复习高一数学《3.3.1两条直线的交点坐标》2
3.3.1《两条直线的交点坐标》课件(新人教A版必修2)

6
品质来自专业 ②利用二元一次方程组的解讨论平面上两条直线的位置关系 金太阳教育网
信赖源于诚信
已知方程组
A1x+B1y+C1=0
(1)
A2x+B2y+C2=0 当A1,A2,B1,B2全不为零时
(2)
(1)×B2-(2)×B1得(A1B2-A2B1)x=B1C2-B2C1
3x+2y-1=0
y
证明:联立方程 2x-3y-5=0
x=1
解得: y= - 1 代入:x+2y-1+λ(2x-3y-5)= 0 即 M(1,- 1)
x
o
(1, - 1) M
得 0+λ·0=0
∴M点在直线上
A1x+B1y+C1+λ( A2x+B2y+C2)=0是过直A1x+B1y+C1=0 和A2x+B2y+C2=0的交点的直线系方程。
7
上述方程组的解的各种情况分别对应的两条直线的 什么位置关系?
金太阳教育网
品质来自专业 信赖源于诚信
A1 B1 时,两条直线相交,交点坐标为 当——≠ —— A2 B2 B1C2-B2C1 C1A2-C2A1 ( , ) A1B2-A2B1 A1B2-A2B1 A1 B1 C1 当 —— = —— ≠ —— 时,两直线平行; A2 B2 C2 A1 B1 C1 当 —— = —— = —— 时,两条直线重合。 A2 B2 C2
11
金太阳教育网
品质来自专业 信赖源于诚信
④直线A1x+B1y+C1=0与直线A2x+B2y+C2=0重合,则必 有 (A)A1=A2,B1=B2,C1=C2 (B )
3.3.1直线的交点坐标与距离公式

b 2
O C (0,0)
A(a,0x)
BM MA MC
a
2
b
2
2 2
21
x y 1(a 0,b 0) ab
当垂直于坐标轴和 经过原点时不适用
Ax By C 0 (其中A、B不同时为0)
当直线与y轴垂直时 x x0 0 或 x x0
当直线与x轴垂直时 y y0 0 或 y y0
2
两直线的交点 1.讨论下列二元一次方程组解的情况:
y1 P1(x1,y1)
P2(x2, y2)
| P2Q || y2 y1 |
Q(x2,y1)
O x1
x2
x
| P1Q || x2 x1 |
17
两点间距离公式
一般地,已知平面上两点P1(x1, y)1 和P2(x2,y2),利 用上述方法求点P1和P2的距离为
| P1P2 | (x2 x1)2 ( y2 y 1)2
( A1x B1 y C1) ( A2x B2 y C2 ) 0
为待定系数
此直线系方程少一条直线l2
10
例3: 求过两直线x-2y+4=0和x+y-2=0的交点,且满足下列条件 的直线l的方程。
(1)过点(2,1);(2)和直线3x-4y+5=0垂直; (3)和直线2x-y+6=0平行
1xx
y y
1 1
0 0
一组解
x0 y 1
2 xx
y y
1 0 1 0
3xx
y y
1 1
国家课程校本化:3.3.1 两条直线的交点坐标 3.3.2 两点间的距离(习题)

3.3 直线的交点坐标与距离公式3.3.1 两条直线的交点坐标3.3.2 两点间的距离【基础达标】1.(2013·银川高一检测)直线y =2x +10,y =x +1,y =ax -2交于一点,则a 的值为( ). A.12 B .-12 C.23 D .-23解析 由⎩⎨⎧y =2x +10,y =x +1,解得⎩⎨⎧x =-9,y =-8,即直线y =2x +10与y =x +1相交于点(-9,-8),代入y =ax -2,解得a =23.答案 C2.两直线3ax -y -2=0和(2a -1)x +5ay -1=0分别过定点A ,B ,则|AB |的值为( ). A.895 B.175 C.135 D.115解析 直线3ax -y -2=0过定点A (0,-2),直线(2a -1)x +5ay -1=0,过定点B ⎝ ⎛⎭⎪⎫-1,25,由两点间的距离公式,得|AB |=135. 答案 C3.光线从点A (-3,5)射到x 轴上,经反射后经过点B (2,10),则光线从A 到B 的距离是( ). A .5 2 B .2 5 C .510 D .10 5解析 根据光学原理,光线从A 到B 的距离,等于点A 关于x 轴的对称点A ′到点B 的距离,易求得A ′(-3,-5).所以|A ′B |=(2+3)2+(10+5)2=510.答案 C4.已知点A (-2,-1),B (a ,3),且|AB |=5,则a 的值为________. 解析 由题意得 (a +2)2+(3+1)2=5,解得a =1或a =-5.答案 1或-55.已知直线ax +4y -2=0和2x -5y +b =0垂直,交于点A (1,m ),则a =________,b =________,m =________.解析 ∵点A (1,m )在两直线上,又两直线垂直,得2a -4×5=0, ③ 由①②③得,a =10,m =-2,b =-12.答案 10 -12 -26.若直线x +a 2y +6=0和直线(a -2)x +3ay +2a =0没有公共点,则a 的值是________.解析 由⎩⎨⎧A 1B 2-A 2B 1=0,A 1C 2-A 2C 1≠0,得⎩⎨⎧3a -(a -2)a 2=0,2a -(a -2)×6≠0,解之得a =0或a =-1或a =3(舍).答案 0或-17.(1)求过两直线3x +y -1=0与x +2y -7=0的交点且与第一条直线垂直的直线方程.(2)求经过直线3x +2y +6=0和2x +5y -7=0的交点,且在两坐标轴上的截距相等的直线方程.解 (1)法一 由⎩⎨⎧3x +y -1=0,x +2y -7=0,得⎩⎨⎧x =-1,y =4,即交点为(-1,4). ∵第一条直线的斜率为-3,且两直线垂直,∴所求直线的斜率为13.∴由点斜式得y -4=13(x +1),即x -3y +13=0.法二 设所求的方程为3x +y -1+λ(x +2y -7)=0,即(3+λ)x +(1+2λ)y -(1+7λ)=0,由题意得3(3+λ)+(1+2λ)=0,∴λ=-2,代入所设方程得x -3y +13=0.(2)设直线方程为3x +2y +6+λ(2x +5y -7)=0,即(3+2λ)x +(2+5λ)y +6-7λ=0.令x =0,得y =7λ-62+5λ;令y =0,得x =7λ-63+2λ. 由7λ-62+5λ=7λ-63+2λ,得λ=13或λ=67. 直线方程为x +y +1=0或3x +4y =0.【能力提升】8.若三条直线l 1:ax +y +1=0,l 2:x +ay +1=0,l 3:x +y +a =0能构成三角形,则a 应满足的条件是( ). A .a =1或a =-2B .a ≠±1C .a ≠1且a ≠-2D .a ≠±1且a ≠-2解析 为使三条直线能构成三角形,需三条直线两两相交且不共点.(1)若三条直线交于一点,由⎩⎨⎧x +ay +1=0,x +y +a =0,解得⎩⎨⎧x =-a -1,y =1,将l 2,l 3的交点(-a -1,1)代入l 1的方程解得a =1或a =-2;(2)若l 1∥l 2,则由a ×a -1×1=0,得a =±1,当a =1时,l 1与l 2重合;(3)若l 2∥l 3,则由1×1-a ×1=0,得a =1,当a =1时,l 2与l 3重合;(4)若l 1∥l 3,则由a ×1-1×1=0,得a =1,当a =1时,l 1与l 3重合. 综上,当a =1时,三条直线重合;当a =-1时,l 1∥l 2;当a =-2时,三条直线交于一点,所以要使三条直线能构成三角形,需a ≠±1且a ≠-2.答案 D9.若动点P 的坐标为(x ,1-x ),x ∈R ,则动点P 到原点的最小值是________. 解析 由距离公式得x 2+(1-x )2=2x 2-2x +1=2⎝ ⎛⎭⎪⎫x -122+12, ∴最小值为12=22. 答案 2210.求函数y =x 2-8x +20+x 2+1的最小值.解 原式可化为y =(x -4)2+(0-2)2+(x -0)2+(0-1)2.考虑两点间的距离公式,如图所示,令A (4,2),B (0,1),P (x ,0),则上述问题可转化为:在x 轴上求一点P (x ,0),使得|P A |+|PB |最小.作点A (4,2)关于x 轴的对称点A ′(4,-2),由图可直观得出|P A |+|PB |=|P A ′|+|PB |≥|A ′B |,故|P A |+|PB |的最小值为|A ′B |的长度.由两点间的距离公式可得|A ′B |=42+(-2-1)2=5,所以函数y =x 2-8x +20+x 2+1的最小值为5.。
3.3.1 两条直线的交点坐标与两条平行线间距离

3.3 直线的交点坐标与距离公式3.3.1 两条直线的交点坐标3.3.2 两点间的距离[学习目标]1.会用解方程组的方法求两条相交直线的交点坐标. 2.会根据方程解的个数判定两条直线的位置关系. 3.掌握两点间距离公式并会应用. [知识链接]直线的方程有点斜式、斜截式、两点式、截距式及一般式,它们的表现形式分别为y -y 0=k (x -x 0)、y =kx +b 、y -y 1y 2-y 1=x -x 1x 2-x 1、x a +yb=1及Ax +By +C =0. [预习导引] 1.两条直线的交点已知两条直线l 1:A 1x +B 1y +C 1=0;l 2:A 2x +B 2y +C 2=0.若两直线的方程联立,得方程组⎩⎨⎧A 1x +B 1y +C 1=0A 2x +B 2y +C 2=0.若方程组有唯一解,则两条直线相交;若方程组无解,则两条直线平行.若方程组有无穷多个解,则两条直线重合.2.过定点的直线系方程已知直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0交于点P (x 0,y 0),则方程A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0表示过点P 的直线系,不包括直线l 2.3.两点间的距离平面上的两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式 |P 1P 2|=(x 2-x 1)2+(y 2-y 1)2. 4.两点间距离的特殊情况(1)原点O (0,0)与任一点P (x ,y )的距离|OP |=x 2+y 2. (2)当P 1P 2∥x 轴(y 1=y 2)时,|P 1P 2|=|x 2-x 1|. (3)当P 1P 2∥y 轴(x 1=x 2)时,|P 1P 2|=|y 2-y 1|.要点一 两直线的交点问题例1 求经过两直线l 1:3x +4y -2=0和l 2:2x +y +2=0的交点且过坐标原点的直线l 的方程.解 法一 由方程组⎩⎨⎧3x +4y -2=0,2x +y +2=0,解得⎩⎨⎧x =-2,y =2,即l 1与l 2的交点坐标为(-2,2).∵直线过坐标原点, ∴其斜率k =2-2=-1. 故直线方程为y =-x ,即x +y =0.法二 ∵l 2不过原点,∴可设l 的方程为3x +4y -2+λ(2x +y +2)=0(λ∈R ),即(3+2λ)x +(4+λ)y +2λ-2=0.将原点坐标(0,0)代入上式,得λ=1,∴直线l 的方程为5x +5y =0,即x +y =0.规律方法 (1)法一是常规方法,思路自然,但计算量稍大,法二运用了交点直线系,是待定系数法,计算简单,但要注意判断原点(0,0)不能在直线2x +y +2=0上.否则,会出现λ的取值不确定的情形.(2)过直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0交点的直线系有两种:①λ1(A 1x +B 1y +C 1)+λ2(A 2x +B 2y +C 2)=0可表示过l 1、l 2交点的所有直线;②A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0不能表示直线l 2.跟踪演练1 求经过直线l 1:x +3y -3=0,l 2:x -y +1=0的交点且平行于直线2x +y -3=0的直线方程.解 法一 由⎩⎨⎧ x +3y -3=0,x -y +1=0,得⎩⎨⎧x =0,y =1,∴直线l1与l2的交点坐标为(0,1),再设平行于直线2x+y-3=0的直线方程为2x+y+c=0,把(0,1)代入所求的直线方程,得c=-1,故所求的直线方程为2x+y-1=0.法二设过直线l1、l2交点的直线方程为x+3y-3+λ(x-y+1)=0(λ∈R),即(λ+1)x+(3-λ)y+λ-3=0,由题意可知,λ+1λ-3=-2,解得λ=53,所以所求直线方程为83x+43y-43=0,即2x+y-1=0.要点二两点间距离公式的应用例2已知△ABC三顶点坐标A(-3,1)、B(3,-3)、C(1,7),试判断△ABC 的形状.解法一∵|AB|=(3+3)2+(-3-1)2=213,|AC|=(1+3)2+(7-1)2=213,又|BC|=(1-3)2+(7+3)2=226,∴|AB|2+|AC|2=|BC|2,且|AB|=|AC|,∴△ABC是等腰直角三角形.法二∵k AC=7-11-(-3)=32,k AB=-3-13-(-3)=-23,则k AC·k AB=-1,∴AC⊥AB.又|AC|=(1+3)2+(7-1)2=213,|AB|=(3+3)2+(-3-1)2=213,∴|AC|=|AB|.∴△ABC是等腰直角三角形.规律方法 1.判断三角形的形状,要采用数形结合的方法,大致明确三角形的形状,以确定证明的方向.2.在分析三角形的形状时,要从两方面考虑:一是要考虑角的特征,主要考查是否为直角或等角;二是要考虑三角形边的长度特征,主要考查边是否相等或是否满足勾股定理.跟踪演练2已知△ABC的三个顶点坐标为A(-3,1)、B(3,-3)、C(1,7).(1)求BC边上的中线AM的长;(2)证明△ABC为等腰直角三角形.(1)解设点M的坐标为(x,y),因为点M为BC的中点,所以x=3+12=2,y=-3+72=2,即点M的坐标为(2,2).由两点间的距离公式得|AM|=(-3-2)2+(1-2)2=26,所以BC边上的中线AM的长为26.(2)证明根据题意可得,|AB|=(-3-3)2+(1+3)2=213,|BC|=(1-3)2+(7+3)2=226,|AC|=(-3-1)2+(1-7)2=213,所以|AB|=|AC|,且|AB|2+|AC|2=|BC|2,所以△ABC为等腰直角三角形.要点三坐标法的应用例3证明平行四边形四条边的平方和等于两条对角线的平方和.证明如图所示,以顶点A为坐标原点,AB边所在的直线为x轴,建立直角坐标系,有A(0,0).设B(a,0),D(b,c),由平行四边形的性质得点C的坐标为(a+b,c),因为|AB|2=a2,|CD|2=a2,|AD|2=b2+c2,|BC|2=b2+c2,|AC|2=(a+b)2+c2,|BD|2=(b-a)2+c2.所以|AB|2+|CD|2+|AD|2+|BC|2=2(a2+b2+c2),|AC|2+|BD|2=2(a2+b2+c2).所以|AB|2+|CD|2+|AD|2+|BC|2=|AC|2+|BD|2.规律方法坐标法解决几何问题时,关键要结合图形的特征,建立平面直角坐标系.坐标系建立的是否合适,会直接影响问题能否方便解决.建系的原则主要有两点:①让尽可能多的点落在坐标轴上,这样便于运算;②如果条件中有互相垂直的两条线,要考虑将它们作为坐标轴;如果图形为中心对称图形,可考虑将中心作为原点;如果有轴对称性,可考虑将对称轴作为坐标轴.跟踪演练3已知:等腰梯形ABCD中,AB∥DC,对角线为AC和BD.求证:|AC|=|BD|.证明如图所示,建立直角坐标系,设A(0,0),B(a,0),C(b,c),则点D的坐标是(a-b,c).∴|AC|=(b-0)2+(c-0)2=b2+c2,|BD|=(a-b-a)2+(c-0)2=b2+c2.故|AC|=|BD|.1.直线x+2y-2=0与直线2x+y-3=0的交点坐标是()A .(4,1)B .(1,4) C.⎝ ⎛⎭⎪⎫43,13 D.⎝ ⎛⎭⎪⎫13,43 答案 C解析 由方程组⎩⎨⎧x +2y -2=0,2x +y -3=0,得⎩⎪⎨⎪⎧x =43,y =13.即直线x +2y -2=0与直线2x +y -3=0的交点坐标是⎝ ⎛⎭⎪⎫43,13.2.已知M (2,1),N (-1,5),则|MN |等于( ) A .5 B.37 C.13 D .4 答案 A解析 |MN |=(2+1)2+(1-5)2=5.3.经过直线2x -y +4=0与x -y +5=0的交点,且垂直于直线x -2y =0的直线的方程是( )A .2x +y -8=0B .2x -y -8=0C .2x +y +8=0D .2x -y +8=0 答案 A解析 首先解得交点坐标为(1,6),再根据垂直关系得斜率为-2,可得方程y -6=-2(x -1),即2x +y -8=0.4.已知两条直线l 1:ax +3y -3=0,l 2:4x +6y -1=0,若l 1与l 2相交,则实数a 满足的条件是________.答案 a ≠2解析 l 1与l 2相交则有:a 4≠36,∴a ≠2.5.设点A 在x 轴上,点B 在y 轴上,AB 的中点是P (2,-1),则|AB |等于________.答案 25解析 设A (x,0),B (0,y ),∵AB 中点P (2,-1), ∴x 2=2,y2=-1,∴x =4,y =-2,即A (4,0),B (0,-2), ∴|AB |=42+22=2 5.1.方程组⎩⎨⎧A 1x +B 1y +C 1=0A 2x +B 2y +C 2=0有唯一解的等价条件是A 1B 2-A 2B 1≠0.亦即两条直线相交的等价条件是A 1B 2-A 2B 1≠0.直线A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R )是过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0交点的直线(不含l 2).2.解析法又称为坐标法,它就是通过建立直角坐标系,用坐标代替点、用方程代替曲线、用代数的方法研究平面图形的几何性质的方法.3.两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|=(x 1-x 2)2+(y 1-y 2)2与两点的先后顺序无关,其反映了把几何问题代数化的思想.一、基础达标1.已知A (-1,0),B (5,6),C (3,4),则|AC ||CB |的值为( ) A.13 B.12 C .3 D .2答案 D解析 由两点间的距离公式, 得|AC |=[3-(-1)2]+(4-0)2=42,|CB |=(3-5)2+(4-6)2=22,故|AC ||CB |=4222=2.2.两直线2x +3y -k =0和x -ky +12=0的交点在y 轴上,那么k 的值为( )A .-24B .6C .±6D .24答案 C解析 在2x +3y -k =0中,令x =0得y =k 3,将⎝ ⎛⎭⎪⎫0,k 3代入x -ky +12=0,解得k =±6.3.以A (5,5),B (1,4),C (4,1)为顶点的三角形是( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .等腰直角三角形答案 B解析 ∵|AB |=17,|AC |=17,|BC |=32, ∴三角形为等腰三角形.故选B.4.已知直线mx +4y -2=0与2x -5y +n =0互为垂直,垂足为(1,p ),则m -n +p 为( )A .24B .20C .0D .-4 答案 B解析 由垂直性质可得2m -20=0,m =10.由垂足可得⎩⎨⎧10+4p -2=0,2-5p +n =0,得⎩⎨⎧p =-2,n =-12.∴m -n +p =20.5.已知点A (-2,-1),B (a,3),且|AB |=5,则a 的值为________. 答案 1或-5解析 由题意得(a +2)2+(3+1)2=5, 解得a =1或a =-5.6.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则k 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫33,+∞解析 由⎩⎨⎧y =kx -3,2x +3y -6=0,得⎩⎪⎨⎪⎧x =33+62+3k ,y =6k -232+3k .由于交点在第一象限,故x >0,y >0,解得k >33.7.在直线l :3x -y +1=0上求一点P ,使点P 到两点A (1,-1),B (2,0)的距离相等.解 法一 设P 点坐标为(x ,y ),由P 在l 上和点P 到A ,B 的距离相等建立方程组 ⎩⎨⎧3x -y +1=0,(x -1)2+(y +1)2=(x -2)2+y 2, 解得⎩⎨⎧x =0,y =1,所以P 点坐标为(0,1).法二 设P (x ,y ),两点A (1,-1)、B (2,0)连线所得线段的中垂线方程为x +y -1=0.①又3x -y +1=0,②解由①②组成的方程组⎩⎨⎧ 3x -y +1=0,x +y -1=0,得⎩⎨⎧x =0,y =1,所以所求的点为P (0,1). 二、能力提升8.两直线3ax -y -2=0和(2a -1)x +5ay -1=0分别过定点A ,B ,则|AB |的值为( )A.895B.175C.135D.115 答案 C解析 直线3ax -y -2=0过定点A (0,-2),直线(2a -1)x +5ay -1=0,过定点B ⎝⎛⎭⎪⎫-1,25,由两点间的距离公式,得|AB |=135. 9.直线x +ky =0,2x +3y +8=0和x -y -1=0交于一点,则k 的值是( )A.12 B .-12 C .2 D .-2答案 B解析 由方程组⎩⎨⎧2x +3y +8=0x -y -1=0得直线2x +3y +8=0与x -y -1=0的交点坐标为(-1,-2)代入直线x +ky =0得k =-12.10.若动点P 的坐标为(x,1-x ),x ∈R ,则动点P 到原点的最小值是________. 答案 22解析 由距离公式得x 2+(1-x )2=2x 2-2x +1=2⎝ ⎛⎭⎪⎫x -122+12,∴最小值为12=22.11.(1)求过两直线3x +y -1=0与x +2y -7=0的交点且与第一条直线垂直的直线方程.(2)求经过直线3x +2y +6=0和2x +5y -7=0的交点,且在两坐标轴上的截距相等的直线方程.解 (1)法一 由⎩⎨⎧3x +y -1=0,x +2y -7=0,得⎩⎨⎧x =-1,y =4,即交点为(-1,4). ∵第一条直线的斜率为-3,且两直线垂直, ∴所求直线的斜率为13. ∴由点斜式得y -4=13(x +1), 即x -3y +13=0.法二 设所求的方程为3x +y -1+λ(x +2y -7)=0, 即(3+λ)x +(1+2λ)y -(1+7λ)=0, 由题意得3(3+λ)+(1+2λ)=0,∴λ=-2,代入所设方程得x -3y +13=0.(2)设直线方程为3x+2y+6+λ(2x+5y-7)=0,即(3+2λ)x+(2+5λ)y+6-7λ=0.令x=0,得y=7λ-6 2+5λ;令y=0,得x=7λ-6 3+2λ.由7λ-62+5λ=7λ-63+2λ,得λ=13或λ=67.直线方程为x+y+1=0或3x+4y=0.三、探究与创新12.求函数y=x2-8x+20+x2+1的最小值.解原式可化为y=(x-4)2+(0-2)2+(x-0)2+(0-1)2.考虑两点间的距离公式,如图所示,令A(4,2),B(0,1),P(x,0),则上述问题可转化为:在x轴上求一点P(x,0),使得|P A|+|PB|最小.作点A(4,2)关于x轴的对称点A′(4,-2),由图可直观得出|P A|+|PB|=|P A′|+|PB|≥|A′B|,故|P A|+|PB|的最小值为|A′B|的长度.由两点间的距离公式可得|A′B|=(4-0)2+(-2-1)2=5,所以函数y=x2-8x+20+x2+1的最小值为5.13.某县相邻两镇在一平面直角坐标系下的坐标为A(1,2),B(4,0),一条河所在直线方程为l:x+2y-10=0,若在河边l上建一座供水站P使之到A,B两镇的管道最省,问供水站P应建在什么地方?此时|P A|+|PB|为多少?解如图所示,过A 作直线l 的对称点A ′,连接A ′B 交l 于P ,因为若P ′(异于P )在直线l 上,则|AP ′|+|BP ′|=|A ′P ′|+|BP ′|>|A ′B |.因此,供水站只能在点P 处,才能取得最小值.设A ′(a ,b ),则AA ′的中点在l 上,且AA ′⊥l ,即⎩⎪⎨⎪⎧ a +12+2×b +22-10=0,b -2a -1·⎝ ⎛⎭⎪⎫-12=-1,解得⎩⎨⎧ a =3,b =6,即A ′(3,6).所以直线A ′B 的方程为6x +y -24=0,解方程组⎩⎨⎧ 6x +y -24=0,x +2y -10=0,得⎩⎪⎨⎪⎧x =3811,y =3611. 所以P 点的坐标为⎝ ⎛⎭⎪⎫3811,3611.故供水站应建在点P ⎝ ⎛⎭⎪⎫3811,3611处,此时|P A |+|PB |=|A ′B |=(3-4)2+(6-0)2 =37.。
3.3.1两条直线的交点坐标

P120 A3
k1 k2 l1 // l2 b1 b2
l1 l2 k1 k2 1
作业
A:小结 B:P120 A3(3) A5(2) 2 C:画二次函数 y 2 x 4 x 2 的图象并 在下列情况下求其值域 (1) x R (2)x [1,5] (3)x [3,5] 技巧:遇到二次函数就求对称轴方程和顶点 坐标,并画图象。
5 5 直线l1与l2的交点是 M ( , ) 3 3
P114 例2
(2) l1 : 解:
3x 4 y 4 0 l2 : 6 x 2 y 1 0
b1 b2
3 k1 k2 4
所以l1//l2
另一方面
3x 4 y 4 0 6x 2 y 1 0
解析几何
3.3.1两条直线交点坐标
直线的方程
斜率和一点坐标
点斜式 斜截式
两点式
y y0 k ( x x0 )
斜率k和截距b
y kx b
y y1 x x1 y2 y1 x2 x1
两点坐标
点斜式 两个截距 截距式
y y0 k ( x x0 )
x y 1 a b
A1 x B1 y C1 0 A2 x B2 y C2 0
P113 例1
l1 : 3x 4 y 2 0 l2 : 2x y 2 0
画图
两点确定一条直线
练习P114 1(1)
两点确定一条直线
y
l1
Hale Waihona Puke l21y2
x
k1 k2 l1 // l2 b1 b2
高中数学第三章直线与方程3.3.1两条直线的交点坐标3.3.2两点间的距离课件新人教A版必修

2
3
C. + =1
答案:C
1
3
1
D.y=- x+4
3
B.y=- x-12
)
S 随堂练习
UITANG LIANXI
首 页
1
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
2
2.两点间的距离公式
已知平面上两点 P1(x1,y1),P2(x2,y2)间的距离为|P1P2|,则
-1
2-1
=
-(-3)
,
2-(-3)
首 页
探究一
探究二
探究三
探究四
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
探究五
探究四坐标法的应用
将几何问题代数化,即用代数的语言描述几何要素及其关系,并最终解决几
何问题,这种处理问题的方法叫作坐标法(或解析法),通过这种方法,把点与
坐标、曲线与方程联系起来,实现空间形式与数量关系的结合.
坐标法解决几何问题时,关键要结合图形的特征,建立平面直角坐标系.
坐标系建立的是否合适,会直接影响问题能否方便解决.建系的原则主要有
两点:
①让尽可能多的点落在坐标轴上,这样便于运算;②如果条件中有互相
垂直的两条线,要考虑将它们作为坐标轴;如果图形为中心对称图形,可考虑
ICHU ZHISHI
HONGDIAN NANDIAN
探究五
解:(1)设所求直线方程为 x+2y-2+λ(3x-2y+2)=0.
3.3.1 两条直线的交点坐标(优秀经典公开课教案及练习答案详解)
3.3.1 两条直线的交点坐标学科: 数学 年级: 高一 班级【学习目标】1.能用解方程组的方法求两直线的交点坐标.2.会根据方程组解的个数判定两条直线的位置关系.【学习重难点】重点:判断两直线是否相交,求交点坐标。
难点:两直线相交与二元一次方程的关系【预习指导】1.判断(正确的打“√”,错误的打“×”)(1)若两直线的方程组成的方程组有解,则两直线相交.( )(2)点P 1(x 1,y 1)点P 2(x 2,y 2),当直线平行于坐标轴时|P 1P 2|=|x 1-x 2|.( )(3)在两直线斜率都存在的情况下,若斜率不相等,则两直线相交.( )2.直线x +2y -2=0与直线2x +y -3=0的交点坐标是( )A .(4,1)B .(1,4) C.⎝ ⎛⎭⎪⎫43,13 D.⎝ ⎛⎭⎪⎫13,43 3.三条直线ax +2y +8=0,4x +3y =10与2x -y =10相交于一点,则a =________.【合作探究】1、分组讨论,判断两直线的位置关系已知两直线 L1:A1x+B1y +C1=0, L2: A2x+B2y+C2=0如何判断这两条直线的关系? 教师引导学生先从点与直线的位置关系入手,看表一,并填空。
(1) 若二元一次方程组有唯一解,L 1与L2 相交。
(2) 若二元一次方程组无解,则L 1与 L2平行。
(3) 若二元一次方程组有无数解,则L 1 与L2重合。
2、例题讲解,规范表示,解决问题例题1:求下列两直线交点坐标L1 :3x+4y-2=0L2:2x+y +2=0 解:解方程组 34202220x y x y +-=⎧⎨++=⎩ 得 x=-2,y=2 所以L1与L2的交点坐标为M (-2,2),如图642-2-4-55yx例2、 判断下列各对直线的位置关系。
如果相交,求出交点坐标。
(1) L1:x-y=0,L2:3x+3y-10=0(2)L1:3x-y=0,L2:6x-2y=0 (3) L1:3x+4y-5=0,L2:6x+8y-10=0例3、已知a 为实数,两直线1l :01=++y ax ,2l :0=-+a y x 相交于一点,求证交点不可能在第一象限及x 轴上.分析:先通过联立方程组将交点坐标解出,再判断交点横纵坐标的范围. 解:解方程组若112-+a a >0,则a >1.当a >1时,-11-+a a <0,此时交点在第二象限内.又因为a 为任意实数时,都有12+a ≥1>0,故112-+a a ≠0 因为a ≠1(否则两直线平行,无交点) ,所以,交点不可能在x 轴上,得交点(-11,112-+-+a a a a ) 【巩固练习】1、光线从M (-2,3)射到x 轴上的一点P (1,0)后被x 轴反射,求反射光线所在的直线方程。
高一数学3.3.1两直线的交点坐标
5x 2y 6 0
y2
所以 l1, l2 的交点为 ( –2,2). 由两点式可得:所求直线方程为
y 3 x 2 即 x –4y + 10 = 0. 23 22
解法 2:设所求直线方程为: x + 3 y –4 + (5x + 2 y + 6) = 0.
因为点 (2,3)在直线上,所以 2+3× 3–4+ (5× 2+2 × 3+6) = 0 ,
所以
7
7
,即所求方程为 x + 3 y –4 + (
)(5x + 2 x –4y + 10 = 0.
例 2 已知直线 l1: x + my + 6 = 0 ,l 2: (m –2) x + 3 y + 2 m = 0 ,试求 m 为何值时, l1 与 l 2:( 1)重合;( 2)平行;( 3)垂直;( 4)相交 .
【解析】当 l1∥ l 2(或重合 ) 时:
A1B2 –A2B1 = 1 × 3 –(m –2)· m = 0 ,解得: m = 3 ,m = –1. ( 1)当 m = 3 时, l1: x + 3 y + 6 = 0, l2: x + 3 y + 6 = 0 ,所以 l 1与 l2 重合; ( 2)当 m = –1 时, l1: x –y + 6 = 0, l 2: –3x + 3y –2 = 0 ,所以 l 1∥ l 2;
限内 . 又因为 a 为任意实数时,都
有 a2 +1≥ 1> 0,故 a 2 1 0 . a1
引导学 生将方法拓 展与廷伸
因为 a≠ 1 (否则两直线平
3.3.1_两条直线的交点坐标&3.3.2_两点间的距离
解得 x=1。所以,所求点P(1,0)且
PA (1 1) 2 (0 2) 2 2 2
例5; 证明:平行四边行四条边的平方和等于两条对角线 的平方和。 分析:首先要建立直角坐标系,用坐标表示有关量,然后 用代数进行运算,最后把代数运算“翻译”成几何关系。
证明:如图所示,以顶点A为坐标 原点,AB边所在的直线为x轴, 建立直角坐标系.
∴l1与l2的交点是(2,2)
设经过原点的直线方程为 y=k x
把(2,2)代入方程,得k=1,所求方程为 x-y=0
思考与探究: 当 变化时,方程
3x 4 y 2 (2 x y 2) 0
表示何图形,图形有何特点? 解:先以特殊值引路:
=0时,方程为3x+4y-2=0 =1时,方程为5x+5y=0
则A(0,0)。设B(a,0), D(b,c),由平行四边形性质得点 C的坐标为(a+b,c),
y D C
A
B
x
因为
AB a CD , AD BC b 2 c 2
2 2 2 2 2
AC (a b) c , BD (a b) 2 c 2
2 2 2 2
所以
AB CD AD BC 2(a 2 b 2 c 2 )
2 2 2 2
AC BD 2(a 2 b 2 c 2 )
2 2
所以
AB CD AD BC AC BD
2 2 2 2
2
2
因此,平行四边形四条边的平方和等于两条对角线的 平方和。
用“坐标法”解决有关几何问题的基本步骤: 第一步;建立坐标系, 用坐标系表示有关的量
第二步:进行 有关代数运算
(201907)高一数学两条直线的交点坐标
是它们的方程组成的方程组
A1x+B1y+C1=0 A2x+B2y+C2=0
的解;反之,如果方程组
A1x+B1y+C1=0 A2x+B2y+C2=0
只有一个解,那么以这个解为坐标的点就是直线 A1x+B1y+C1=0和A2x+B2y+C2=0的交点。
; 琪琪布电影网
3.3.1 两条直线的交点坐标
(一)新课引入: 二解),同时在直角坐标系中两条 直线的位置关系也有三种情况(相交,平行,重 合),下面我们通过二元一次方程组解的情况来 讨论直角坐标系中两直线的位置关系。
(二)讲解新课:
①两条直线的交点:
如果两条直线A1x+B1y+C1=0和A2x+B2y+C2=0 相交,由于交点同时在两条直线上,交点坐标一定
褚遂良则做了薛举的通事舍人 起笔露锋 平生故人 《白敏中墓志》:有女三人 ” 恬然恭逊 对唐代乃至后世书法的延续和创新提供了借鉴 陷之重辟 据说李德裕和崔氏兄弟有长期的交情 封河东王 "众皆欢呼曰:"晋王仁孝 19.”后来 以出师扞庞勋功 历尚书右仆射 门下侍郎 唐朝所直接管辖的汉族地区和被称为“遐荒”的边疆少数民族地区 卿何遽尔!兄长岑献担任国子监司业 请辞宰相 夫此二子者 他只是在公文上署名而已 唐太宗下诏在隋末战乱时期的战场修建庙宇 务静方内而不求辟土; 疾秦王功高望重 [18] 便告辞而去 晋王李治册立为皇太子 若宽 之 将其列入《奸臣传》本 结果尚未行动 李林甫病逝 修撰国史:崔敦礼曾参与唐朝国史的修撰工作 .谥号丑 [34] 常衮性清高孤傲 辅国大将军 请皆还之 李林甫在家中处理政务 官至京兆府参军 并充任翰林学士 此事遭到了褚遂良的反对 下狱诛杀
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般地,对于两条直线:
l1 : A1x B1 y C1 0, l2 : A2 x B2 y C2 0
A1B2 A2 B1 0 A1 B1 C1 l1 // l2 A2 B2 C2 A1C2 A2C1 0
A1 A2 l1 l2 ( )( ) 1 A1 A2 B1B2 0 B1 B2
Aa Bb C 0
点A的坐标是方程组的解
直线l1与l2的交点是A A1 x B1 y C1 0
A2 x B2 y C 2 0
讨论: 点A(-2,2)是否在直线 l1:3x+4y-2=0上? 点A(-2,2) 是否在直线 l2:2x+y+2=0上?
例题分析
例6:已知点A(1,3),B(3,1),C(-1,0),求的 y
A
h C O
ABC 面积
B
x
两条平行直线间的距离:
两条平行直线间的距离是指夹在两条平行直 y l1 线间的公垂线段的长. P
l2
Q o 例7、求证:两条平行线l1:Ax+By+C1=0与 l2: Ax+By+C2=0的距离是 x
例8.若某直线的斜率为-2,直线与两个坐标轴围 成的三角形的面积为4,求此直线的方程. y 解:设直线方程为 b
y 2 x b
b 令y 0, 得x 2 令x 0, 得y b
直线x轴y轴的交点为
b 2
x 0
b , 0 和 0, b 2 2 1 b b S | | | b | 4 2 2 4
系? 两直线是否有公共点,要看它们的方 程是否有公共解. 因此,只要将两条直线 l1和l2的方程联立,得方程组
如何利用方程判断两直线的位置关系?
A1 x B1 y C1 0 A2 x B2 y C 2 0
(1) 若方程组无解, 则l1// l2;
(2) 若方程组有且只有一个解, 则l1与l2相交;
讲授新课
1. 讨论:直线上的点与其方程
Ax+By+C=0的解有什么样的 关系?
直线l上每一个点的坐标都满足直线
方程,也就是说直线上的点的坐标是其
方程的解.反之直线l的方程的每一组解都
表示直线上的点的坐标.
2. 完成P.102的表格 几何元素及关系 点A 直线l 点A在直线l上 代数表示 A(a, b) l: Ax+By+C=0
(3) 若方程组有无数解, 则l1与l2重合.
两点间的距离 (3) x1 ≠ x2, y1 ≠ y2
已知平面上两点P1(x1,y1), P2(x2,y2),如何 求P1 P2的距离| P1 P2 |呢? y P1(x1,y1) Q (x ,y )
2 1
P2(x2,y2)
o
x
2
| P P2 | ( x2 x1 ) ( y2 y1 ) 1
(1) 若方程组无解, 则l1// l2;
(2) 若方程组有且只有一个解,
(3) 若方程组有无数解,
4. 如何利用方程判断两直线的位置关系?
A1 x B1 y C1 0 A2 x B2 y C 2 0
(1) 若方程组无解, 则l1// l2;
(2) 若方程组有且只有一个解, 则l1与l2相交;
| P P2 || x2 x1 | 1 | P P2 || y2 y1 | 1
两点间的距离 (3) x1 ≠ x2, y1 ≠ y2
已知平面上两点P1(x1,y1), P2(x2,y2),如何 求P1 P2的距离| P1 P2 |呢? y P1(x1,y1) Q (x ,y )
2 1
P2(x2,y2)
d= C1 - C2 A 2 + B2
例7.求直线x-2y+6=0与两个坐标轴围成的三 角形面积.
• 解:化为斜截式
x 2y 6 0 B y 3
A -6
1 y x3 2 1 k x, b 3 2 令y 0, 得x 6
x
0
a 6
1 S | 3 | | 6 | 9 2
课堂小结
1.两条直线交点与它们方程组的解之间 的关系. 2.求两条相交直线的交点及利用方程组 判断两直线的位置关系.
§3.3.4 两点间的距离
两点间的距离
已知平面上两点P1(x1,y1), P2(x2,y2),如何 求P1 P2的距离| P1 P2 |呢? (1) x1≠x2, y1=y2 (2) x1 = x2, y1 ≠ y2 (3) x1 ≠ x2, y1 ≠ y2
o
x
2
| P P2 | ( x2 x1 ) ( y2 y1 ) 1
2
特别地, 原点O与任一点P( x, y )的距离 : | OP | x y
2 2
练习
1、求下列两点间的距离:
(1)、A(6,0),B(-2,0)
(3)、P(6,0),Q(0,-2)
(2)、C(0,-4),D(0,-1)
d
C1 - C2 A2 B 2
练习3
14 53 1.平行线2x-7y+8=0和2x-7y-6=0的距离是______; 53
2 13 2.两平行线3x-2y-1=0和6x-4y+2=0的距离是____. 13
练习4
1、点A(a,6)到直线x+y+1=0的距离为4,求a的值.
2 2、求过点A(-1,2),且与原点的距离等于 2
小结
点斜式 y y0 k ( x x0 ) 斜截式
y kx b
y y1 x x1 两点式 y2 y1 x2 x1
x y 1 截距式 a b
任何一条直线都可以用一个关于x,y的二元一次 方程来表示! 任何一个关于x,y的二元一次方程,它都表示一 条直线!
• 今后请将直线方程的结果都化成一般式!
例2. 判断下列各对直线的位置关系,如果 相交,求出交点坐标. (1) l1: x-y=0,l2: 3x+3y-10=0; (2) l1: 3x-y+4=0,l2: 6x-2y-1=0;
(3) l1: 3x+4y-5=0,l2: 6x+8y-10=0.
例3 如何根据两直线的方程系数之间的关系 来判定两直线的位置关系?
P(x0,y0)
O
x
L:Ax+By+C=0
点到直线的距离:
P0(x0,y0)到直线l:Ax+By+C=0的距离:
练习2
d
| Ax0 By 0 C | A B
2 2
1、求点A(-2,3)到直线3x+4y+3=0的距离.
2. 求点B(-5,7)到直线12x+5y+3=0的距离.
3、求点P0(-1,2)到直线2x+y-10=0的距离.
的直线方程 .
小结
1.平面内一点P(x0,y0) 到直线Ax+By+C=0
几何元素及关系 点A 直线l 点A在直线l上
代数表示 A(a, b) l: Aห้องสมุดไป่ตู้+By+C=0
Aa Bb C 0
点A的坐标是方程组的解
直线l1与l2的交点是A A1 x B1 y C1 0
A2 x B2 y C 2 0
总结 如何利用方程判断两直线的位置关
(3) 若方程组有无数解,
4. 如何利用方程判断两直线的位置关系?
A1 x B1 y C1 0 A2 x B2 y C 2 0
(1) 若方程组无解, 则l1// l2;
(2) 若方程组有且只有一个解, 则l1与l2相交;
(3) 若方程组有无数解, 则l1与l2重合.
2
特别地, 原点O与任一点P( x, y )的距离 : | OP | x y
2 2
小结
1.平面内一点P(x0,y0) 到直线Ax+By+C=0
的距离公式是
d=
Ax0 + By0 + C A 2 + B2
当A=0或B=0时,公式仍然成立.
2.两条平行线Ax+By+C1=0与
Ax+By+C2=0的距离是
o x
思考:已知点P0(x0,y0)和直线l:Ax+By+C=0, 怎
样求点P到直线l的距离呢?
当A=0或B=0时,直线方程为 y=y1或x=x1的形式.
y
P (x0,y0) y=y1
Q (x0,y1)
y
(x1,y0)
Q
P(x0,y0) x x=x1
o
x
o
PQ = y0 - y1
PQ = x 0 - x1
例题分析
例4、证明平行四边形四条边的平方和等于两条对角 y 线的平方和。 D (b,c) C(a+b,c)
o A(0,0)
B (a,0) x
第一步:建立坐标系,用坐标表示有关的量; 第二步:进行有关的代数运算; 第三步:把代数运算结果“翻译”所几何关系.
小结
平面内两点P1(x1,y1), P2(x2,y2) 的距离公式是
l1 : A1 x B1 y C1 0
l2 : A2 x B2 y C2 0
A1 B1 C1 A2 B2 C2
l1与l2平行 l1与l2相交
A1 B1 A2 B2
思维拓展
当变化时,
方程3x+4y-2+(2x+y+2)=0
表示什么图形?图形有什么特点?
练习. 1. 教材P.104练习第1、2题.
练习1
5 (1)点P(-1,2)到直线3x=2的距离是______. 3 4 (2)点P(-1,2)到直线3y=2的距离是______. 3