大数据研究现状与展望

合集下载

大数据分析中的计算智能研究现状与展望

大数据分析中的计算智能研究现状与展望

六、结论
计算智能作为一项新兴的技术手段,为大数据分析提供了强大的支持和推动。 本次演示介绍了计算智能在大数据分析中的应用背景、研究现状、关键技术、 应用场景以及未来展望。计算智能在大数据分析中的应用已经取得了显著的成 果,其关键技术包括深度学习、神经网络、遗传算法等,这些技术各有优缺点, 并在不同的应用场景中发挥着重要的作用。
这些技术各有优缺点。深度学习的优点是可以自动提取特征,缺点是模型的可 解释性不足;神经网络的优点是可以实现复杂的计算和推理任务,缺点是容易 受到噪声数据和异常值的影响;遗传算法的优点是可以自动寻找最优解,缺点 是计算复杂度较高,需要消耗大量的时间和计算资源。
四、应用场景
计算智能在大数据分析中的应用场景十分广泛。例如,在智能客服领域,可以 通过运用自然语言处理和深度学习等技术,实现智能问答系统和情感分析,提 高客户满意度;在广告推荐领域,基于用户行为分析和机器学习算法,可以为 用户提供个性化的广告体验;在舆情监测领域,通过文本挖掘和情感分析等技 术,可以对网络舆情进行实时监测和预警。
最后,未来计算智能将更加注重应用场景的拓展。目前计算智能在大数据分析 中的应用场景主要集中在智能客服、广告推荐和舆情监测等方面,未来将有更 多的应用场景被发掘出来,例如在金融、医疗、教育等领域的应用。同时,未 来计算智能也将在多模态数据处理方面发挥更大的作用,例如在文本、图像、 音频等多模态数据处理中应用计算智能技术。
然而,计算智能在大数据分析中的应用也存在着一些问题。例如,模型的可解 释性不足,导致人们难以理解模型的决策过程;模型的鲁棒性不足,容易受到 噪声数据和异常值的影响;此外,模型的训练和优化也需要消耗大量的时间和 计算资源。
三、关键技术
计算智能在大数据分析中的关键技术包括深度学习、神经网络、遗传算法等。 深度学习是其中最为热门的技术之一,它通过对大量数据进行学习,可以自动 提取特征,提高模型的表示能力。神经网络是另一种重要的计算智能技术,它 可以模拟人脑神经元的连接方式,实现复杂的计算和推理任务。遗传算法则是 一种基于生物进化原理的优化算法,它可以自动寻找最优解,提高模型的性能 和精度。

大数据技术的发展现状与未来趋势分析

大数据技术的发展现状与未来趋势分析

大数据技术的发展现状与未来趋势分析随着科技的不断进步和社会的不断发展,大数据技术逐渐成为人们关注的焦点。

从早期的数据存储和处理,到现在的数据分析和应用,大数据技术已经在各个领域展现出了无限的潜力。

本文将从大数据技术的发展现状、主要应用领域和未来趋势三个方面进行探讨。

大数据技术的发展现状是一个快速发展的过程。

随着数字化时代的来临,人类的活动产生了大量的数据,这些数据被广泛应用于商业、社会和科学研究等方面。

为了能够更好地理解和利用这些数据,大数据技术应运而生。

目前,大数据技术主要包括数据的采集、存储、处理和分析。

数据的采集主要通过传感器、摄像头等设备来获取,数据的存储则采用云计算和分布式存储等技术进行管理,而数据的处理和分析则依靠机器学习和人工智能等算法来实现。

大数据技术的应用领域非常广泛。

在商业领域,大数据技术已经被广泛应用于市场营销、风险管理和供应链管理等方面。

通过对大数据的分析和挖掘,企业可以更加准确地把握市场动态,降低经营风险,并提高供应链的效率。

在社会领域,大数据技术被用于城市规划、环境保护和公共安全等方面。

通过对大数据的分析,政府可以更好地制定城市规划和环境保护政策,提高城市的可持续发展水平,并提高公众的安全感。

在科学研究领域,大数据技术被用于天气预报、医学研究和宇宙探索等方面。

通过对大数据的分析,科学家可以更好地研究天气规律,提高医学诊断的准确性,并深入了解宇宙的奥秘。

虽然大数据技术已经取得了很大的进展,但其未来仍然面临着一些挑战和机遇。

首先,数据隐私和安全问题是大数据技术发展中必须要解决的难题。

随着数据的不断增长,数据的安全和隐私问题显得尤为重要。

其次,数据的质量和可信度问题也是需要解决的难题。

数据质量的低下和可信度的不高会直接影响到数据的分析和应用效果。

再次,大数据的处理和分析算法仍然需要不断优化和改进。

随着数据量的增加,现有的处理和分析算法可能无法胜任。

此外,大数据技术的人才短缺问题也亟待解决。

大数据技术的研究现状和发展趋势

大数据技术的研究现状和发展趋势

大数据技术的研究现状和发展趋势随着信息化的快速发展和互联网的普及,大数据技术逐渐成为了当今社会的热点话题。

大数据技术的广泛应用和迅猛发展带来了许多机遇和挑战。

本文将探讨大数据技术的研究现状和未来的发展趋势。

首先,大数据技术的研究现状。

目前,大数据技术已被广泛应用于商业、政府和科研等领域。

在商业领域,大数据技术被用于市场调研、销售预测等方面,通过对大量的数据进行分析,企业可以更好地了解消费者需求,提升产品竞争力。

在政府领域,大数据技术被应用于城市管理、治安预警和公共安全等方面,帮助政府提高决策效率和管理水平。

在科研领域,大数据技术被用于基因组学、气候预测等方面,加速了科研进展。

当前的大数据技术主要集中在数据的存储、管理、分析和挖掘等方面,如Hadoop、Spark等框架和算法。

其次,大数据技术的发展趋势。

大数据技术正快速发展,并呈现出以下几个趋势。

首先,人工智能与大数据的融合。

随着人工智能的发展,大数据技术和人工智能的结合将成为未来发展的重要方向。

人工智能需要大量的数据来进行训练和学习,而大数据技术可以提供大量的数据资源,为人工智能的发展提供支持。

同时,人工智能也可以为大数据技术提供更高效的分析和挖掘方法,提升大数据技术的性能和效果。

其次,边缘计算的兴起。

大数据技术的应用场景越来越广泛,涉及到各种终端设备和传感器。

传统的云计算模式存在数据传输延迟较大的问题,而边缘计算可以将计算和数据处理推到离用户和设备更近的地方,减少传输延迟,提供实时的数据分析和响应。

边缘计算的兴起将改变大数据技术的架构和应用模式,为大数据技术的发展创造更多机会。

再次,数据安全和隐私保护的重要性。

大数据技术的快速发展也带来了许多问题,其中数据安全和隐私保护是最重要的问题之一。

随着大数据的不断积累,用户个人信息的泄露和滥用问题日益突出。

未来大数据技术的发展需要更加重视数据安全和隐私保护,采取有效的技术手段和政策措施来应对。

最后,跨学科研究和合作的加强。

大数据发展背景及研究现状

大数据发展背景及研究现状

大数据发展背景及研究现状随着互联网的迅速普及和技术的飞速发展,大数据逐渐成为社会经济运行和科学研究的重要基石。

本文将从大数据发展背景和现状两方面进行论述,为读者提供一份全面了解大数据的文章。

一、大数据发展背景1. 互联网的蓬勃发展互联网的迅猛发展为大数据的产生提供了丰富的数据源。

人们通过搜索引擎、社交媒体等互联网平台大量产生并传递着数据,这些数据包含了各行各业的信息,形成了海量的大数据资源。

2. 科学技术的进步科技的不断创新和突破使得数据的获取和存储变得更加便捷和廉价。

传感器技术、物联网技术等的成熟应用,使得各种设备和物体都能进行数据交换和数据采集,大大推动了大数据的发展。

3. 数据处理技术的突破随着计算机技术的迅猛发展,数据处理能力得到了大幅提升。

传统的数据处理方法无法胜任大规模数据处理的任务,于是出现了一系列的大数据处理框架和算法,如Hadoop、Spark等,为大数据的分析和挖掘提供了强有力的支撑。

二、大数据研究现状1. 商业领域的应用大数据在商业领域的应用已经取得了显著的成果。

通过对大数据的分析和挖掘,企业能够更加深入地了解市场需求、消费者行为等信息,为决策提供准确的依据。

例如,电商平台依靠大数据的分析,能够精准推荐商品,提高用户体验和销售额。

2. 社会管理的优化大数据在社会管理领域的应用也日益广泛。

政府部门可以通过对大数据的分析,了解人口流动、交通拥堵等情况,从而更好地安排城市规划和交通治理。

另外,大数据也被广泛应用于公共安全领域,帮助预测和应对突发事件,提高社会安全性。

3. 科学研究的突破大数据的出现为科学研究带来了巨大的机遇。

通过对海量数据的分析,科学家们能够发现数据背后的规律和模式,推动科学研究的进步。

例如,在医学领域,大数据分析技术能够帮助快速检测和预测疾病,为医疗行业带来巨大的益处。

4. 数据安全与隐私问题随着大数据的快速发展,数据安全与个人隐私问题也逐渐凸显。

大规模的数据泄露事件频频发生,数据安全成为大数据应用面临的重要挑战。

大数据研究现状

大数据研究现状

大数据研究现状在当今时代,大数据已经渗透到各个领域,成为推动社会进步和经济发展的重要力量。

大数据研究的现状可以从以下几个方面进行概述:1. 数据收集与存储随着物联网、云计算等技术的发展,数据收集变得更加便捷和高效。

各种传感器、移动设备和在线服务不断产生海量数据,这些数据被存储在云服务器或本地数据中心。

数据存储技术也在不断进步,以适应大数据的规模和复杂性。

2. 数据处理与分析大数据的处理和分析是研究的核心。

数据挖掘、机器学习和人工智能等技术被广泛应用于数据的处理和分析中,以发现数据中的模式、趋势和关联。

这些技术帮助研究人员和企业从大量数据中提取有价值的信息,支持决策制定。

3. 数据可视化数据可视化技术使得复杂的数据集能够以图形和图表的形式呈现,便于人们理解和分析。

随着大数据技术的发展,数据可视化工具也在不断创新,提供更加直观和交互式的用户体验。

4. 隐私与安全随着大数据的广泛应用,数据隐私和安全问题日益突出。

研究人员和企业正致力于开发更加安全的数据存储和传输技术,以及更加严格的数据访问和使用政策,以保护个人和企业的数据不被滥用。

5. 跨学科研究大数据研究正逐渐成为跨学科的领域,涉及计算机科学、统计学、经济学、社会学等多个学科。

这种跨学科的研究趋势促进了不同领域知识的融合,推动了大数据技术的发展和应用。

6. 政策与法规随着大数据技术的发展,各国政府也在制定相应的政策和法规,以规范大数据的使用和管理。

这些政策和法规旨在保护数据隐私、促进数据共享和创新,同时确保数据的安全和合规性。

7. 教育与培训为了满足大数据领域对专业人才的需求,许多教育机构和在线平台提供了大数据相关的课程和培训。

这些教育和培训项目旨在培养学生的数据分析能力,以及对大数据技术和工具的理解和应用。

8. 应用领域大数据技术已经被广泛应用于金融、医疗、教育、交通、政府管理等多个领域。

在这些领域中,大数据帮助企业和组织优化运营、提高效率、降低成本,并为创新提供支持。

大数据的发展现状与未来前景

大数据的发展现状与未来前景

大数据的发展现状与未来前景近年来,随着信息技术的飞速发展,大数据已经成为一个热门词汇。

大数据时代的到来,不仅给个人和企业带来了巨大的机遇,也给社会带来了深刻的变革。

本文将探讨大数据的发展现状以及未来的前景。

一、大数据的发展现状1. 数据量不断增加随着互联网用户数量的不断增加,产生的数据量也呈指数级增长。

从个人的社交媒体账号到企业的销售数据,从物联网传感器到科学研究中的数据集,数据的产生和积累是爆炸性增长的。

据统计,目前全球每天产生的数据量已经达到数十亿GB。

2. 数据来源多样化随着智能手机和物联网设备的普及,人们的日常生活产生的数据也变得多样化。

不仅有传统的文本、图像、音频和视频数据,还有传感器数据、社交媒体数据、电子商务交易数据等等。

这使得数据分析和挖掘的方法和技术也变得更加多样化。

3. 数据处理技术的不断改进为了应对大数据时代的挑战,数据处理技术也在不断创新和改进。

云计算、分布式存储、并行计算等技术为大数据的处理提供了更好的解决方案。

此外,人工智能、机器学习、深度学习等技术的发展也为大数据的分析和应用提供了更多的可能性。

二、大数据的未来前景1. 经济发展的新动力大数据被认为是经济发展的新动力。

通过对大数据的分析和挖掘,可以为企业提供更准确的市场预测和精准的营销策略,从而提升企业的竞争力。

此外,大数据还可以帮助政府和组织更好地制定政策和决策,促进社会的可持续发展。

2. 社会问题的解决大数据的应用不仅能够带来经济效益,还可以帮助解决一些社会问题。

例如,在医疗领域,通过对大数据的分析可以提升疾病的诊断和治疗效果;在城市规划中,可以通过对城市交通、环境等数据的分析来改善城市的运行效率和环境质量。

3. 数据隐私和安全的挑战然而,大数据的应用也带来了一些挑战和问题。

其中之一是对数据隐私和安全的担忧。

大数据中包含了大量个人和敏感信息,一旦这些信息被滥用或泄露,将对个人和社会带来巨大的风险。

因此,数据隐私和安全的保护将是未来发展的重要任务。

大数据的国内外研究现状及发展动态分析

大数据的国内外研究现状及发展动态分析

大数据的国内外研究现状及发展动态分析在信息时代的浪潮中,大数据成为了一种重要的资源和技术。

它的涌现不仅改变了人们的生活方式和商业运营方式,也推动了科学研究的发展。

本文将对国内外大数据研究的现状以及未来的发展动态进行分析。

一、国际大数据研究现状大数据研究在国际范围内已经有了长足的发展。

首先,在数据存储方面,云计算技术被广泛应用于海量数据的存储和管理,例如Amazon的S3和Google的Bigtable等技术。

其次,在数据处理方面,分布式计算和并行计算被用于加速大数据的处理速度,例如MapReduce和Spark等技术。

此外,数据挖掘和机器学习也成为了大数据研究的重要方向,通过对大量数据的分析和学习,揭示其中的关联模式和规律。

二、国内大数据研究现状在国内,大数据研究也呈现出蓬勃发展的态势。

首先,在政府的支持下,各大高校和研究机构纷纷开展了大数据相关的研究项目。

其次,在行业应用方面,诸如金融、医疗、物流等各个领域都开始利用大数据来提高效率和服务质量。

此外,一些互联网企业也在大数据分析和算法研发方面进行了深入探索,例如阿里巴巴和百度等。

三、国际大数据研究动态在国际上,大数据研究正朝着更加深入和广泛的方向发展。

首先,随着物联网技术的不断演进,大量传感器数据的产生将推动数据存储和分析的需求。

其次,在人工智能领域,深度学习技术的崛起为大数据研究提供了新的方法和思路。

此外,跨界研究也成为了大数据领域的趋势,例如将大数据与社会科学、医学等学科相结合,探索新的研究方向和方法。

四、国内大数据研究动态在国内,大数据研究也在不断推进和突破。

首先,政府加大了对大数据研究的支持力度,提出了一系列发展政策和资金扶持。

其次,学术界和产业界之间的合作交流也越来越频繁,加快了大数据技术的推广和应用。

此外,一些新兴领域的涌现,如人工智能、区块链等,也将为大数据研究带来新的机遇和挑战。

五、国际大数据研究趋势在国际上,大数据研究的趋势是多样化和复合化发展。

大数据发展背景与研究现状分析研究论文

大数据发展背景与研究现状分析研究论文

大数据发展背景与研究现状分析研究论文随着信息技术的不断发展和普及,大数据技术逐渐成为信息产业的新宠。

大数据发展背景与研究现状的分析,是人们对大数据技术的深入了解和探讨,也是大数据应用领域不断拓展的重要指引。

一、大数据发展背景在信息爆炸的时代,海量的数据如同潮水般涌现,传统的数据库技术逐渐无法满足大规模数据处理的需求。

大数据技术因此应运而生。

首先,在互联网的快速发展下,用户产生的数据呈指数级增长。

用户在社交网络、在线购物、搜索引擎等平台的行为数据,给数据库管理带来了极大挑战。

传统数据库技术对于处理如此庞大的数据量显然力不从心。

其次,移动互联网的普及让数据的来源更加多元化。

手机、平板等移动设备的普及和大数据的设备互联,进一步加速了数据的增长速度。

手机APP、传感器等设备产生的数据,也为大数据技术的应用提供了更广阔的空间。

再次,人工智能技术的飞速发展催生了对于大数据高效处理和分析的需求。

人们希望通过大数据的深度挖掘,实现智能化的应用场景。

这也促进了大数据技术的快速发展。

以上种种因素共同推动了大数据技术的发展,大数据在各行各业中得以广泛应用,为信息社会的进步做出了贡献。

二、大数据研究现状分析1. 数据处理技术大数据技术主要包括数据的采集、存储、处理和分析等环节。

在数据处理技术方面,分布式存储、分布式计算和数据挖掘等技术被广泛应用。

Hadoop、Spark等开源软件成为了大数据处理的主要工具,可以高效处理海量数据。

2. 数据分析方法数据分析是大数据技术的核心之一。

在数据分析方法方面,统计学、机器学习、深度学习等方法被广泛应用。

通过对数据的挖掘和分析,可以为企业的决策提供科学依据,实现精准营销、个性化推荐等应用场景。

3. 数据安全与隐私保护随着数据泄露事件的频发,数据安全与隐私保护成为大数据领域的重要议题。

加密技术、数据脱敏技术等手段被用于保护用户数据的安全和隐私。

数据伦理、法律法规等问题也备受关注。

4. 学术研究与应用案例国内外各大高校和研究机构也积极开展大数据技术的研究工作,推动了学术界对于大数据技术的理论研究和实践探索。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信 息 技 术 ・ 1 9 1 . 源自大数据研 究现状 与展 望
刘忆 迪 , 郭方修 z
( 1 、 山东省青 岛市第一 中学 , 山东 青岛 2 6 6 0 7 1 2 、 山东省青岛市城 阳区黄埠 小学, 山东 青岛 2 6 6 1 0 7 )
摘 要: 随着科 技的迅猛发展 , 各个领域 ( 如天文、 金 融、 医疗 、 互联 网等 ) 都 产生 了海量的数据 , 大数据释放 出的 巨大价值 , 几乎给每 个行 业都带来 了颠覆。其价值除 了共享庞大的数据 流信 息外, 还能从海量数据 中提取所 需数据并进行专业化分析 , 挖 掘隐藏在数据下的 潜在 价值 , 给政府 、 企业、 高校等各行各业在决策拟定时提供 参考。通过介绍大数据的基 本定义、 现状并结合一 些应 用案例 , 试 图增进对大 数 据的理解 。 分析 大数据在各 个领域发挥的 关键作用 , 并展望 大数据的发展 趋势。 关键 词 : 大数 据 ; 数据分析 ; 现状 ; 应用; 展 望 随 斗 算 机的发展 , 大数据越来越广为人知 , 逐渐成为社会关注的 手段有分布式文件系统 、 并行计算、 流式处理等 。对不同领域庞大数据 可能获得不同级别的数据意义。 焦点。美国和欧洲部分 国家都从战略层面提出了一系列大数据技术发 的不同特征进行处理 , 展计划 , 以推动大数据在政府机构 、 学术界 、 工业界和各个重点行业的 2国 内外研 究现 状及 应用 2 . 1 研究现状。2 0 1 2 年3 月, 美国发 应用 。早 在 2 0 1 0年 1 2月 ,美国 P C A S T( 科学技术顾 问委员会 ) 和 B i g D a t a R &D I n i t i a t i v e ) ,投资 2 亿美金启动大数据核心技术研发和 P I T A C ( 信息技术顾问委员会 ) 向奥 巴马和 国会提交的《 规划数字未来》 ( 应用 , 涉及美国国家 自然基金会( N S F ) 、 卫生健康总署( N I H) 等 6大机 战略报告建议 : “ 联邦政府应高度重视大数据的发展 , 拟定科学的“ 大数 构, 是美 国自 1 9 9 3 年执行 “ 信息高速公路” 后又一次大动作 。2 0 1 2 年7 据” 发展战略” 。 全球知名咨询麦肯锡( Mc K i n s e y ) 公司在 2 0 1 1 年发布的 月 , 联合国公布《 大数据促发展 : 挑战与机遇》 白皮书 , 建议各 国政府大 《 大数据: 下—个竞争 、 创新和生产力的前沿领域》 口 研究报告 中 称: “ 数据 挖掘大数据潜在价值, 更好地指导经济 已经与各行各业 的发展息息相关 ,成为助力企业进步的关键因素。同 数据发展提升到重要战略位置 , 服务人民。 在学术界, 美国麻省理工( MI T ) 建立了大数据科学技术 时,随着人们对大数据应用的热衷 ,将会带动 国内新一轮生产率的扩 运行 、 G( I S T C ) , 并通过与各高校及国际产业巨头合作 , 促进其在不 同行业 大” 。2 0 1 5 年 国务院印发《 促进大数据发展行动纲要》 嘴 出: “ 伴随信息 中 英国牛津大学成立 医药卫生科研中心, 运行大 技术与经济社会的交融 , 数据 已经成为助力企业发展的关键因素, 是 国 中的运用于发展。同时 , 更好地帮助科学家分析人类疾病并研究相应的治疗方法 , 促 家战略l 生 资源之一” , 并在国家顶层设计和总体部署方面对大数据发展 数据技术 , 国内社会各界也迅速广泛开展大 做出了指导。 大数据浪潮正在席卷全球 , 已然成为各国各行 业新 的关注 进医学研究和医疗服务的发展。同时, 数据技术的研究。 2 0 1 2 年 由中国计算机学会( c c F ) 成立的“ 大数据技术 点。 发展战略报告” 撰写公开了 2 0 1 3 、 2 0 1 4 、 2 0 1 5年度版“ 中国大数据技术 1什 么是 大数 据 。2 0 1 3 年以来, 国家 自然科学基金 、 核高基、 8 6 3 等 对于大数据, 至今并没有明确的定义。其概念首次出现在 1 9 8 0年 与产业发展 白皮书” 阿尔文 ・ 托夫勒的叙述 中, 他认为大数据不久会成为 “ 第三次浪潮 的华 重大研究i 十 划都已经将大数据研究当成重点资金支持对象。 2 . 2大数据的应用 。大数据技术 已经应用于各个行业各个领域 , 政 彩乐章” 目 。美国高德纳( G a r t n e r ) 公司2 0 0 1 年将大数据概括为 3 V, 即数 据量大( V o  ̄me ) 、 数据格式多样化( V a r i e t y ) 与处理数据速度 [  ̄( V e l o c i — 府 、 跨国企业、 产业巨头等都依托大数据技术进行科学的分析决策。近 美 国依靠大数据技术不断强化政府作用 。美国政府 d a t a . g o v 网站 t y ) 。2 0 1 1 年国际数据公司( I D C , I n t e na r t i o n l a D a t a C o r p o r a t i o n ) 将大数 些年 , 0 0 9年正式上线 , 包含了教育、 医疗等方面的资料, 民众可以通过网 据定义为 : 一种容量大到在获取 、 存储 、 管理、 分析方面远超传统数据库 于 2 监测 、 预防 软件 的数据集合 , 其特点是规模大 、 数据流转速度快 以及价值密度低 。 络进行浏览下载。美国国家税务局也充分利用大数据技术 , 这一新的论述将大数据从 3 V增加至 4 V, 即在原本规模 、 多样化与速度 和处理逃税避税等行为。 截至 2 0 1 4年 2 月, 美国国立卫生研究院( N I H) 在亚马逊 网络服务 性上增加 了价值( V a l u e ) , 较3 v得到了更广泛的认同。此外, 美国国家 标准与技术研究院( N I S T ) 将大数据做 了以下描述 : “ 大数据是用于呈现 中心已经积累了数以百万亿字节的人类遗传变异数据,借此科学家能 而无需通过 自身去计算 , 节省 了大量时间, 提高了工 网络中信 息泛滥现象的普通用语。大量数据资源为解决 以前不可能解 够对其进行分析, 作效率 。 社交网络公司 T w i t t e r 和 F a c e b o o k利用大数据技术分析用户的 决的问题阱涞 了可能性 。” 兴趣爱好 、 消费习惯以及人 口统计特征 , 为用户提供无比贴 大数 据到底有多大? 目前通行说法 , “ 大数据”至少要达到 P B 人脉关系、 生化内容 , 以及无与伦 比的综合体验 。同时 , 广告商企业还通过 ( 1 P B = I O 0 0 T B 。 1 T B = 1 0 0 0 G B ) 量级 , 约为 2 5 0 0 0 0 张容量为 4 G B的 D V D 合 的个 『 w i t t e r 和F a c e b o o k 上收集的社交信息, 定位不 同消费群体 , 提供差 光盘 , 每天看一张大约需要 6 8 0 年。 在信息化时代 , 我们每个 人 都在生 从 T 在金融 、 体育 、 制造 、 天 产数据: 浏览网页 、 打电话 、 拍照 、 购物 ……我们很难统计全球 电子设备 异化服务。大数据不仅深刻的影响着上述领域 , 娱乐 、 物流等各个领域均发挥着重要的应用价值。 存储的数据到底有多少。G o o g l e 每秒要处理 6 3 0 0 0次搜索, 每年超过 2 气 、
相关文档
最新文档