边值问题与有限差分法

边值问题与有限差分法
边值问题与有限差分法

有限差分法

利用有限差分法分析电磁场边界问题 在一个电磁系统中,电场和磁场的计算对于完成该系统的有效设计师极端重要的。例如,在系统中,用一种绝缘材料是导体相互隔离是,就要保证电场强度低于绝缘介质的击穿强度。在磁力开关中,所要求的磁场强弱,应能产生足够大的力来驱动开关。在发射系统中进行天线的有效设计时,关于天线周围介质中电磁场分布的知识显然有实质性的意义。 为了分析电磁场,我们可以从问题所涉及的数学公式入手。依据电磁系统的特性,拉普拉斯方程和泊松方程只能适合于描述静态和准静态(低频)运行条件下的情况。但是,在高频应用中,则必须在时域或频域中求解波动方程,以做到准确地预测电场和磁场,在任何情况下,满足边界条件的一个或多个偏微分方程的解,因此,计算电池系统内部和周围的电场和磁场都是必要的。 对电磁场理论而言,计算电磁场可以为其研究提供进行复杂的数值及解析运算的方法,手段和计算结果;而电磁场理论则为计算电磁场问题提供了电磁规律,数学方程,进而验证计算结果。常用的计算电磁场边值问题的方法主要有两大类,其每一类又包含若干种方法,第一类是解析法;第二类是数值法。对于那些具有最简单的边界条件和几何形状规则的(如矩形、圆形等)问题,可用分离变量法和镜像法求电磁场边值问题的解析解(精确解),但是在许多实际问题中往往由于边界条件过于复杂而无法求得解析解。在这种情况下,一般借助于数值法求解电磁场的数值解。 有限差分法,微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散点构成的网络来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。 差分运算的基本概念: 有限差分法是指用差分来近似取代微分,从而将微分方程离散成为差分方程组。于是求解边值问题即转换成为求解矩阵方程[5]。 对单元函数 ()x f而言,取变量x的一个增量x?=h,则函数()x f的增量可以表示为 ()x f? = ()h x f+-()x f 称为函数()x f 的差分或一阶差分。函数增量还经常表示为 ()x f? = ? ? ? ? ? + 2 h x f - ? ? ? ? ? - 2 h x f

笔记:线性常差分方程基本知识

本材料是关于线性常差分方程基本知识的笔记,参考了两个文献: 1、《差分方程》【日】福田武雄著穆鸿基译上海科学技术出版社1962年9月第一版 2、《常差分方程》王联、王慕秋著新疆大学出版社1991年2月第一版

目录 第一节差分 第二节和分 第三节对步长及定义域的约定 第四节阶乘多项式与差分 第五节Bernoulli多项式与差分 第六节几个公式,例题 第七节n阶线性常差分方程的解的结构 第八节 Lagrange变易常数法 第九节解n阶常系数齐次线性方程的特征根方法 第十节常系数对称型线性方程的解 第十一节几种特殊常系数非齐次线性方程的解法

第一节 差分 定义1.1:设函数()x f 的定义域是D ,R D ?,R x ∈?,0≠?x ,D x ∈?有D x x ∈?+,定义算子?为 ()()()x f x x f x f -?+=? 称x ?是x 的变化步长,()x f ?是()x f 在x 处的步长为x ?的一阶差分、阶差、有限差;D x ∈,函数()x f ?称为D 上的差分函数,简称差分;算子?是步长为x ?的差分算子。定义为 ()()x x f x f ?+=E 称()x f E 是()x f 在x 处的步长为x ?的一阶位移;称函数()x f E 是D 上的位移函数,简称位移;算子E 是步长为x ?的位移算子。定义算子I 为 ()()x f x f =I 称算子I 为恒等算子。称函数 ()x x f ??是D 上的差商函数,简称差商。 约定算子?与算子E 的步长相等。 注1.1: 大写希腊字母?、E 、I 的小写形式是δ、ε、ι,其英文单词形式是delta /`delt ?/ 、epsilon /ep`sail ?n/ 、 iota /ai`?ut ?/ 。 若D x ∈?,有D x x ∈?+,则N n ∈?,有D x n x ∈?+。 定理1.1:算子?、E 、I 有以下关系: ①()()()()()x f x f x f x f I -E =I -E =?,即I -E =?。 ②()()()()()x f x f x f x f I +?=I +?=E ,即I +?=E 。 ③()()()()x f x f E ?=?E ,即?E =E?。 定理1.2:算子?、E 是线性算子。对R b a ∈,,函数()x f 与()x g ,有以下等式 ()()()()()x g b x f a x bg x af ?+?=+? ()()()()()x g b x f a x bg x af E +E =+E 定义1.2:设N n ∈,作递推定义 ()()()x f x f x f =I =?0,()()() x f x f n n ??=?+1

第二章计算流体力学的基本知识

第二章计算流体力学的基本知识 流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。 2.1计算流体力学简介 2.1.1计算流体力学的发展 流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20 世纪30~40 年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943 年一直算到1947 年。 数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学" 。 从20 世纪60 年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。 自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解读解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解读解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力

数学实验“微分方程组边值问题数值算法(打靶法,有限差分法)”实验报告(内含matlab程序)

西京学数学软件实验任务书

实验二十七实验报告 一、实验名称:微分方程组边值问题数值算法(打靶法,有限差分法)。 二、实验目的:进一步熟悉微分方程组边值问题数值算法(打靶法,有限差分法)。 三、实验要求:运用Matlab/C/C++/Java/Maple/Mathematica 等其中一种语言完成程序设计。 四、实验原理: 1.打靶法: 对于线性边值问题 ?? ?==∈=+'+''β α)(,)(] ,[) ()()(b y a y b a x x f y x q y x p y (1) 假设L 是一个微分算子使:()()Ly y p x y q x y '''=++ 则可得到两个微分方程: )(1x f Ly =,α=)(1a y ,0)(1 ='a y ?)()()(111 x f y x q y x p y =+'+'',α=)(1a y ,0)(1='a y (2) 02=Ly ,0)(2=a y ,1)(2 ='a y ?0)()(222 =+'+''y x q y x p y ,0)(2=a y ,1)(2='a y (3) 方程(2),(3)是两个二阶初值问题.假设1y 是问题(2)

的解,2y 是问题(3)的解,且2()0y b ≠,则线性边值问题(1)的解为:1122() ()()()() y b y x y x y x y b β-=+ 。 2.有限差分法: 基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似, 积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组 , 解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。 五、实验内容: %线性打靶法 function [k,X,Y,wucha,P]=xxdb(dydx1,dydx2,a,b,alpha,beta,h) n=fix((b-a)/h); X=zeros(n+1,1); CT1=[alpha,0]; Y=zeros(n+1,length(CT1)); Y1=zeros(n+1,length(CT1)); Y2=zeros(n+1,length(CT1)); X=a:h:b; Y1(1,:)= CT1; CT2=[0,1];Y2(1,:)= CT2; for k=1:n k1=feval(dydx1,X(k),Y1(k,:)) x2=X(k)+h/2;y2=Y1(k,:)'+k1*h/2;

两点边值问题的有限差分法

学生实验报告 实验课程名称偏微分方程数值解 开课实验室数统学院 学院数统年级2013 专业班信计2班学生姓名学号 开课时间2015 至2016 学年第 2 学期

数学与统计学院制 开课学院、实验室:数统学院实验时间:2016年月日

[]0max N i i c i N e u u <<=-,[]1 2 1 N N i i i e h u u -== -∑及收敛阶 ( )2ln ln 2 N N e e ,将计算结果填入 第五部分的表格,并对表格中的结果进行解释? 4. 将数值解和精确解画图显示,每种网格上的解画在一张图。 三.实验原理、方法(算法)、步骤 1. 差分格式: =-1/h^2(-( ) + )+ ( )/2h+ = A, 2. 局部阶段误差: (u)=O(h^2) 3.程序 clear all N=10; a=0;b=1; p=@(x) 1; r=@(x) 2; q=@(x) 3; alpha=0;beta=1; f=@(x) (4*x^2-2)*exp(x-1); h=(b-a)/N; H=zeros(N-1,N-1);g=zeros(N-1,1); % for i=1 H(i,i)=2*(p(a+(i+1/2)*h)+p(a+(i-1/2)*h))/h+2*h*q(a+i*h); H(i,i+1)=-(2*p(a+(i+1/2)*h)/h-r(a+i*h)); g(i)=2*h*f(a+i*h)+(2*p(a+(i-1/2)*h)/h+r(a+i*h))*alpha; end

五.实验结果及实例分析 N N c e 收敛阶 N e 收敛阶 10 0.00104256 …… 0.00073524 …… 20 0.00026168 1.9341 0.00018348 1.4530 40 0.00006541 2.0001 0.00004585 2.0000 80 0.00001636 1.9993 0.00001146 2.0000 160 0.00000409 2.0000 0.00000287 2.0000 N 越大 只会使绝对误差变小,方法没变,所以收敛阶一致。 图示为:(绿线为解析解,蓝线为计算解) N=10 N=20

有限差分法解微分方程两点边值问题

使用有限差分方法解边值问题: 由两点边值问题的一般形式: 根据差分方程: 当网格划分均匀,即有,化简差分方程: 代入再次化简: 用方程组展开写成矩阵形式: MATLAB编程:

运行后算出的结果:0 0.00376645934479969 0.00752341210586145 0.0112613555020809 0.0149707943560995 0.0186422448923756 0.0222662385306948 0.0258333256736017 0.0293340794862392 0.0327590996670822 0.0360990162080584 0.0393444931425513 0.0424862322797872 0.0455149769241112 0.0484215155776656 0.0511966856249889 0.0538313769980622 0.0563165358203363 0.0586431680282822 0.0608023429690169

0.0627851969725639 0.0645829368973219 0.0661868436473210 0.0675882756598612 0.0687786723621374 0.0697495575954688 0.0704925430057619 0.0709993313988528 0.0712617200593841 0.0712716040318917 0.0710209793627865 0.0705019463019362 0.0697067124625652 0.0686275959382091 0.0672570283754778 0.0655875580013963 0.0636118526041142 0.0613227024657904 0.0587130232464804 0.0557758588178718 0.0525043840457360 0.0488919075199819 0.0449318742312199 0.0406178681927653 0.0359436150070336 0.0309029843752992 0.0254899925498146 0.0196988047273101 0.0135237373829146 0.00695926054356603 0 与精确解比较:

两点边值问题的有限差分法

盛年不重来,一日难再晨。及时宜自勉,岁月不待人 盛年不重来,一日难再晨。及时宜自勉,岁月不待人 盛年不重来,一日难再晨。及时宜自勉,岁月不待人 学生实验报告 实验课程名称偏微分方程数值解 _________________ 开课实验室___________ 数统学院 ____________________ 学院数统年级2013专业班信计2班 学生姓名_________ 学号________ 开课时间2015至2016学年第2 学期

数学与统计学院制 .实验内容 考虑如下的初值问题: 定常数。 部分。 0, b 1 , p 3,r 1,q 2 , 0 , 1,问题(1)的精确解 ux x 2e x 1 , 及p 1,r 2,q 3带入方程(1)可得f x 。分别取 并能通过计算机语言编程实现。 .实验目的 通过该实验,要求学生掌握求解两点问题的有限差分法, 开课学院、实验室: 数统学院 实验时间:2016年 月 日 Lu d du x —p x ------------ dx dx du x dx q f x , x a, b (1) 其中 p x C 1 a,b , x ,q a,b P min 0 , q x 0 ,,是给 将区间N 等分, 网点x 1.在第三部分写出问题( 1)和 (2)的差分格式,并给出该格式的局部截断 2.根据你写出的差分格式, 编写一个有限差分法程序。将所写程序放到第四 3.给定参数a 其中将u x

N 10,20,40,80,160 ,用所编写的程序计算问题 (1)和⑵。将数值解记为 5 , i 1,...,N 1,网点处精确解记为i 1,…,N 1。然后计算相应的误差 1 l N /I 2 Nil h u i U i 2及收敛阶 n e : e 11,将计算结果填入 I i In 2 第五部分的表格,并对表格中的结果进行解释? 4.将数值解和精确解画图显示,每种网格上的解画在一张图。 三?实验原理、方法(算法)、步骤 1. 差分格式: L L .i=-1/h A 2O |] (% 曲汀—):i.「)/2h+w = 応=A,匕 2. 局部阶段误差: n (u)=O(hA2) 3. 程序 clear all N=10; a=0;b=1; P=@(x) 1; r=@(x) 2; q=@(x) 3; aIpha=0;beta=1; f=@(x) (4*xA2-2)*exp(x-1); h=(b-a)/N; H=zeros(N-1,N-1);g=zeros(N-1,1); % for i=1 H(i,i)=2*(p(a+(i+1/2)*h)+p(a+(i-1/2)*h))/h+2*h*q(a+i*h); max u i c 0 i N i i U i N e

差分方程的基本知识(3)

差分方程模型的理论和方法 1、差分方程:差分方程反映的是关于离散变量的取值与变化规律。通过建立一个或几个离散变量取值所满足的平衡关系,从而建立差分方程。 差分方程就是针对要解决的目标,引入系统或过程中的离散变量,根据实际背景的规律、性质、平衡关系,建立离散变量所满足的平衡关系等式,从而建立差分方程。通过求出和分析方程的解,或者分析得到方程解的特别性质(平衡性、稳定性、渐近性、振动性、周期性等),从而把握这个离散变量的变化过程的规律,进一步再结合其他分析,得到原问题的解。 2、应用:差分方程模型有着广泛的应用。实际上,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个差分方程模型。差分方程模型有着非常广泛的实际背景。在经济金融保险领域、生物种群的数量结构规律分析、疾病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的作用。可以这样讲,只要牵涉到关于变量的规律、性质,就可以适当地用差分方程模型来表现与分析求解。 3、差分方程建模:在实际建立差分方程模型时,往往要将变化过程进行划分,划分成若干时段,根据要解决问题的目标,对每个时段引入相应的变量或向量,然后通过适当假设,根据事物系统的实际变化规律和数量相互关系,建立每两个相邻时段或几个相邻时段或者相隔某几个时段的量之间的变化规律和运算关系(即用相应设定的变量进行四则运算或基本初等函数运算或取最运算等)等式(可以多个并且应当充分全面反映所有可能的关系),从而建立起差分方程。或者对事物系统进行划分,划分成若干子系统,在每个子系统中引入恰当的变量或向量,然后分析建立起子过程间的这种量的关系等式,从而建立起差分方程。在这里,过程时段或子系统的划分方式是非常非常重要的,应当结合已有的信息和分析条件,从多种可选方式中挑选易于分析、针对性强的划分,同时,对划分后的时段或子过程,引入哪些变量或向量都是至关重要的,要仔细分析、选择,尽量扩大对过程或系统的数量感知范围,包括对已有的、已知的若干量进行结合运算、取最运算等处理方式,目的是建立起简洁、深刻、易于求解分析的差分方程。在后面我们所举的实际例子中,这方面的内容应当重点体会。

有限差分法

有限差分法 有限差分法有限差分法 finite difference method 微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散 点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函 数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似, 积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差 分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便 可以从离散解得到定解问题在整个区域上的近似解。 有限差分法的主要内容包括:如何根据问题的特点将定解区域作网格剖分;如何把原 微分方程离散化为差分方程组以及如何解此代数方程组。此外为了保证计算过程的可行和 计算结果的正确,还需从理论上分析差分方程组的性态,包括解的唯一性、存在性和差分 格式的相容性、收敛性和稳定性。对于一个微分方程建立的各种差分格式,为了有实用意义,一个基本要求是它们能够任意逼近微分方程,这就是相容性要求。另外,一个差分格 式是否有用,最终要看差分方程的精确解能否任意逼近微分方程的解,这就是收敛性的概念。此外,还有一个重要的概念必须考虑,即差分格式的稳定性。因为差分格式的计算过 程是逐层推进的,在计算第n+1层的近似值时要用到第n层的近似值,直到与初始值有关。前面各层若有舍入误差,必然影响到后面各层的值,如果误差的影响越来越大,以致 差分格式的精确解的面貌完全被掩盖,这种格式是不稳定的,相反如果误差的传播是可以 控制的,就认为格式是稳定的。只有在这种情形,差分格式在实际计算中的近似解才可能 任意逼近差分方程的精确解。关于差分格式的构造一般有以下3种方法。最常用的方法是 数值微分法,比如用差商代替微商等。另一方法叫积分插值法,因为在实际问题中得出的 微分方程常常反映物理上的某种守恒原理,一般可以通过积分形式来表示。此外还可以用 待定系数法构造一些精度较高的差分格式。 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法 将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor 级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从 而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数 问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分 的空间形式来考虑,可分为中心格式和逆风格式。 考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目 前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分 方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。

金融工程期末复习题知识讲解

金融工程期末复习题

一、简述题(30分) 1.金融工程包括哪些主要内容? 答:产品与解决方案设计,准确定价与风险管理是金融工程的主要内容 P3 2.金融工程的工具都有哪些? 答:基础证券(主要包括股票和债券)和金融衍生产品(远期,期货,互换和期权)P4 3.无套利定价方法有哪些主要特征? 答:a.套利活动在无风险的状态下进行 b.无套利的关键技术是“复制”技术 c.无风险的套利活动从初始现金流看是零投资组合,即开始时套利者不需要 任何资金的投入,在投资期间也不需要任何的维持成本。P16 4.衍生证券定价的基本假设为何? 答:(1)市场不存在摩擦 (2)市场参与者不承担对手风险 (3)市场是完全竞争的 (4)市场参与者厌恶风险,且希望财富越多越好 (5)市场不存在无风险套利机会 P20 5.请解释远期与期货的基本区别。 答:a.交易场所不同 b.标准化程度不同 c.违约风险不同 d.合约双方关系不同 e.价格确定方式不同 f.结算方式不同 g.结清方式不同 P44 6.金融互换的主要有哪些种类? 答:利率互换与货币互换和其它互换(交叉货币利率互换、基点互换、零息互换、后期确定互换、差额互换、远期互换、股票互换等等)P104 7.二叉树定价方法的基本原理是什么? 答:二叉树图方法用离散的模型模拟资产价格的连续运动,利用均值和方差匹配来确定相关参数,然后从二叉树图的末端开始倒推可以计算出期权价格。P214 8.简要说明股票期权与权证的差别。 答:股本权证与备兑权证的差别主要在于: (1)有无发行环节; (2)有无数量限制; (3)是否影响总股本。 股票期权与股本权证的区别主要在于: (1)有无发行环节 (2)有无数量限制。P162 9.影响期权价格的因素主要有哪些?它们对欧式看涨期权有何影响? 答: 1)标的资产的市场价格(+) 2)期权的协议价格(—) 3)期权的有效期(?) 4)标的资产价格的波动率(+) 5)无风险利率(+) 6)标的资产收益(—)

实验一用有限差分法解静电场边值问题

用有限差分法解静电场边值问题 一、目的 1.掌握有限差分法的原理与计算步骤; 2.理解并掌握求解差分方程组的超松弛迭代法,分析加速收敛因子α的作用; 3.学会用有限差分法解简单的二维静电场边值问题,并编制计算程序。 二、方法原理 有限差分法是数值计算中应用得最早而又相当简单、直观的一种方法。应用有限差分法通常所采取的步骤是: ⑴ 采用一定的网格分割方式离散化场域。 ⑵ 进行差分离散化处理。用离散的、只含有限个未知数的差分方程组,来近似代替场域内具有连续变量的偏微分方程以及边界上的边界条件(也包括场域内不同媒质分界面上的衔接条件)。 ⑶ 结合选定的代数方程组的解法,编制计算机程序,求解由上面所得对应于待求边值问题的差分方程组,所得解答即为该边值问题的数值解。 现在,以静电场边值问题 ?????==??+??) 2( ) ()1(02 2 22s f D y x L ? ? ?中 在 为例,说明有限差分法的应用。f (s )为边界点s 的点函数,二位场域D 和边界L 示于图5.1-1中。 x 图5.1-1 有限差分的网格分割 1. 离散化场域 应用有限差分法时,首先需从网格划分着手决定离散点的分布方式。通常采用完全有规律的方式,这样在每个离散点上可得出相同形式的差分方程,有效地提高解题速度。如图5.1-1所示,现采用分别与x ,y 轴平行的等距(步距为h )网格线把场域D 分割成足够多的正方形网格。各个正方形的顶点(也即网格线的交点)称为网格的结点。这样,对于场域内典型的内结点0,它与周围相邻的结点1、2、3和4构成一个所谓对称的星形。 2.差分格式 造好网格后,需把上述静电场边值问题中的拉普拉斯方程(1)式离散化。设结点0上的电位值为?0。结点1、2、3和4上的电位值相应为?1、?2、?3和?4,则基于差分原理的应用,拉普拉斯方程(1)式在结点0处可近似表达为

有限差分法

有限差分法有限差分法 finite difference method 微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。 有限差分法的主要内容包括:如何根据问题的特点将定解区域作网格剖分;如何把原微分方程离散化为差分方程组以及如何解此代数方程组。此外为了保证计算过程的可行和计算结果的正确,还需从理论上分析差分方程组的性态,包括解的唯一性、存在性和差分格式的相容性、收敛性和稳定性。对于一个微分方程建立的各种差分格式,为了有实用意义,一个基本要求是它们能够任意逼近微分方程,这就是相容性要求。另外,一个差分格式是否有用,最终要看差分方程的精确解能否任意逼近微分方程的解,这就是收敛性的概念。此外,还有一个重要的概念必须考虑,即差分格式的稳定性。因为差分格式的计算过程是逐层推进的,在计算第n+1层的近似值时要用到第n层的近似值,直到与初始值有关。前面各层若有舍入误差,必然影响到后面各层的值,如果误差的影响越来越大,以致差分格式的精确解的面貌完全被掩盖,这种格式是不稳定的,相反如果误差的传播是可以控制的,就认为格式是稳定的。只有在这种情形,差分格式在实际计算中的近似解才可能任意逼近差分方程的精确解。关于差分格式的构造一般有以下3种方法。最常用的方法是数值微分法,比如用差商代替微商等。另一方法叫积分插值法,因为在实际问题中得出的微分方程常常反映物理上的某种守恒原理,一般可以通过积分形式来表示。此外还可以用待定系数法构造一些精度较高的差分格式。 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛

FLAC3D基础知识介绍解析

FLAC 3D基础知识介绍 一、概述 FLAC(Fast Lagrangian Analysis of Continua)由美国Itasca公司开发的。目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的基本内存64K),所以,程序求解的最大结点数仅限于2000个以内。1995年,FLAC2D已升级为V3.3的版本,其程序能够使用护展内存。因此,大大发护展了计算规模。FLAC3D是一个三维有限差分程序,目前已发展到V3.0版本。 FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令(集)文件,类似于批处理,由文件来驱动。因此,采用FLAC程序进行计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。 FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。调整三维网格中的多面体单元来拟合实际的结构。单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发生变形和移动(大变形模式)。FLAC3D采用的显式拉格朗日算法和混合-离散分区技术,能够非常准确的模拟材料的塑性破坏和流动。由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围

的三维问题。 三维快速拉格朗日法是一种基于三维显式有限差分法的数值分析方法,它可以模拟岩土或其他材料的三维力学行为。三维快速拉格朗日分析将计算区域划分为若干四面体单元,每个单元在给定的边界条件下遵循指定的线性或非线性本构关系,如果单元应力使得材料屈服或产生塑性流动,则单元网格可以随着材料的变形而变形,这就是所谓的拉格朗日算法,这种算法非常适合于模拟大变形问题。三维快速拉格朗日分析采用了显式有限差分格式来求解场的控制微分方程,并应用了混合单元离散模型,可以准确地模拟材料的屈服、塑性流动、软化直至大变形,尤其在材料的弹塑性分析、大变形分析以及模拟施工过程等领域有其独到的优点。 FLAC-3D(Three Dimensional Fast Lagrangian Analysis of Continua)是美国Itasca Consulting Goup lnc开发的三维快速拉格朗日分析程序,该程序能较好地模拟地质材料在达到强度极限或屈服极限时发生的破坏或塑性流动的力学行为,特别适用于分析渐进破坏和失稳以及模拟大变形。它包含10种弹塑性材料本构模型,有静力、动力、蠕变、渗流、温度五种计算模式,各种模式间可以互相藕合,可以模拟多种结构形式,如岩体、土体或其他材料实体,梁、锚元、桩、壳以及人工结构如支护、衬砌、锚索、岩栓、土工织物、摩擦桩、板桩、界面单元等,可以模拟复杂的岩土工程或力学问题。 FLAC3D采用ANSI C++语言编写的。 二、FLAC3D的优点与不足

常微分方程与差分方程知识点

常微分方程与差分方程知识点 考试纲要 常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程 微分方程的简单应用 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 考试要求 1、了解微分方程及其阶、解、通解、初始条件和特解等概念 2、掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法 3、会解二阶常系数齐次线性微分方程 4、了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程 5、了解差分与差分方程及其通解与特解等概念 6、了解一阶常系数线性差分方程的求解方法 7、会用微分方程求解简单的经济应用问题 重要知识点 1、微分方程通解中任意常数的个数与微分方程的阶数相同 2、变量可分离微分方程解法 g(y)dy f (x)dxg(y)dy f(x)dx G(y) F(x) C 3、齐次微分方程解法 dy(y)T殳u y- dU dx T再用y代替u dx x x (u) u x x 附:可化为齐次的方程 c C| 0,可化为齐次微分方程 a b . . a1 bi dy ax by c dx ax by c c或c o a b a b x X h 0,设h,带入原方程解出h,k,可化为齐次微分方程y Y k 设印b,dy ax by c ,令ax a b dx (ax by) c 则可化为史的变量可分离微分方程 dx by v, 0,

7、二阶常系数非齐次线性微分方程的解法 齐次方程y t 1 ay t 0的通解为y t C a ,其中C 是一个任意常数。 若给定初始条件y 0 C o ,则y 0 C 0 a t 即为满足该初始条件的特解。 对于非齐次方程 y t 1 ay t f (t),其通解也是非齐次方程的一个特解 y t*与对应齐次方程通解之和。即: ? t y t y t C a 。

《工程电磁场》复习题知识讲解

《工程电磁场》复习 题

《工程电磁场》复习题 一.问答题 1.什么是静电场?写出其基本方程并由此总结静电场的特点。 由静止电荷在其周围产生的电场。F=q1*q2/4pi*R*R*e0 静电场不随时间变化2. 什么是恒定电场?写出其基本方程并由此总结静电场的特点。 恒定电流产生的电场。 3. 什么是恒定磁场?写出其基本方程并由此总结静电场的特点。 磁场强度和方向保持不变的磁场。 4. 如果区域中某点的电场强度为零,能否说明该点的电位也为零?为什么? 电场强度E是一个随空间点位置不同而变化的矢量函数,仅与该点的电场有关。a,b为两个电荷相等的正反电荷,在其中心点处电位为零,但场强不为零。 5. 如果区域中某点的电位为零,能否说明该点的电场强度也为零?举例说明?不能。a,b为两个相等正电荷,在其中心点处电场强度为零,但电位不为零。6.静电场的电力线会闭合的吗?恒定电场的电力线会闭合的吗?为什么? 静电场的电力线不会闭合,起于正电荷止于负电荷。在变化的磁场产生的有旋电场中,电力线环形闭合,围绕着变化磁场。 7. 写出两种不同媒质分界面上恒定电场与恒定磁场的边界衔接条件。 恒定电场的边界衔接条件J*dS=0 E*dl=0 恒定磁场的边界衔接条件B*dS=0 H*dl=I 8. 什么是矢量磁位A? 什么是磁感应强度B? B=0 B=*A(*A)=0, 矢量磁位A是一个辅助性矢量。磁感应强度B是描述磁场强弱和方向的基本物理量

9. 什么是磁导率? 什么是介电常数? 表示磁介质磁性的物理量。介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场比值即为介电常数。 10. 导电媒质中恒定电场与静电场之间具有什么相似关系? 二.填空题 1.静止电荷产生的电场,称之为_静电场__________场。它的特点是有散无 旋场,不随时间变化。 2.高斯定律说明静电场是一个有散场。 3.安培环路定律说明磁场是一个有旋场。 4.电流密度是一个矢量,它的方向与导体中某点的正电荷的运动方向相 同。 5.在两种不同导电媒质的分界面上,磁感应强度的法向分量越过分界面时 连续,电场强度的切向分量连续。 6.磁通连续性原理说明磁场是一个无散场。 7.安培环路定律则说明磁场是一个有旋场。 6. 矢量磁位A的旋度为,它的散度等于。 7. 矢量磁位A满足的方程是。 8.恒定电场是一种无散和无旋的场。 9.在恒定电流的周围,同时存在着恒定电场和恒定磁场。 10.两个点电荷之间的作用力大小与两点电荷电量之积成正比关系。 三. 判断题 1. 静电场是一种有(散度)源和无(旋度)源的场(对)

(完整版)二阶常微分方程边值问题的数值解法毕业论文

二阶常微分方程边值问题的数值解法 摘要 求解微分方程数值解的方法是多种多样的,它本身已形成一个独立的研究方向,其要点是对微分方程定解问题进行离散化.本文以研究二阶常微分方程边值问题的数值解法为目标,综合所学相关知识和二阶常微分方程的相关理论,通过对此类方程的数值解法的研究,系统的复习并进一步加深对二阶常微分方成的数值解法的理解,为下一步更加深入的学习和研究奠定基础. 对于二阶常微分方程的边值问题,我们总结了两种常用的数值方法:打靶法和有限差分法.在本文中我们主要探讨关于有限差分法的数值解法.构造差分格式主要有两种途径:基于数值积分的构造方法和基于Taylor展开的构造方法.后一种更为灵活,它在构造差分格式的同时还可以得到关于截断误差的估计.在本文中对差分方法列出了详细的计算步骤和Matlab

程序代码,通过具体的算例对这种方法的优缺点进行了细致的比较.在第一章中,本文将系统地介绍二阶常微分方程和差分法的一些背景材料.在第二章中,本文将通过Taylor展开分别求得二阶常微分方程边值问题数值解的差分格式.在第三章中,在第二章的基础上利用Matlab求解具体算例,并进行误差分析. 关键词:常微分方程,边值问题,差分法,Taylor展开,数值解

The Numerical Solutions of Second-Order Ordinary Differential Equations with the Boundary Value Problems ABSTRACT The numerical solutions for solving differential equations are various. It formed an independent research branch. The key point is the discretization of the definite solution problems of differential equations. The goal of this paper is the numerical methods for solving second-order ordinary differential equations with the boundary value problems. This paper introduces the mathematics knowledge with the theory of finite difference. Through solving the problems, reviewing what have been learned systematically and understanding the ideas and methods of the finite difference method in a deeper layer, we can establish a foundation for the future learning.

弹性力学基础知识归纳

一.填空题 1.最小势能原理等价于平衡微分方程和应力边界条件 2.一组可能的应力分量应满足平衡微分方程和相容方程。二.简答题 1.简述圣维南原理并说明它在弹性力学中的作用。 如果把物体一小部分边界上的面力变换为分布不同但是静力等效的面力(主矢和主矩相同),则近处的应力分布将有显著改变,远处所受的影响则忽略不计。 作用;(1)将次要边界上复杂的集中力或者力偶变换成为简单的分布的面力。 (2)将次要的位移边界条件做应力边界条件处理。 2.写出弹性力学的平面问题的基本方程。应用这些方程时,应注意什么问题? (1).平衡微分方程:决定应力分量的问题是超静定的。 (2).物理方程:平面应力问题和应变问题的物理方程是不一样的,注意转换。 (3).几何方程:注意物体的位移分量完全确定时,形变分量也完全确定。但是形变分量完全确定时,位移分量不完全确定。 3.按照边界条件的不同,弹性力学分为哪几类边界问题? 应力边界条件,位移边界条件和混合边界条件。 4.弹性体任意一点的应力状态由几个分量决定?如何确定他们的正负号?

由六个分量决定。在确定方向的时候,正面上的应力沿正方向为正,负方向为负。负面上的应力沿负方向为正,正方向为负。 5.什么叫平面应力问题和平面应变问题?举出工程实例。平面应力问题是指很薄的等厚度薄板只在板边上受平行于板面并且不沿厚度变化的面力,同时体力也平行于板面并且不沿厚度变化。例如工程中的深梁和平板坝的平板支墩。平面应变问题是指很长的柱形体,它的横截面在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也不沿长度变化。例如 6.弹性力学中的基本假定有哪几个?什么是理想弹性体?举例说明。 (1)完全弹性假定。 (2)均匀性假定。 (3)连续性假定。 (4)各向同性假定。 (5)小变形假定。 满足完全弹性假定,均匀性假定,连续性假定和各向同性假定的是理想弹性体。一般混凝土构件和一般土质地基可以看做为理想弹性体。 7.什么是差分法?写出基本差分公式? 差分法是把基本方程和边界条件近似地看改用差分方程(代

第一类边界问题的有限差分法探讨

第一类边界问题的有限差分法探讨 摘要:本次重点是对于第一类边界问题的两种不同方法的对比研讨,通过计算机仿真有限差分法和计算分离变量法对同一问题的求解,对结果进行对比,能够发现有限差分法更加快捷简便,只要迭代次数足够多就能使误差趋于零。而分离变量法则是准确的计算出结果,只是运算相对复杂。 关键字:有限差分法,分离变量法,加速收敛因子,迭代次数,边界条件。 引言:在给定的三类边界条件①下求解标量位或矢量位的泊松方程或拉普拉斯方程的解一般的理论依据是唯一性定理和得加原理,由此而得出的解题方法有很多。主要分为两大类:一是解析法(如分离变量法,镜像法②等),二是数值法(如有限差分法,有限元法③等)。这两种方法各有优点和不足④,相比较而言在许多实际问题中由于边界条件过于复杂而无法求得解析解。这就需要借助于数值法来求电磁场的数值解。有限差分法便是一种比较容易的数值解法。本次研讨就以第一类边界问题进行为例来分析研究有限差分法。 一、有限差分法的定义: 微分方程和积分微分方程数值解的方法为有限差分法。基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和

定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。二、有限差分法解题的基本步骤: (1)、区域离散化,即把所给偏微分方程的求解区域细分成由有限个格点组成的网格; (2)、近似替代,即采用有限差分公式替代每一个格点的导数;(3)、逼近求解。换而言之,这一过程可以看作是用一个插值多项式及其微分来代替偏微分方程的解的过程。 三、有限差分法公式的推导: 把求解的区域划分成网格,把求解区域内连续的场分布用 网络节点上的离散的数值解来代替。网格划分的充分细,才能 够达到足够的精度。应用有限差分法计算静态场边值问题时, 需要把微分方程用差分方程替代。 用图形法解释如下:

相关文档
最新文档