3第三章 抽样设计

合集下载

第三章抽样调查设计习题

第三章抽样调查设计习题

第三章抽样调查设计习题班级学号姓名一.单项选择题:(从下列备选答案中选出1个正确答案,将标号写在题后的括号里)1.我国统计调查方法体系中是以必要的周期性普查为基础,以经常性的()为主体。

A. 重点调查B. 全面报表C. 抽样调查D. 科学推算2.在抽样调查时,对总体不作任何处理,按随机原则抽取调查单位的组织形式称为()。

A.纯随机抽样 B.系统抽样 C.整群抽样 D.分层随机抽样3.在购买力调查中,按收人多少由低至高排列,也可用与调查项目无关的标志为依据,如按户口册、姓名笔划多少排列,然后每隔相等距离抽样,这种抽样方法是()。

A.纯随机抽样 B.系统抽样 C.整群抽样 D.分层随机抽样4.把调查总体分为若干个群体,然后用纯随机抽样法,对抽中群的单位进行全面调查的技术是()。

A.纯随机抽样 B.系统抽样 C.整群抽样 D.分层随机抽样5.把调查总体按其属性不同分为若干层次(或类型),然后在各层(或类型)中随机抽取样本的技术是()。

A.纯随机抽样 B.系统抽样 C.整群抽样 D.分层随机抽样6.如果抽样调查的目的是为了推断总体数值,在抽取样本单位时必须遵守()。

A.随机原则 B.非随机原则 C.系统性原则 D.及时性原则7.在进行概率抽样时,其前提条件是要具备()。

A.较多的调查人员 B.充足的经费 C.固定的样本数 D.抽样框8.调研人员从工作方便出发,在调查对象范围内随意抽选一定数量的样本进行调查,这种抽样方法是()。

A.任意抽样 B.判断抽样 C.配额抽样 D.整群抽样9.抽签法一般用于()方法中。

A.纯随机抽样B. 判断抽样C. 配额抽样D.滚雪球抽样10.抽样调查的主要目的在于()。

A.了解总体的基本情况 B.用样本指标推断总体指标C.对样本进行全面调查 D.了解样本的基本情况二.多项选择题:(在备选答案中选出2~5个正确答案,将标号在题后的括号里)1.下列关于抽样调查正确说法有()。

A、它是一种非全面调查B、按照随机原则选取调查单位C、会存在着抽样误差D、目的在于取得样本指标E、是一种全面调查2.概率抽样的类型主要有()。

第三章-简单随机抽样

第三章-简单随机抽样
不放回也称不重复抽样,每次从总体中随机抽取 一个样本单位,经调查观测后,不再将该单位放 回总体参加下一次抽样,然后再在剩下的总体单 位中随机抽取下一个样本单位进行调查观测,直 到抽够n个样本单位为止。
N!
考虑顺序可能的样本为 N n !
每个样本被抽中的概率为 ( N n)! N!


s2 1358.41, v( y) (1 f )s2 / n 37.6444, se( y) 6.1355
对该校大学生某月电信消费人均支出额的估计为 53.64元,在置信度95%下,临界值1.96,可以说以 95%的把握说明该校大学生该月的人均支出在 [53.64+(-)1.96*6.1355],即41.61~65.67元。
n 1
2n
正态近似产生的误差 主要与nP有关,特别 当nP比较小时,产生 的误差甚大,在95% 置信度下,P<0.5时正 态分布需要的最小nP 值与n值如下表。
P
nP
0.5
0.4
0.3
0.2
0.1
0.05
0
n
15
30
20
50
24
80
40 200
60 600
70 1400
80 无穷
试以95%的置信度估计上例大学生月电信消费超 过80元的人数及其比例。
N n S2 N n
nN
为调查某校大学生的电信消费水平,在全 校N=15230名学生用简单随机抽样抽取 n=36名学生,调查上月电信支出数据。试 以95%的置信度估计该校大学生该月电信 消费的平均支出额。
样本序号 消费元/月 样本序号 消费
样本序号 消费
1
45
13

第三章抽样调查

第三章抽样调查

分层比例抽样计算公式:ni =〔Ni /N〕 × n
ni :第i层应抽取的样本数
Ni :第i层样本总数
N
N :调查母体的样本总数
ቤተ መጻሕፍቲ ባይዱ
n :设定的样本数
分层比例抽样法适用于各层具有清楚差异,各
层外部具有较好分歧性,各层在母体中所占比例不 过火悬殊的市场母体的调查之中。
【例题1】某地域有百货商店10 000户,其中大型、 中型与小型百货商店区分为1000、2000、7000户,当 抽样数为200户时,假定用分层比例抽样法应从各层中 各抽多少个样本?
2、可以依据需求对各层的特性加以比拟;
3、从管理和实施上看,比复杂随机抽样便利得多。
二、分群随机抽样
分群随机抽样是将市场调查母体划分为假定干 个群体,然后将假定干群体作为抽样样本,采用单 纯随机抽样方法确定并对选定群体内的全体样本停 止普遍调查的一种方法。
分群随机抽样与分层随机抽样的区别在于:分 层随机抽样要求层间异质,层内同质;而分群随机 抽样正好相反,它要求群间同质,群内异质。
常用的非随机抽样法主要有:恣意抽样法、 判别抽样法、配额抽样法、系统抽样法。
一、恣意抽样法〔Convenient Sampling〕
恣意抽样法也称便利抽样法,是一种恣意选取 样本的方法。街头拦人法和方便选择法是恣意抽样 法的两种最罕见的方式。 优点:〔1〕无须精心选取样本
〔2〕能及时取得所需的信息 〔3〕省时、省力,浪费调查支出
〔3〕运用范围普遍,特别适用于研讨市场现象的数量 表现;
第二节 抽样调查的基本顺序
抽样调查,特别是随机抽样,有比拟严厉的设计 顺序,只要按一定步骤,才干保证调查的顺利完成, 取得应有的效果。抽样调查普通分为以下几个步骤: 一、确定调查总体和抽样单元 二、确定置信度和最大允许误差 三、确定样本数量 四、选择抽样方式停止抽样 五、搜集样本资料计算样本目的 六、用样本目的推断调查总体目的

初级1 -第三章简单随机抽样

初级1 -第三章简单随机抽样
n
n
n 1 N 1 n N
n 1 N 1
二、实施方法 • 抽签 制作N个同质的签,充分混合。从中一次抽出n个签, 或者先抽出一个签但不放回,再抽下一个签直到抽 满n个签为止。抽出的这n个签对应的单元入选样本, 这是不放回简单随机抽样;若从充分混合的N个签 中抽取一个,记录后放回,再抽取下一个,如此进 行,直到抽满n个为止,则是放回简单随机抽样。 抽签法的实施起来比较麻烦,尤其是当总体单元数 N较大时,所以该方法的使用场合为当总体单元数 N比较小,签的制作比较方便时。
第三章 简单随机抽样

第一节
基本问题
一、什么是简单随机抽样
从 N个单元的总体中抽取 n个单元组成的样本。总体单元数为 N,
样本量为 n。 若抽样是放回的,每次都是从 个总体单元中随机抽取1个单元,独 立重复抽取n次,得到 个单元组成的样本,叫做放回简单随机抽样。 若抽样是不放回的,每次都是从剩下的总体单元中随机抽取1个单 元,相继依次抽取n次,得到n个单元组成的样本,叫做不放回简单 随机抽样。
精度margin of error
对精度的要求通常以允许最大绝对误差
差限)或允许最大相对误差 (相对误差限)来表 示。
r
d(绝对误
d 1 P
P r 1


样本量足够大时,可用正态分布近似
ˆ tS ˆ d t V
2
第三章 基本概念
N n N 1
N n N
为 修正系数
2
为 S 修正系数
n f ,称抽样比, N
2

N n 1 f 有限总体调整系数 故, N 2
S V ( y ) (1 f ) n

第3章抽样技术 市场调查与预测(第二版) 邓剑平

第3章抽样技术 市场调查与预测(第二版) 邓剑平

3.1 抽样调查概述
3.1.1 市场抽样调查的涵义 3.1.2 抽样调查的特点 3.1.3 抽样调查的作用 3.1.4 市场抽样调查的程序
3.1.1 市场抽样调查的涵义
市场抽样调查有广义和狭义之分。广义的抽样 调查包括随机抽样和非随机抽样;狭义的抽样调查 只包括随机抽样。下面市场抽样调查的涵义是狭义 的。 所谓抽样调查,就是按某种规则从调查对象总 体中选取一定数目的单位,作为代表总体样本,运 用样本单位的调查,结果推断总体一般情况的一种 调查方式。
3.1.2 抽样调查的特点
抽样调查是市场调查中应用最多的方法, 它具有一下明显的特点(见图3-1)。
图3-1 抽样调查的特点
3.1.3 抽样调查的作用
在市场调查中,调查的内容很多(见图3-2)。
图3-2 抽样调查所使用的范围
市场抽样调查,特别是随机抽样,有比较严格 的程序,只有按一定程序进行调查,才能保证调查 顺利完成,取得应有的效果。抽样调查一般分为以 下几个步骤(见图3-3)。
分层抽样必须注意以下问题(见图3-4)。
图3-4 分层抽样必须注意的问题
3.2.2 分层随机抽样技术及其应用
分层抽样的步骤包括(图3-5)。
图3-5 分层抽样的步骤
3.2.2 分层随机抽样技术及其应用
分层抽样的具体做法有以下两种(见图3-6)。
图3-6 分层抽样的具体做法
上海市民出行状况调查报告
上海市民出行状况调查报告
2.逾六成受访者上下班出行选择公共交通 公交与轨道交通成为市民上下班的主要交通工具。调查显示,有 26.9%的受访者选择乘坐公交,17.2%选择乘坐轨道交通,21.4%选择乘 坐公交加轨道交通,合计为65.5%;另有12%上下班出行使用助动车, 13.%使用私家车,9.3%使用自行车或其他。这表明,逾六成受访者上 下班出行选择公共交通,这与目前上海公共交通方便快捷、花费少有 着重要关系。 分区域看,居住在内环的受访者选择公共交通出行的占66.8%,居 住在内中环间的受访者选择公共交通出行的占70.1%,居住在中外环间 的占71.9%,居住在外环外的占56.9%。这表明,在公共交通较为便捷 的区域,市民更倾向于选择公共交通出行。 3.受访者上下班交通单程平均时间为50.4分钟 有9.3%的受访者上下班单程耗时在15分钟以内,16.4%耗时在1530分钟,18.7%耗时在30-45分钟,24.2%耗时在45-60分钟,22.4%耗时 在60-90分钟,9%耗时在90分钟以上。经加权平均计算,受访者上下班 单程平均时间为50.4分钟。按居住地到单位距离的分组来看,距离越 长,相对耗时越多。

第3章抽样设计

第3章抽样设计
来的那部分总体单位所作成的集合。
三、抽样框 抽样框是指用以代表总体,并从中抽选样本的一个框架,
其具体表现形式主要有包括总体全部单位的名册、地图等。抽 样框在抽样调查中处于重要地位,是抽样调查必不可少的部分, 其对于推断总体具有相当大的影响。
四、抽样比 抽样比是指在抽选样本时,所抽取的样本单位数与总体单位
随机抽样调查的特点和作用
一、随机抽样调查的特点
抽样就是根据随机原则从总体中抽取一部分单位作为样本,并 根据样本数量特征对总体特征做出有一定可靠性的估计与推断。
在统计中将从总体中抽取的部分单位称为样本,把描述样本数 量特征的指标称为统计量,描述总体数量特征的指标称为参数。
随机抽样调查是建立在随机取样基础上,保证了每一单位都有 被抽中的可能性,从而增强了被抽中单位对总体的代表性。
特征的指标称为统计量,描述总体数量特征的指标称为参数。
抽样按抽取方法可分为重复抽样和不重复抽样。但是当总体单位 数很大,或样本量与总体单位数相比很小时,二者区别不大。
二、抽样调查的分类
包括随机抽样调查(概率抽样调查)和非机抽样调查(非 概率抽样调查)。
(一)随机抽样
这是从总体中按照随机原则抽取一定数目的单位作为样本进行 调查,并以一定概率保证对总体的特征值进行推断和估计。
面的数据; (二)在进行全面调查比较困难的时候,取得全面的数
据; (三)为了节约调查人力、费用和时间,采用抽样调查
代替全面调查。
抽样调查的几个基本概念
一、总体 总体是指所要研究对象的全体。它是根据一定研究目的而
规定的所要调查对象的全体所作成的集合,组成总体的各研究对 象称为总体单位。
二、样本 样本是总体的一部分,它是由从总体中按一定程序抽选出

第三章调查设计备课

况、过程和特征进行客观、准确的描述,即描述社会 现象是什么,它是如何发展的,它的特点和性质是什 么。这种描述通常是要发现总体在某些特征上的分布 状况。
焦 点
描述性调查(descriptive surveys)所关注的焦点
通常不在于为什么会存在这样的分布,而在于回答这
种分布是怎样的。
也可以说,描述性调查的主要目的是收集资料, 发现情况,提供信息,特别是从杂乱的现象中,描述 出主要的规律和特征。
2.分析单位的类型
(1).个人 个人是社会调查研究中最常用的 分析单位,大部分社会研究都要通过分 析个人特征来解释和说明各种社会现象
Eg:某城市就业问题的调查。
以个人作为分析单位的描述性研究一般旨在描述由那
些个人所组成的总体。而那些以个人为分析单位的解释
性研究则是为了发现存在于总体中的社会动力。
Eg:不同年收入家庭的房产拥有率
(3).组织--企业、学校、医院、机关
各种正式的社会组织(有意识建构,完成特定目标) 也可以成为社会研究中的分析单位。社会组织是社会
的基本构成单位,它是社会研究的重要对象。社会研 究一般要分析某一组织在社会系统中的位置和功能, 它与其他部门的联系以及组织内部的结构与人际关系 等。Eg:工科与文科高校就业率比较
三、设计抽样方案
1.调查对象、研究对象和抽样对象
研究对象就是社会调查中的分析单位, 它是社会调查中所要描述和分析的对象。 Eg:当前大学生的择业倾向是什么
调查对象即回答者,指的是我们在调查
中 (通过自填问卷或结构访问的方式)
所询问的对象。所有的调查对象都是且
只能是社会中各种类型的个人。
抽样对象也称为抽样单位,指的是一次直接 抽样时所采用的对象或单位。

03第三章 简单随机抽样


首先,在理论上最符合随机原则.对此可有二 种理解:一种是总体中各个单位被抽中的机会 相等.设总体有N个单位,各单位被抽中的概 1 率均为 N.另一种是总体中各个样本被抽中的 概率相等.我们知道,一个总体N中可以抽取 许多个容量为n 的样本,通常情况下按组合形 n C N个样本,那么,在一次抽样中,某个样 式有 1 本被抽中的概率为C ,这个概率对每个可能的 样本都相等.简单随机抽样遵循这种等可能性 原则,为进行抽样估计,计算抽样误差,提供 了重要前提条件.
Y3 + Y4 2
可见,样本均值 y 是 Y 的一个无偏估计量,因为
1 Yi + Y j 1 3 4 E ( y ) = ∑∑ ( ) = ∑∑ (Yi + Y j ) 2 12 i =1 j i i =1 j i 6
3 4
而每个单元均可能在三个样本内出现,故
1 4 E ( y ) = ∑ 3Yi = Y 12 i =1
颜色 蓝 绿 红 白 黄 合计
人的编号 1 14 28 15 25 18 2 26 21 12 23 18 3 20 15 20 20 25 4 12 21 22 19 26
期望 数字 20 20 20 20 20 100
100 100 100 100
可见四个人都对颜色存在偏好,如第一个人偏爱绿色, 第二个人偏爱蓝色等.这种由于对颜色偏好所引起的偏估 类型,可称之为颜色偏误. 结论:随意抽样≠随机抽样
n N
其次,它是设计其他更复杂抽样形式的基础. 例如,设计分层抽样,将总体划分为若干层, 然后对各个层实施简单随机抽样.对一个非常 大的总体,需要分若干个阶段进行抽样.例如, 进行全国性抽样调查,第一阶段可以由全国抽 取若干个省份,第二阶段再由抽中的省份抽取 若干个县(市);第三阶段再由抽中的县(市)抽 取若干个乡(街道);第四阶段再由抽中的乡 (街道)抽取若干个村(居委会)等等.在这种多 阶段抽样中,每个阶段中抽取样本单位均可采 用简单随机抽样方法.

03第三章 简单随机抽样(SRS)



总体均值的比估计 总体总值的比估计 总体均值的回归估计
ˆ y RX ˆ YR R
ˆ ˆ ˆ YR RX NRX


ˆ Ylr y ( X x )

总体总值的回归估计
ˆ Ylr y ( X x) N y ( X x )

抽样可以是放回的,也可以是不放回的。如果 抽样比非常小,则放回抽样与不放回抽样实际 上是差不多的。一般情况下,不放回抽样的结 果更精确,实际操作也更方便些。在本课程中, 除非特别指明,抽样都是指不放回的。

简单随机抽样一般有抽签法和随机数法 两种实施方法。
7
简单随机抽样的抽样规则:



1)按随机原则取样,在取样时排除任何主 观因素选择抽样单元,避免任何先入为主 的倾向性,防止出现系统误差。 2)每个抽样单元被抽中的概率都是已知或 事先确定的,或者事先可以计算出来。 3)每个抽样单元的概率都相等,即简单随 机抽样属于一种等概率随机抽样。


所有概率抽样的出发点和理论基础都是简单随 机抽样。简单随机抽样是一种一步抽样法,它 保证样本量为n的每个可能的样本都有相同的 被抽中的概率p=n/N。 简单随机抽样有三个相互等价的定义:

4



定义1: 从总体的N个单元中,一次整批抽取n个单元 ,使任何一个单元被抽中的概率都相等,任何n个不同 单元组成的组合被抽中的概率也都相等,这种抽样称 为简单随机抽样。 定义2:从总体中的N个单元中,逐个不放回地抽取单 元,每次抽取到尚未入样的任何一个单元的概率都相 等,直到抽足n个单元为止,这样所得的n个单元组成 一个简单随机样本。 定义3:按照从总体的N个单元中抽取n个单元的所有 n n C N个样本,从C N 个样 可能不同的组合构造所有可能的 本随机抽取1个样本,使每个样本被抽到的概率都等于 n 1/C N ,这种抽样称为简单随机抽样

第三章简单随机抽样(抽样调查理论与方法-北京商学院,


100,95,92,88,83,75,71,62,60,50
平均分为77.6。先从中任选3个为一组样本,其选法共有120种
每种选法都有概率1/120。以4组样本为例(100,95,92),(100,83,
50),(88,83,62),(62,60,50)它们的样本平均数分别为95.67,
77.67,77.67,57.33。 从抽样调查的角度来看,我们希望抽到第二或第三组样
(3.6)
N 1 n
Nn
对随机有放回抽样,由于各次抽取是相互独立的,由概率论 的知识可以求得,此时:
2
Var( y) n
1 S2 (或 (1 ) ) (3.7)
Nn
比较(3.6)式与(3.7)式,发现同样用样本平均数来估计总体平 均数,它们都是无偏估计,但随机无放回时的方差小于随机
有放回时的方差。 y 的方差表示新盒子的离散程度,也就是 表示了 y 取值范围的大小,方差小表明 y 取值远离中心Y 的 可能性较小,这样随机的一组样本得到 y 的实现值距Y 很近
相当小,此时(3.6)式告诉我们 y 的方差将随着 n 的减少而增 大,此时 1-f 在 1 附近,对Var( y)的影响不大。事实上,
抽取样本越少,抽样误差越大。
可见实际抽样调查中用 y 估计Y 所产生的随机误差,也 即 y 的方差,主要受到样本容量 n 的影响,因子1-f 的影响
几乎可以忽略。
当然,影响 y 的方差的另一个重要因素是 2或 S 2。设
通常取决于总体单元个数N,满足10m1 N 10m。记m个 骰子按约定颜色而确定的顺序读得随机数R0,若R0 N,则 此 R0即为一次合格的随机数;否则予以放弃,重新摇取,直
到取到n个合格的随机数为止。 ③利用计算机产生随机数:不少现成的统计软件都可提供此 类服务。但必须指出,这样产生的随机数一般不能保证其随 机性,称为“伪随机数”。因此,提倡前述方法产生随机数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分群抽样样本群的平均数
1 Mi
xi M i
xi, j
j 1
i (1,r),r 为被抽取的样本群数量
其中 M i 为被抽取的第i群的样本数量,xi, j 为第i群
中的第j个样本单位。 xi 为第i群样本的平均数。
2020/11/27
浙江财经学院
22
《统计调查方法与实务》
二、分群随机抽样
分群抽样样本总体的平均数
分群抽样概述 分群抽样的数学估计
2020/11/27
浙江财经学院
19
《统计调查方法与实务》
二、分群随机抽样
(一)分 群 抽 样 概 述
分群抽样是先将市场调查的总体划分为若干个群体, 然后以简单随机抽样的方法选取部分群体作为调查 样本,对群体内各个单位进行调查的一种随机抽样 方法。分群抽样适用于调查总体单位分布较分散并 且无法确定分层标准的大总体。当调查总体相当大 时,可以进行逐级分群,一直进行到单个群体的数 目足够小时为止,然后从所有的群中随机抽取一定 的群作为调查对象实施调查。分群抽样对总体推断 的准确性较差。因而往往与其它方法相结合使用。
15
《统计调查方法与实务》
一、 简单随机抽样
简单随机抽样样本容量的估计
估计平均数情形下样本容量估计
重复抽样 不重复抽样
估计百分比情形下样本容量估计
重复抽样 不重复抽样
2020/11/27
浙江财经学院
16
《统计调查方法与实务》
一、 简单随机抽样
估计平均数情形下样本容量估计
重复抽样
n S2
x2
2020/11/27
浙江财经学院
10
《统计调查方法与实务》
一、 简单随机抽样
重复抽样时抽样平均数的误差估计
x
S n
S
n
(xi x)2
i 1
n
2020/11/27
浙江财经学院
11
《统计调查方法与实务》
一、 简单随机抽样
不重复抽样时抽样平均数的误差估计
x
S 2 (1 n N ) n
n
(xi x)2
浙江财经学院
28
分层最佳抽样 《统计调查方法与实务》
分层最佳抽样又称做非比例抽样。它是根据各层的 样本标准差的大小,又考虑到各层在总体中所占比 例的差异,而调整各层样本数目的抽样方法。分层 最佳抽样可以降低样本分布的不准确性。
ni n •
Ni Si
k
NiSi
i 1
2020/11/27
浙江财经学院
2020/11/27
浙江财经学院
20
《统计调查方法与实务》
二、分群随机抽样
(二)分群抽样的数学估计
分群抽样样本群的平均数 分群抽样样本总体的平均数 群平均数的群间方差 分群抽样样本平均数的误差 分群抽样总体平均数的估计区间
2020/11/27
浙江财经学院
21
《统计调查方法与实务》
二、分群随机抽样
百分比的估计 总体百分比的区间估计 重复抽样条件下百分比平均数误差的估计 不重复抽样条件下百分比平均数误差的估计
2020/11/27
浙江财经学院9《源自计调查方法与实务》一、 简单随机抽样
总体平均数的估计区间
x tx X x tx
其中 t 为可信度,可根据置信水平查表获得。 当可信水平为68.27%时,t=1;当可信水平为95%时, t=1.96;当可信水平为95.45%时,t=2;当可信水 平为99.73%时,t=3;当可信水平为99.994%时, t=4;当可信水平为99.999%时,t=5。
加强抽样调查组织,提高工作质量。
2020/11/27
浙江财经学院
返回总目录
37

30
25以 下
50
--
--
合 计
200
合浙 江计财 经 学 院200 合计 200
34
《交统计叉调查控方法制与实配务》额抽样
以年龄、性别与收入水平作为交叉控制因素进行配 额抽样的样本配额分布
性别
50以上
年 龄
25-50
25以下
合计
合计



6
19
13 37
6
19
25 75
100
收入水平



4
(一)简单随机抽样的概念
简单随机抽样又称单纯随机抽样,是所有随 机抽样方法中最简单的一种方法。它按照随 机的原则从调查总体中不加任何分类、排序、 分组等先行工作,直接地抽取调查样本单位。 各单位被抽到的机会完全均等,相互独立, 排除了抽样过程中各种主观因素的干扰。
2020/11/27
浙江财经学院
7
S i1 n
2020/11/27
浙江财经学院
12
《统计调查方法与实务》
一、 简单随机抽样
总体百分比的区间估计
p t p P p t p
其中 t 为可信度,可根据置信水平查表获得。 当可信水平为68.27%时,t=1;当可信水平为 95%时,t=1.96;当可信水平为95.45%时,t=2; 当可信水平为99.73%时,t=3;当可信水平为 99.994%时,t=4;当可信水平为99.999%时, t=5。
简单随机抽样 分群随机抽样 分层随机抽样 系统抽样
2020/11/27
浙江财经学院
5
《统计调查方法与实务》
一、 简单随机抽样
简单随机抽样的概念 简单随机抽样的方法 简单随机抽样的估计 简单随机抽样的样本容量估计
2020/11/27
浙江财经学院
6
《统计调查方法与实务》
一、 简单随机抽样
2020/11/27
浙江财经学院
3
《统计调查方法与实务》
二、抽样调查的优点
抽样调查采取以部分推断总体的方式,减少了 市场调查的工作量,简化了市场调查工作;抽 样调查具有如下一些优点:
1.费用低
2.速度快
3.应用范围广
4.准确度高
2020/11/27
浙江财经学院
4
《统计调查方法与实务》
第二节 随机抽样调查
29
《分统计层调查方最法与低实务成》 本抽样
分层最低成本抽样既考虑到抽样的统计效果,又考 虑到抽样的经济性。
ni n •
Ni Si /
k
Ci
(Ni Si / Ci )
i 1
2020/11/27
浙江财经学院
30
《4统计.2调查.方4法与系实务统》 抽样
系统抽样又称机械抽样或等距抽样。它是先将总体 各单位按照某一标志排列,然后根据一定的抽样距 离从总体中抽取样本;或者将总体划分为若干类型, 然后在各类型中根据一定的抽样距离抽取样本的一 种抽样方法。系统抽样既可以属于随机抽样,也可 以属于非随机抽样,其关键在于第一个样本的抽取 方式。
2 Rr
() r R 1
(R为总体的总群数)
2020/11/27
浙江财经学院
25
《统计调查方法与实务》
二、分群随机抽样
分群抽样总体平均数的估计区间
在给定的自信水平下,分群抽样的总体平均数的估 计可以由下式得到
x tx X x tx
2020/11/27
浙江财经学院
26
《统计调查方法与实务》 三、分层随机抽样
2020/11/27
浙江财经学院
31
《4统计.3调查方非法与随实务机》 抽样调查
任意抽样法 判断抽样法 配额抽样法
2020/11/27
浙江财经学院
32
配额抽样法 《统计调查方法与实务》
配额抽样法是在分层基础上进行的。配额抽样根据 其抽样方法可以分为
独立控制配额抽样 交叉控制配额抽样
配额抽样法的基本步骤
非抽样误差
指在选择样本和调查过程中所产生的误差。
2020/11/27
浙江财经学院
36
《统计调查方法与实抽务》样调查的基本要求
正确确定抽样方法,是抽出来的样本具有充分的代 表性。
恰当地确定样本的单位数目;样本单位数的大小取 决于调查的精确度要求、抽样调查方法、调查费用 预算以及调查时间等因素的综合作用;一般而言, 样本容量越大抽样误差越小,但费用也越多,时间 也越长。
r
xi
x i1 r
r 为被抽取的群的数量,x 为样本总体平均数
2020/11/27
浙江财经学院
23
《统计调查方法与实务》
二、分群随机抽样
群平均数的群间方差
r
(xi x)2
2 i1
r
2020/11/27
浙江财经学院
24
《统计调查方法与实务》
二、分群随机抽样
分群抽样样本平均数的误差
x
2020/11/27
浙江财经学院
13
《统计调查方法与实务》
一、 简单随机抽样
重复抽样百分比平均数误差的估计
p
p(1 p) n
2020/11/27
浙江财经学院
14
《统计调查方法与实务》
一、 简单随机抽样
不重复抽样百分比平均数误差的估计
p
p(1 p) (1 n )
n
N
2020/11/27
浙江财经学院
《统计调查方法与实务》
第三章 抽样设计
第一节 市场调查的抽样 第二节 抽样方法与程序 第三节 抽样控制
2020/11/27
浙江财经学院
1
《统计调查方法与实务》 第一节 市场调查的抽样
抽样调查的概念 抽样调查的优点
2020/11/27
浙江财经学院
2
《统计调查方法与实务》
相关文档
最新文档