,1 mod 4,3 mod 4为与4互素的剩余 类,等等。 我们已经知道,1 mod 6,5 mod 6为所有与6 互素的剩余类,那么我们在这两个剩余类中 任取一个数,例如1和5,则由这两个数组成 的集合{1,5},称为模6的一个简化剩余系。
证明: 若7|3n n3,则7 / n,
于是,由费马小定理知,
n6 1mod 7,
从而,由7|3n n3 知,
7| 3n n3 n3,
故 7|3n n3 1.
典例分析
反过来,若 7|3n n3 1, 则 7 / n,
并且 7| 3n n3 1 n3,
即 7|3n n6 n3,
新知学习
欧拉定理 设m是一个大则有:
a ψ (m) ≡1(mod m).
新知学习
在欧拉定理中,若m是素数p,由ψ (P)=P-1 便得到: 费马小定理 设p为素数,且(p,a)=1, 则有:

高中数学知识点精讲精析 费马大定理

高中数学知识点精讲精析 费马大定理

1 费马大定理费马大定理:(1)当整数n > 2时,关于x, y, z的不定方程x^n + y^n = z^n.((x , y) = (x , z) = (y , z) = 1[n是一个奇素数]x>0,y>0,z>0,且xyz≠0)无整数解。

这个定理,本来又称费马最后定理,由17世纪法国数学家费马提出,而当时人们称之为“定理”,并不是真的相信费马已经证明了它。

虽然费马宣称他已找到一个绝妙证明,但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁·怀尔斯和他的学生理查·泰勒于1995年成功证明。

证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。

而安德鲁·怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。

(2)证明方法五十年代日本数学家谷山丰首先提出一个有关椭圆曲线的猜想,后来由另一位数学家志村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。

在八十年代德国数学家佛列将谷山丰的猜想与费马定理联系在一起,而安德鲁·怀尔斯所做的正是根据这个关联论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。

这个结论由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注。

不过怀尔斯的证明马上被检验出有少许的瑕疵,于是怀尔斯与他的学生又花了十四个月的时间再加以修正。

1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束。

1997年6月,怀尔斯在德国哥庭根大学领取了佛尔夫斯克尔奖。

当年的十万马克约为两百万美金,不过怀尔斯领到时,只值五万美金左右,但安德鲁·怀尔斯已经名列青史,永垂不朽了。

费马小定理和欧拉定理1 PPT

费马小定理和欧拉定理1 PPT

典例分析
进一步,设a是一个符合要求的奇合数,
则2a 1是一个奇合数这一点利用因式分解可知。
再设2a1 1=a q, q为正奇数,则
22a11 1=222a1 1
22aq 1
2a
2q
1
12q 1
0mod 2a 1.
典例分析
因此2a 1也是一个符合要求的数, 依次类推,可知有无穷多个满足条件的合数。
故 7|3n n3.
典例分析
例2:由费马小定理知,对任意奇质数p,都有2p-1 1mod p, 问:是否存在合数n,使得2n-1 1mod n成立?
解: 这样的合数n存,而且有无穷多个,其中
最小的满足条件的合数n=341=11×31 (是从两个不同奇质数作乘积去试算出来 的。) 事实上,由于210-1=1023=341×3 故 210≡1(mod341) 所以 2340≡134≡1(mod341), 故341符合要求。
其中剩余类1 mod 6,5 mod 6里的所有数均 与6互素,我们称这两个剩余类为与6互素的 剩余类。 给定模m,如果模m的一个剩余类里面的某个 数与m互素,就把这个剩余类叫作一个与模m 互素的剩余类。
新知学习
由此我们可知:在模3的剩余类中,1 mod 3,2 mod 3为与3互素的剩余类,在模4的剩 余类中,1 mod 4,3 mod 4为与4互素的剩余 类,等等。 我们已经知道,1 mod 6,5 mod 6为所有与6 互素的剩余类,那么我们在这两个剩余类中 任取一个数,例如1和5,则由这两个数组成 的集合{1,5},称为模6的一个简化剩余系。
费马小定理和欧拉定理
知识背景
费马小定理是初等数论四大定理 (威尔逊定理,欧拉定理(数论中的 欧拉定理),中国剩余定理(又称孙子 定理)和费马小定理)之一,在初等数 论中有着非常广泛和重要的应用。实 际上,它是欧拉定理的一个特殊情况。

欧拉定理的证明

欧拉定理的证明

一、引言在数学及许多分支中都可以见到很多以欧拉命名的常数、公式和定理。

在数论中,欧拉定理(Euler Theorem ,也称费马-欧拉定理或 欧拉函数定理)是一个关于同余的性质。

欧拉定理得名于瑞士数学家 莱昂哈德·欧拉,该定理被认为是数学世界中最美妙的定理之一,欧拉定理实际上是 费马小定理的推广.二、内容在数论中, 欧拉定理,(也称 费马--欧拉定理)是一个关于同余的性质。

欧拉定理表明,若n,a 为正整数,且n,a 互质,则: () 1( )n amod n ϕ≡. 1.知识准备:(1)欧拉函数 :欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数 n ,小于 n 且和 n 互质的正整数(包括1)的个数,记作 φ(n) .(2)完全余数集合:定义小于 n 且和 n 互质的数构成的集合为 Zn ,称呼这个集合为 n 的完全余数集合。

显然 |Zn| =φ(n) 。

其中,“ |A |”表示这个集合中元素的个数,比如A={a,b} 则|A|=2.(3)有关性质:①对于素数 p ,φ(p) = p -1 。

②对于两个不同素数 p , q ,它们的乘积 n = p * q 满足 φ(n) = (p -1) * (q -1). 因为Zn = {1, 2, 3, ... , n - 1} - {p, 2p, ... , (q - 1) * p} - {q, 2q, ... , (p - 1) * q} , 则 φ(n) = (n - 1) - (q - 1) - (p - 1) = (p -1) * (q -1) =φ(p) * φ(q) .2.证明方法:证明:( 1 ) 首先证明下面这个命题:对于集合Zn = {x1, x2, ..., xφ(n)} , S = {a*x1(mod n),a*x2(mod n),...,a*xφ(n)(mod n)} ,其中xi(i=1,2,…φ(n))是不大于n 且与n 互素的数,即n 的一个化简剩余系,或称简系,或称缩系),则Zn = S .1) 由于a,n 互质,xi 也与n 互质,则a*xi 也一定于n 互质,因此 任意xi ,a*xi(mod n) 必然是Zn 的一个元素2) 对于Zn 中两个元素xi 和xj ,如果xi ≠ xj 则a*xi(mod n) ≠ a*xj(mod n),这个由a 、n 互质和消去律可以得出。

欧拉-费马小定理定理(证明及推论)

欧拉-费马小定理定理(证明及推论)

欧拉-费马⼩定理定理(证明及推论)欧拉定理:若正整数a , n 互质,则aφ(n)≡1(mod n)其中φ(n) 是欧拉函数(1~n) 与n 互质的数。

证明如下:不妨设X1,X2 ...... Xφn是1~n与n互质的数。

⾸先我们先来考虑⼀些数:aX1,aX2 ...... aXφn 这些数有如下两个性质: (1)任意两个数模n余数⼀定不同:(反证)若存在aX1≡aX2(mod n),则 n |( aX1 - aX2 ),⽽a,n互质且(X1 -X2)< n,所以n不可能整除( aX1 - aX2 ),也就是说不存在aX1≡aX2(mod n)。

归纳法:对于任意的与n互质的X i均成⽴。

故得证。

那么因为有φn个这样的数,X i mod n(i=1~φn)所以就有φn 个不同的余数,并且都是模数⾃然是(0~n-1)。

 (2)对于任意的aX i(mod n)都与n互质。

这不难想,因为a与n互质这是欧拉函数的条件,X i是(1~n)与n互质的数的集合中的元素。

所以如果a*X i做为分⼦,n做为分母,那么他们构成的显然就是⼀个最简分数,也就是aX i和n互质。

接下来就可以⽤欧⼏⾥得算法:因为:gcd(aX i,n)==1所以:gcd(aX i,n)== gcd(n,aX i%n)== 1 这样,我们把上⾯两个性质结合⼀下来说,aX1(mod n),aX2(mod n) ...... aXφn(mod n)构成了⼀个集合(性质1证明了所有元素的互异性),并且这些数是1~n与n互质的所有数构成的集合(性质1已说明)。

这样,我们巧妙的发现了,集合{ aX1(mod n),aX2(mod n) ...... aXφn(mod n)}经过⼀定的排序后和集合{ X1,X2 ...... Xφn }完全⼀⼀对应。

那么:aX1(mod n)* aX2(mod n)* ...... * aXφn(mod n)= X1 * X2 * ...... * Xφn 因此:我们可以写出以下式⼦:aX1 * aX2 * ...... * aXφn ≡ X1 * X2 * ...... * Xφn(mod n),即:(aφn -1)X1 * X2 * ...... * Xφn≡ 0 (mod n) ⼜因为X1 * X2 * ...... * Xφn与n互质,所以,(aφn -1)| n,那么aφn ≡ 1(mod n)。

费马定理、欧拉定理、威尔逊定理(讲稿)

费马定理、欧拉定理、威尔逊定理(讲稿)

欧拉定理、费马定理、威尔逊定理1、欧拉函数:φ(m )是1, 2, …, m 中与m 互质的个数,称为欧拉函数.①欧拉函数值的计算公式:若m =p 1α1p 2α2…p n αn , 则φ(m )=m (1-1p 1)(1-1p 2)…(1-1p n) 例如,30=2·3·5,则.8)511)(311)(211(30)30(=---=ϕ②若p 为素数,则1()1,()(1),k k p p p p p ϕϕ-=-=-若p 为合数,则()2,p p ϕ≤-③不超过n 且与n 互质的所有正整数的和为1()2n n ϕ;④若(,)1()()(),a b ab a b ϕϕϕ=⇒= 若()()a b a b ϕϕ⇒⑤设d 为n 的正约数,则不大于n 且与n 有最大公因数d 的正整数个数为()ndϕ, 同时()()d nd nn d n dϕϕ==∑∑;例1、证明:φ(n )=14n 不可能成立.不可能成立假设不成立上式不成立,左边是一个奇数,上式右边是一个偶数,又即:即:为奇质数,则:设成立,则证:若不可能成立;【练习】证明:n p p p p p p p p p p p p p p p p p p p p p p p p p p p n p p p p p p n n n n k k k k k kk k k k k k k k k k 41)4()1()1)(1(4)1()1)(1(22)1()1)(1(2241)(,,),2(,2|441)4(41)4(212121112112122211212121212121212121=∴∴∴---=---=---==≥===----ϕϕαϕϕααααααααααααααααααααΘΛΛΛΛΛΛΛΛΛΛ例2、证明:数列{2n -3}中有一个无穷子数列,其中任意两项互质.}{}32{1,,,1),(mod 1321),(mod 122)(32,,,,}32{}32{21211)()((()(1)(12121212121i n k k i u u u i u u u u u u u u u k k n n u k u u u u ki u ki u x u u u u k k k k k 互素的无穷子数列中一定有一个任意两项数列依此方法一直下去项两两互素的子数列,是、数列=理有:是欧拉函数,由欧拉定其中作项是两两互素的,记为中已有证明:设数列其中任意两项互素;中有一个无穷子数列,、证明:数列例))-+∴≤≤-≡-∴≤≤≡-=--++++ΛΛΛΛΛΛϕϕϕϕϕϕϕ例3、已知p 为质数,在1, 2, …, p α中有多少个数与p α互质?并求φ(p α). 直接用性质②例4 将与105互素的所有正整数从小到大排成数列,求出这个数列的第2010项.解:1~105的所有正整数中共有(105)(3)(5)(7)48ϕϕϕϕ==个与105互素,他们从小到排列为:12345481,2,4,8,11,,104a a a a a a ======L . 对于任一的n a ,由带余除法存在唯一的q , r 使得 105,0,0105n a q r q r =+≥≤<,由(a n ,105)=1,可得(r ,105)=1,即1248{,,,}r a a a ∈L .反之,对于任意固定非负整数q , 1248{,,,}r a a a ∈L 有(105q +r ,105)=1,于是105q +r 都是数列的项, 从而存在正整数n ,使得105n a q r =+. 因此数列{}n a 仅由105(1,2,,48)n q a n +=L 的数由小到大排列而成的.因为2010=48*41+42,所以有2010424842201010541,104,89,4394a a a a a =⨯+===而由求得所以. 2、(欧拉定理) 若(a , m )=1,则a φ(m )≡1(mod m ).证明:设r 1,r 2,…,r φ(m )是模m 的简化剩余系,又∵(a , m )=1,∴a ·r 1,a ·r 2,…,a ·r φ(m )是模m 的简化剩余系, ∴a ·r 1×a ·r 2×…×a ·r φ(m )≡r 1×r 2×…×r φ(m )(mod m ),又∵(r 1·r 2·…·r φ(m ), m )=1,∴a φ(m )≡1(mod m ). 注:这是数论证明题中常用的一种方法,使用一组剩余系,然后乘一个数组组成另外一组剩余系来解决问题. 应用:设(a , m )=1, c 是使得a c ≡1(mod m )的最小正整数, 则c |φ(m ).2、(定义1) 设m >1是一个固定的整数, a 是与m 互质的整数,则存在整数k (1≤k ≤m ),使a k ≡1(mod m ), 我们称具有这一性质的最小正整数(仍记为k )称为a 模m 的阶,由a 模m 的阶的定义,可得如下性质: ⑴ 设(a , m )=1,k 是a 模m 的阶,u , v 是任意整数,则a u ≡a v (mod m )的充要条件是u ≡v (mod k ), 特别地,a u ≡1 (mod m )的充要条件是k |u 证明:充分性显然.必要性:设,u l u νν>=-,由(mod )ua a m ν≡及(,)1a m =知1(mod )la m ≡. 用带余除法,,0,l kq r r k =+≤<故1(mod )kqra a m ⋅≡,∴1(mod )ra m ≡,由k 的定义知,必须0r =,所以(mod ).u v k ≡⑵ 设(a , m )=1,k 是a 模m 的阶,则数列a , a 2, …, a k , a k +1,…是模m 的周期数列,最小正周期为k , 而k 个数a , a 2,…, a k 模m 互不同余.⑶ 设(a , m )=1,k 是a 模m 的阶,则k |φ(m ),特别地,若m 是素数p ,则a 模p 的阶整除p -1. (4) 设(a , p )=1, 则d 0是a 对于模p 的阶⇔0da ≡1(mod p ), 且1, a , …, a do −1对模p 两两不同余. 特别地, d o =φ(p )⇔1, a ,…, a φ(p )−1构成模p 的一个简化剩余系. 定理:若l 为a 对模m 的阶,s 为某一正整数,满足)(m od 1m a s≡,则s 必为l 的倍数. 例5、设a 和m 都是正整数,a >1. 证明:).1(|-ma m ϕ证明:实上,显然1-m a a 与互素,且1-m a a 模的阶是m ,所以由模阶的性质③导出).1(|-ma m ϕ 例6:设m , a ,b 都是正整数,m >1,则(.1)1,1),(-=--b a bam m m证明:记).1,1(--=bam m d 由于(a , b )|a 及(a , b )|b ,易知1|1),(--a b a m m及1|1),(--b b a m m ,故d mb a |1),(-, 另一方面设m 模d 的阶是k ,则由)(m od 1),(m od 1d m d m b a ≡≡推出,k |a 及k |b ,故k |(a ,b ). 因此.1|),(m od 1),(),(-≡b a b a m d d m 即综合两方面可知,.1),(-=b a md 证毕.3、(费尔马小定理) 若p 是素数,则a p ≡a (mod p ) 若另上条件(a ,p )=1,则a p −1≡1(mod p ) 证明:设p 为质数,若a 是p 的倍数,则)(m od 0p a a p≡≡.若a 不是p 的倍数,则1),(=p a 由欧拉定理得:)(mod 1,1)()(p ap p p ≡-=ϕϕ,)(mod ),(mod 11p a a p a p p ≡≡∴-,由此即得.4、(威尔逊定理) p 为质数 ⇔ (p -1)!≡-1 (mod p )证明:充分性:若p 为质数,当p =2,3时成立,当p >3时,令x ∈{1, 2, 3, …, p −1},则1),(=p x ,在x p x x )1(,,2,-Λ中,必然有一个数除以p 余1, 这是因为x p x x )1(,,2,-Λ则好是p 的一个剩余系去0. 从而对}1,,2,1{},1,2,1{-∈∃-∈∀p y p x ΛΛ,使得)(mod 1p xy ≡;若)(m od 21p xy xy ≡,1),(=p x ,则)(m od 0)(21p y y x ≡-,)(|21y y p -,这不可能. 故对于不同的}1,,2,1{,21-∈p y y Λ,有1xy ≡/)(m od 2p xy .即对于不同的x 对应于不同的y , 即1,,2,1-p Λ中数可两两配对,其积除以p 余1,然后有x ,使)(m od 12p x ≡,即与它自己配对, 这时)(m od 012p x ≡-,)(mod 0)1)(1(p x x ≡-+,∴1-=p x 或1=x .除1,1-=p x 外,别的数可两两配对,积除以p 余1.故)(mod 11)1()!1(p p p -≡⋅-≡-.必要性:若(p -1)!≡-1 (mod p ),假设p 不是质数,则p 有真约数d >1,故(p -1)!≡-1 (mod d ),另一方面,d <p ,故d |(p -1)!,从而(p -1)!≡0 (mod d ),矛盾! ∴p 为质数.5、算术基本定理:任何一个大于1的整数都可以分解成质数的乘积. 如果不考虑这些质因子的次序,则这种分解法是唯一的. 即对任一整数n >1,有n =p 1α1p 2α2…p k αk ,其中p 1<p 2<…<p k 均为素数, α1、α2、…、αk 都是正整数.①正整数d 是n 的约数⇔ d =p 1β1p 2β2…p k βk ,(0≤βi ≤αi , i =1, 2, …, k )② 由乘法原理可得:n 的正约数的个数为r (n )=(α1+1)(α2+1)…(αk +1) ③ n 的正约数的和为S (n )=(1+p 1+…+p 1α1)(1+p 2+…+p 2α2)…(1+p k +…+p k αk )④ n 的正约数的积为T (n )=1()2r n n⑤ n 为平方数的充要条件是:r (n )为奇数.(2) 判断质数的方法:设n 是大于2的整数,如果不大于n 的质数都不是n 的因子,则n 是质数. (3) n !的标准分解:设p 是不大于n 的质数,则n !中含质数p 的最高次幂为:).]([][][][)!(132+<≤++++=m m m p n p pnp n p n p n n P Λ 从而可以写出n !的标准分解式.例7、证明:当质数p ≥7时,240|p 4-1.1|2401|531653161|51|31),5(,1),3(16422)1)(1)(1(1111,1,1)1)(1)(1(1,72401744442242244-∴-⋅⋅--∴==⋅⋅++-=-+-++-++-=-∴≥-≥p p p p p p p p p p p p p p p p p p p p p p p 两两互素,则与,又费马小定理有:又整除=能被是相邻的偶数,则:和均为偶数,且又是奇数素数证:整除;能被时,、证明当素数例ΘΘΘΘ例8、求20052003被17除所得的余数.解:()2005200520052003171141414(mod17),=⨯+≡因为(17,14)1,=所以由费马小定理得16141(mod17),≡ 故()()()()()5420052005161255520031414143334312(mod17),⨯+≡≡≡≡-≡--≡--≡所以20052003被17除所得的余数是14.变式拓展:已知a 为正整数,a ≥2,且(a , 10)=1,求a 20的末两位数字.解:∵(a , 10)=1,∴a 为奇数,∴a 20=a φ(25)≡1(mod 25),又∵a 2≡1(mod 4)⇒ a 20≡1(mod 4), 又∵(25, 4)=1,∴a 20≡1(mod 100),∴a 20的末两位数字01.例9、证明:方程325y x =+无整数解.解:若y 是偶数,则8 |3y ,x 2≡3(mod 8)不可能. 故必有y 一定是奇数,从而x 是偶数.令x =2s ,y =2t +1得t t t s 36422232++=+, 知t 是偶数,令t =2j ,代入得s 2+1=j (16j 2+12j +3) 由(16j 2+12j +3)≡3(mod 4) 知存在4k +3型的奇素数p ,使得p |(16j 2+12j +3),从而p | s 2+1,即s 2≡-1(mod p ),有(s ,p )=1, 21212)1()(---≡p p s (mod p ),于是 1-p s ≡-1(mod p )与费尔马小定理矛盾.例10、 试证:对于每一个素数p ,总存在无穷多个正整数n ,使得p |2n -n.. 证明:若p =2,则n 为偶数时结论成立.若p >2,则(2,p )=1,由费尔马小定理2 p -1≡1(mod p ),故对于任意m ,有2 m (p −1)≡1(mod p ). ∴2 m (p −1)-m (p -1)≡1+m (mod p ),令1+m ≡0(mod p ),即m =kp -1, 则对于n =m (p -1)=(kp -1)(p -1)(k ∈N *),均有2 n -n 被p 整除例11、设a , b 为正整数,对任意的自然数n 有n na nb n ++,则a =b . 证明:假设a 与b 不相等. 考虑n =1有11a b ++,则a <b .设p 是一个大于b 的素数,设n 是满足条件的正整数:1(mod(1)),(mod ),n p n a p ≡-≡- 由孙子定理这样的n 是存在的,如 n =(a +1)(p -1)+1. 由费马定理(1)1(mod ),nk p a aa p -+=≡所以0(mod ),n a n p +≡也即,(mod )n n p b n bn ba p ++≡-再由费马定理,所以pb a -,矛盾. 例12、设p 是奇素数,证明:2 p -1的任一素因了具有形式x px ,12+是正整数.证明:设q 是2 p -1的任一素因子,则q ≠2. 设2模q 的阶是k ,则由)(m od 12q p≡知k |p ,故k =1或p (因p 是素数,这是能确定阶k 的主要因素).显然k ≠1,否则),(m od 121q ≡这不可能,因此k =p .由费马小定理)(mod 121q q ≡-推出.1|,1|--q p q k 即因p 、q 都是奇数,故q -1=2px (x 是个正整数).例13、设p 是大于5的素数, 求证:在数列1, 11, 111, …中有无穷多项是p 的倍数.证明: 因5p >是素数, 故(,10) 1.p =由费马小定理1101(mod ),p p -≡故对每一个正整数l 有()11010(mod ),l p p --≡ 而()()(){1111019999111,l p l p l p ----==⨯L L 123个个因()1(,9)1,101,l p p p -=- 故(){111 1.l p p -L 个例14、证明:若0(mod ),ppm n p +≡则20(mod ),ppm n p +≡这里p 是奇素数.证明:因p 是奇素数,故由费马定理得,(mod ),(mod ).ppm m p n n p ≡≡于是,(mod ).ppm n m n p +≡+ 故可由已知条件0(mod )ppm n p +≡得0(mod ).m n p +≡故存在整数k 使得,.m n pk n pk m +==- 因此()()()()()()()12122111210(mod ).p p p p p p p p p rp rrrp p ppm n m pk m pk C pk m C pk m Cpk m Cpk m p -----+=+-=-+++-++≡LL例15、(2004第36届加拿大奥林匹克) 设p 是奇质数,试证:∑-=-+≡11212)(mod 2)1(p k p p p p k例16、(第44届IMO ) 设p 是质数,试证:存在一个质数q ,使对任意整数n ,数n p −p 不是q 的倍数.例17、已知p是给定的质数,求最大正整数m满足:⑴1≤m≤p−1;⑵∑-=≡11) (modpkm p k.例18、(2006国家集训队测试题) 求所有的正整数对(a, n),使得n|(a+1)n−a n课外练习题:1、①证明:f (x )=15x 5+13x 3+715x 是一个整值多项式. ②求证:f (n )=15n 5-32n 2+1310n -1被3除余2.①则只需证=)(15x f x x x 75335++是15的倍数即可. 由3,5是素数及Fetmat 小定理得)5(mod 5x x ≡,)3(mod 3x x ≡,则)5(m od 07375335≡+≡++x x x x x ;)3(m od 0275335≡+≡++x x x x x而(3,5)=1,故)15(mod 075335≡++x x x ,即)(15x f 是15的倍数, 所以)(x f 是整数. 2、 证明:2730|n 13-n (n ∈N *))(|2730137532),(137532)(|2),(|3),(|5),(|7)(,)(,)(,)(,)()1)(1)(1)(1)(1()1)(1)(1()1)(1(),(|13),(,)(1375322730)(,|273043212433527162263366131313n f n f n f n f n f n f n f n n n f n n n f n n n f n n n f n n n n n n n n n n n n n n n n n n f N n n n n f N n n n 两两互素,故,,,,且均整除,,,,即由费马小定理可知:的因式都是故由于可知则由费马小定理,,若记=证明:【练习】证明:-=-=-=-=++-+++-=++-=+-=-∈-=⋅⋅⋅⋅∈-Θ3、 已知有正整数b a b a ab ba b a ++++的最大公约数不超过与是整数,求证:使得11,.证明:由于a +1b +b +1a =a 2+b 2+a +b ab……①,设(a , b )=d ,则d 2|a 2+b 2,显然d 2|ab ,由①得,d 2|a +b于是a +b ≥d 2,a +b ≥d ,即 (a , b )≤a +b .4、求最小的正整数k ,使得存在非负整数m ,n 满足k =19m -5n5、将与105互素的所有正整数从大到小排列,试求出这个数列的第1000项;法一:由105=3×5×7;故不超过105而与105互质的正整数有105×(1-13)(1-15)(1-17)=48个.1000=48×20+48-8, 105×20=2100. 而在不超过105的与105互质的数中第40个数是86. ∴ 所求数为2186. 法二:6.设n m ,为正整数,具有性质:等式(171,)(171,)k m k n -=-对所有的正整数k 成立. 证明:17rm n =,其中r 是某个整数.。

数论中的欧拉定理

数论中的欧拉定理

欧拉定理是数论中的一个重要定理,它描述了数论中的一种特殊关系。

欧拉定理由瑞士数学家欧拉于18世纪首次提出,并对数论的发展起到了重要的推动作用。

欧拉定理的表述为:对于任意正整数a和m,若a与m互质,则aϕ(m)≡1( mod m)其中,ϕ(m)表示小于m且与m互质的正整数的个数,也被称为欧拉函数。

要理解欧拉定理的含义,首先需要了解什么是互质。

互质是指两个或多个正整数的最大公因数为1。

例如,2和3互质,而6和15不互质。

欧拉定理表明,当两个正整数a和m互质时,对a进行欧拉函数次方之后再对m取余,得到的结果一定等于1。

欧拉定理的一个重要推论是费马小定理。

费马小定理是欧拉定理的一个特殊情形,当m为质数时成立。

费马小定理表述为:对于任意正整数a和质数p,若a与p 互质,则a p−1≡1( mod p)欧拉定理及其推论在密码学、数论和计算机科学等领域有广泛的应用。

其中,欧拉定理的应用非常突出。

利用欧拉定理,可以通过快速幂算法高效地计算出a b( mod m)的结果,其中a、b和m均为正整数。

一个典型的应用场景是RSA算法,一种非对称加密算法。

RSA算法利用欧拉定理中的一个重要性质,即将两个质数相乘得到一个大整数n,并找到一个与n的欧拉函数的乘积等于1的整数e,再找到另一个整数d,满足e⋅d≡1( modϕ(n))。

其中,e被称为公钥,d被称为私钥。

对于要加密的明文m,可以通过公式c≡m e( mod n)计算出密文c,并通过c d≡m( mod n)计算出原始明文。

这样,只有持有私钥的人才能解密密文,保证了通信的安全性。

除了在密码学中的应用,欧拉定理还经常出现在数论中的证明中。

数论是研究整数性质的学科,而欧拉定理提供了一个重要的数论工具。

通过欧拉定理,我们能够更加深入地研究整数的性质,推导出更多的结论。

总之,欧拉定理是数论中的一颗明珠,它在密码学、数论和计算机科学等领域发挥了重要的作用。

欧拉定理不仅有着广泛的应用,而且相关的证明过程也能够帮助我们更好地理解数论中的其他定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档