北京四中数学必修四同角三角函数的基本关系式提高版

北京四中数学必修四同角三角函数的基本关系式提高版
北京四中数学必修四同角三角函数的基本关系式提高版

同角三角函数基本关系

编稿:丁会敏 审稿:王静伟

【学习目标】

1.借助单位圆,理解同角三角函数的基本关系式: αα

α

ααtan cos sin ,

1cos sin

22

==+,掌握已知一个角的三角函数值求其他三角函数值的方法;

2.会运用同角三角函数之间的关系求三角函数值、化简三角式或证明三角恒等式。 【要点梳理】

要点一:同角三角函数的基本关系式 (1)平方关系:2

2

sin cos 1αα+= (2)商数关系:

sin tan cos α

αα

= (3)倒数关系:tan cot 1?=αα,sin csc 1αα?=,cos sec 1αα?= 要点诠释:

(1)这里“同角”有两层含义,一是“角相同”,二是对“任意”一个角(使得函数有意义的前提下)关系式都成立;

(2)2

sin α是2

(sin )α的简写;

(3)在应用平方关系时,常用到平方根,算术平方根和绝对值的概念,应注意“±”的选取。

要点二:同角三角函数基本关系式的变形 1.平方关系式的变形:

2222sin 1cos cos 1sin αααα=-=-,,212sin cos (sin cos )αααα±?=±

2.商数关系式的变形

sin sin cos tan cos tan α

ααααα

=?=

,。 【典型例题】

类型一:已知某个三角函数值求其余的三角函数值 例1.已知tan α=-2,求sin α,cos α的值。

【思路点拨】先利用sin "tan 2"cos α

αα

=

=-,求出sin α=-2cos α,然后结合sin 2α+cos 2α=1,求出sin α,cos α。

【解析】 解法一:∵tan α=-2,∴sin α=-2cos α。 ① 又sin 2α+cos 2α=1, ②

由①②消去sin α得(-2cos α)2+cos 2α=1,即2

1cos 5

α=

当α为第二象限角时,cos α=,代入①得sin α=。

当α为第四象限角时,cos 5α=

,代入①得sin 5

α=-。 解法二:∵tan α=-2<0,∴α为第二或第四象限角。

又由sin tan cos ααα

=,平方得22

2sin tan cos ααα=。

∴22

22sin 1tan 11cos cos αααα+=+=,即2

2

1cos 1tan αα

=+。

当α为第二象限角时,cos α===。

sin tan cos (2)55ααα??=?=-?-= ? ???

当α为第四象限角时,cos 5

α=

==。

sin tan cos (2)55

ααα=?=-?

=-。 【总结升华】解答此类题目的关键在于充分借助已知角的三角函数值,缩小角的范围。在解答过程中如果角α所在象限已知,则另两个三角函数值结果唯一;若角α所在象限不确定,则应分类讨论,有两种结果,需特别注意:若已知三角函数值以字母a 给出,应就α所在象限讨论。 举一反三:

【变式1】已知A 是ABC ?的一个内角,且5

tan 4

A =-

,求sin ,cos .A A

【思路点拨】根据tan 0A <可得A 的范围:2

A π

π<<再结合同角三角函数的关系式

求解.

【解析】5

tan 0,4A A =-

<∴为钝角,sin 0,cos 0.A A ∴>< 由

sin tan ,

cos A

A A

=平方整理得

221cos ,cos ,411tan A A A =

∴==-+

sin tan cos A A A ∴=?=

例2.已知cos α=m (-1≤m ≤1),求sin α的值。

【解析】(1)当m=0时,角α的终边在y 轴上, ①当角α的终边在y 轴的正半轴上时,sin α=1; ②当角α的终边在y 轴的负半轴上时,sin α=-1。 (2)当m=±1时,角α的终边在x 轴上,此时,sin α=0。 (3)当|m|<1且m ≠0时, ∵sin 2α=1―cos 2α=1―m 2,

∴①当角α为第一象限角或第二象限角时,sin α=

②当角α为第三象限角或第四象限角时,sin α=

【总结升华】 当角α的范围不确定时,要对角的范围进行讨论,切记不要遗漏终边落在坐标轴上的情况。

类型二:利用同角关系求值

【高清课堂:同角三角函数关系公式 385948 例2】 例3.已知:tan cot 2,θθ+=求:

(1)sin cos ?θθ的值;(2)sin cos θθ+的值; (3)sin cos θθ-的值;(4)sin θ及cos θ的值

【思路点拨】同角三角函数基本关系是反映了各种三角函数之间的内在联系,为三角函数式的恒等变形提供了工具与方法。

【答案】(1)

1

2

(2)3)0(4

【解析】(1)由已知

sin cos 2cos sin θθ

θθ

+= 22sin cos 2sin cos θθ

θθ

+∴

= 1sin cos 2

θθ∴=

(2)

()

2

sin cos 12sin cos 112θθθθ+=+=+=

sin cos θθ∴+=(3)

()

2

sin cos 12sin cos 110θθθθ-=-=-=

sin cos 0θθ∴-=

(4

)由sin cos sin cos 0θθθθ?+=??-=??

sin cos 2θθ?

=??

?

?=

??

或sin cos 2

θθ?

=??

??

=-??

【总结升华】本题给出了sin cos ,sin cos θθθθ+-及sin cos θθ三者之间的关系,三者知一求二,在求解的过程中关键是利用了2

2

sin cos 1θθ+=这个隐含条件。

举一反三:

【变式1

】已知sin cos αα+=

,求下列各式的值: (1)2

2

1

tan tan αα

+

;(2)sin 3α+cos 3α。 【解析】

因为sin cos αα+=

所以2

2

1(sin cos )2αα+==,

所以1sin cos 4

αα?=-

。 (1)2

2

22

11sin 2cos 2tan tan 22tan tan sin cos αααααααα+????

+=+-=- ? ?????

2221

22141sin cos 16

αα

=

-=-=

2

3322sin cos (sin cos )(sin sin cos cos )αααααααα+=+-

+1148??=

+= ???

。 【总结升华】 对于已知sin α±cos α=m 型的问题,常有两种解法:一是两边平方,得±2sin αcos α=m 2-1,联立以上两个式子解出sin α,cos α的值,从而使问题得以解决;二是对所求式子进行变形,化为sin α±cos α,sin α·cos α的形式代入求解,解题时注意正、负号的讨论与确定。

例4.已知tan α=3,求下列各式的值。

(1)4sin cos 3sin 5cos αααα-+;(2)2222

sin 2sin cos cos 4cos 3sin αααααα---;(3)2231

sin cos 42

αα+。 【思路点拨】由已知可以求出sin ,cos αα,进而代入得解,但过程繁琐。在关于

sin ,cos αα“齐次”式中可以使用“弦化切”,转化成关于tan α的式子,然后利用已知求

解.

【解析】(1)原式的分子分母同除以cos α(cos α≠0)得,

原式4tan 143111

3tan 5354

αα-?-=

==+?+。

(2)原式的分子分母同除以cos 2α(cos 2α≠0)得,

原式222tan 2tan 192312

43tan 43323

ααα---?-===---?。

(3)用“1”来代换,

原式222222313131sin cos tan 929424242sin cos tan 19140

αααααα++?+

==

==+++。 【总结升华】 ①已知tan α的值,求关于sin α、cos α的齐次式的值问题①如(1)、(2)题,∵cos α≠0,所以可用cos n α(n ∈N*)除之,将被求式转化为关于tan α的表示式,可整体代入tan α=m 的值,从而完成被求式的求值;②在(3)题中,求形如a sin 2α+b sin αcos α+c cos 2α的值,注意将分母的1化为1=sin 2α+cos 2α代入,转化为关于tan α的表达式后再求值。

举一反三:

【变式1】(1)已知tan α=3,求sin 2α-3sin αcos α+1的值;

(2)已知

4sin 2cos 6

5cos 3sin 11

θθθθ-=+,求44cos sin θθ-的值。

【解析】(1)∵tan α=3,1=sin 2α+cos 2α,

∴原式2

2

2

sin 3sin cos (sin cos )ααααα=-?++

2222222sin 3sin cos cos 2tan 3tan 1

1sin cos 1tan ααααααααα

-?+-+=

==++。 (2)由

4sin 2cos 65cos 3sin 11θθθθ-=+,得4tan 26

53tan 11

θθ-=+,解得:tan 2θ=

∴4

4

2

2

2

2

cos sin (cos sin )(cos sin )θθθθθθ-=+-

2222

2

222cos sin 1tan 143

cos sin cos sin 1tan 145

θθθθθθθθ---=-====-+++。

类型三:利用同角关系化简三角函数式

例5.化简:4466

1cos sin 1cos sin αα

αα

----。 【解析】 解法一:原式224422366(cos sin )cos sin (cos sin )cos sin αααα

αααα+--=+--

222222

2cos sin 2

3cos sin (cos sin )3αααααα==+。 解法二:原式44661(cos sin )

1(cos sin )

αααα-+=-+

2222224224

1[(cos sin )2cos sin ]

1(cos sin )(cos cos sin sin )

αααααααααα-+-=-+-+ 22222222222112cos sin 2cos sin 2

1[(cos sin )3cos sin ]3cos sin 3αααααααααα-+=

==-+-。 解法三:原式2242246

(1cos )(1cos )sin (1cos )(1cos cos )sin ααα

αααα-+-=-++- 2222244sin (1cos sin )

sin (1cos cos sin )

ααααααα+-=++-

2222222cos 1cos (cos sin )(cos sin )

α

ααααα=+++-

2222222cos 2cos 2

1cos cos sin 3cos 3

αααααα=

==++-。 【总结升华】以上三种解法虽然思路不同,但是主要都是应用公式sin 2α+cos 2α=1,解法二和解法三都是顺用公式,而解法一则是逆用公式,三种解法中,解法一最为简单。这里,所谓逆用公式sin 2α+cos 2α=1,实质上就是“1”的一种三角代换:“1=sin 2α+cos 2α”,1的三角代换在三角函数式的恒等变形过程中有着广泛的应用。

举一反三: 【变式1】化简 (1

2,22k k k Z πθππ??

∈-∈ ???

(2

(3

(4

【答案】(1)-1(2)cos2sin 2--(3)略(4)略

【解析】(1)原式

|sin cos |1sin cos θθθθ

-==--

(2)原式

|cos2||sin 2|cos2sin 2=-=--

(3)原式=0,()

cos |sin |2|cos |sin θθθθθθθ??

-=-???

在第一象限或第三象限,(在第二象限)2,(在第四象限)

(4)原式

=

1sin 1sin |cos ||cos |

θθ

θθ+--

=2tan (22)22

32tan (22)22

k k k k ππθπθπππθπθπ?

-<<+????-+<<+??,k z ∈

类型四:利用同角关系证明三角恒等式 例6.求证:

tan sin tan sin tan sin tan sin αααα

αααα

?+=

-?。 【思路点拨】利用同角三角函数关系式对式子的左边或右边进行化简,使之与式子的另一边相同。

【解析】 证法一:右边22(tan sin )(tan sin )tan sin tan sin (tan sin )(tan sin )tan sin αααααα

αααααααα

+--==?--

22222tan sin cos tan (1cos )

(tan sin )tan sin (tan sin )tan sin ααααααααααααα-?-==--

22tan sin tan sin (tan sin )tan sin tan sin αααα

αααααα

?==--=左边。

证法二:左边tan sin sin tan tan cos 1cos ααα

αααα

?==

-?-, 右

22tan tan cos 1cos 1cos sin sin tan sin sin sin (1cos )sin (1cos )1cos ααααααααααααααα

++-=====---,

所以左边=右边,原等式成立。

证法三:左边22sin sin sin 1cos 1cos cos sin sin sin cos sin(1cos )sin sin cos α

ααααααααααααα

?-+====---, 右边2

sin sin sin sin cos 1cos cos sin sin sin sin cos α

ααααααααααα

+++===?, 所以左边=右边,原等式成立。

【总结升华】 本题主要考查三角恒等式的证明方法。就一般情况而言,证明三角恒等式时,可以从左边推到右边,也可以从右边推到左边,本着化繁就简的原则,即从较繁的一边推向较简的一边;还可以将左、右两边同时推向一个中间结果;有时候改证其等价命题更为方便。但是,不管采取哪一种方式,证明时都要“盯住目标,据果变形”。化简证明过程

中常用的技巧有:弦切互化,运用分式的基本性质变形,分解因式,回归定义等。

举一反三: 【变式1】求证:

cos 1sin 1sin cos x x

x x

+=

-. 【解析】证法一:由题意知cos 0x ≠,所以1sin 0,1sin 0x x +≠-≠.

∴左边=

2cos (1sin )cos (1sin )(1sin )(1sin )cos x x x x x x x ++=-+1sin cos x

x

+==右边.

∴原式成立.

证法二:由题意知cos 0x ≠,所以1sin 0,1sin 0x x +≠-≠. 又∵2

2

(1sin )(1sin )1sin cos cos cos x x x x x x -+=-==?, ∴

cos 1sin 1sin cos x x

x x

+=

-. 证法三:由题意知cos 0x ≠,所以1sin 0,1sin 0x x +≠-≠.

cos 1sin 1sin cos x x x x

+-

-cos cos (1sin )(1sin )(1sin )cos x x x x x x ?-+-=-22cos 1sin 0(1sin )cos x x

x x -+==-, ∴

cos 1sin 1sin cos x x

x x

+=

-. 【变式2】已知2

2

tan 2tan 1αβ=+,求证:2

2

sin 2sin 1βα=-。

【证明】 ∵2

2

tan 2tan 1αβ=+,∴22

tan 1tan 2

αβ-=,

∵222

22sin sin tan cos 1sin βββββ==-,∴22

2tan sin 1tan βββ

=+。

∴2222222222222

2sin tan 1

1

tan 1sin cos cos 2sin 2sin 1tan 1sin tan 1sin cos 112

cos α

αααααβαααααα

α

----=

====--+++

+。

高中数学必修4三角函数教案

任意角的三角函数 一、教学目标 1、知识目标:借助单位圆理解任意角的三角函数(正弦、余弦、正切) 的定义,根据定义探讨出三角函数值在各个象限的符号,掌握同一个角的不同三角函数之间的关系。 2、能力目标:能应用任意角的三角函数定义求任意角的三角函数值。 3、情感目标:培养数形结合的思想。 二、教材分析 1、教学重点:理解任意角三角函数(正弦、余弦、正切)的定义。 2、教学难点:从函数角度理解三角函数。 3、教学关键:利用数形结合的思想。 三、教学形式:讲练结合法 四、课时计划:2节课 五、教具:圆规、尺子 六、教学过程 (一)引入 我们已经学过锐角三角函数,知道他们都是以锐角为自变量,以比值 为函数值的函数,你能用直角坐标系中的终边上点的坐标来表示锐角 三角函数吗? 设锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,那么它 的终边在第一象限,在α的终边上任取一点P (a,b ),它与原点的距离 r=22b a +>0.根据初中学过的三角函数定义,我们有αsin =r b , r a αcos =

a b αtan =,取r=1,则a b tan αa,cos αb,αsin ===,引入单位圆概念。 (二)新课 1、设α是以任意角,它的终边与单位圆交于P (x,y ),那么: (1) y 叫做α的正弦,记作αsin , 即y αsin =; (2) x 叫做α的余弦,记作αcos ,即x αcos =; (3) x y 叫做α的正切,记作αtan ,即x y αtan =)0(≠x . 注:用单位圆定义的好处就在于r=1,点的横坐标表示余弦值,纵坐标 表示正弦值。 2、根据任意角的三角函数定义,得到三种函数值在各象限的符号。 通过观察发现:第一象限全为正,第二象限只有正弦为正,第三象限只有正切为正,第四象限只有余弦为正。总结出一条法则:一全正,二正弦,三正切,四余弦。 注:这有利于培养学生观察和思考的能力,以方便记忆。 3、利用勾股定理可以推出:1cos sin 22=+αα,根据三角函数定义,当)(2z k k ∈+≠π πα时,有αα αtan cos sin =。这就是说同一个角α的正弦、余弦的平方和等于1,商等于角α的正切。 4、例题 例1求 3 5π的正弦、余弦和正切值。 解:在直角坐标系中,作3π5=∠AOB ,易知AOB ∠的终边与单位圆的交点 坐标为)2 3,21 (-,所以

高一数学同角三角函数的基本关系式及诱导公式

同角三角函数的基本关系式及诱导公式 一、基本知识: (1)同角三角函数的基本关系式:平方关系:sin 2α+cos 2α=1, 1tan sec 22=-αα, 1cot csc 22=-αα, 商式关系: sin α cos α =tan α, αα αcot sin cos =, 倒数关系:tan αcot α=1, ααcos 1sec = ααsin 1csc = (2)诱导公式:函数名称不变,符号看象限。 二、例题分析: 例1 化简 sin(2π-α)tan(π+α)cot(-α-π) cos(π-α)tan(3π-α) . 解 原式= (-sin α)tan α[-cot(α+π) ] (-cos α)tan(π-α) = (-sin α)tan α(-cot α) (-cos α)(-tan α) = sin α·cos α sin α cos α =1 . 例2 若sin θcos θ= 18 ,θ∈(π4 ,π2 ),求cos θ-sin θ的值. 解 (cos θ-sin θ)2=cos 2θ+sin 2θ-2sin θcos θ=1- 14 = 34 . ∵θ∈(π4 ,π2 ),∴ cos θ<sin θ. ∴cos θ-sin θ= - 3 2 . 变式1 条件同例, 求cos θ+sin θ的值.

变式2 已知cos θ-sin θ= - 3 2 , 求sin θcos θ,sin θ+cos θ的值. 例3 已知tan θ=3.求(1) α αααsin 3cos 5cos 2sin 4+-;(2)cos 2θ+sin θcos θ的值. 例4、证明:1+2sin αcos α cos 2α-sin 2α =1+ tan α 1-tan α

高中数学必修三角函数常考题型同角三角函数的基本关系

高中数学必修三角函数常考题型同角三角函数 的基本关系 集团文件版本号:(M928-T898-M248-WU2669-I2896-

同角三角函数的基本关系 【知识梳理】 同角三角函数的基本关系 (1)平方关系:同一个角α的正弦、余弦的平方和等于1.即sin 2 α+cos 2 α=1. (2)商数关系:同一个角α的正弦、余弦的商等于这个角的正切,即 sin α cos α=tan_α ? ?? ??其中α≠k π+π2?k ∈Z ?. 【常考题型】 题型一、已知一个三角函数值求另两个三角函数值 【例1】 (1)已知sin α=12 13 ,并且α是第二象限角,求cos α和tan α. (2)已知cos α=-4 5 ,求sin α和tan α. [解] (1)cos 2 α=1-sin 2 α=1-? ????12132=? ?? ??5132 ,又α是第二象限角, 所以cos α<0,cos α=- 513,tan α=sin αcos α=-125 . (2)sin 2 α=1-cos 2 α=1-? ????-452=? ?? ??352 , 因为cos α=-4 5 <0,所以α是第二或第三象限角, 当α是第二象限角时,sin α=35,tan α=sin αcos α=-3 4;当α是第 三象限角时,sin α=-35,tan α=sin αcos α=3 4 .

【类题通法】 已知三角函数值求其他三角函数值的方法 (1)若已知sin α=m,可以先应用公式cos α=±1-sin2α,求得 cos α的值,再由公式tan α=sin α cos α 求得tan α的值. (2)若已知cos α=m,可以先应用公式sin α=±1-cos2α,求得 sin α的值,再由公式tan α=sin α cos α 求得tan α的值. (3)若已知tan α=m,可以应用公式tan α=sin α cos α =m?sin α= m cos α及sin2α+cos2α=1,求得cos α=± 1 1+m2 ,sin α= ± m 1+m2 的值. 【对点训练】 已知tan α= 4 3 ,且α是第三象限角,求sin α,cos α的值.解:由tan α= sin α cos α = 4 3 ,得sin α= 4 3 cos α,① 又sin2α+cos2α=1,② 由①②得 16 9 cos2α+cos2α=1,即cos2α= 9 25 . 又α是第三象限角,故cos α=- 3 5 ,sin α= 4 3 cos α=- 4 5 . 题型二、化切求值 【例2】已知tan α=3,求下列各式的值.

高中数学必修4三角函数综合测试题

必修4三角函数综合测试题及答案详解 一、选择题 1.下列说法中,正确的是( ) A .第二象限的角是钝角 B .第三象限的角必大于第二象限的角 C .-831°是第二象限角 D .-95°20′,984°40′,264°40′是终边相同的角 2.若点(a,9)在函数y =3x 的图象上,则tan a π 6的值为( ) A .0 B.3 3 C .1 D. 3 3.若|cos θ|=cos θ,|tan θ|=-tan θ,则θ 2的终边在( ) A .第一、三象限 B .第二、四象限 C .第一、三象限或x 轴上 D .第二、四象限或x 轴上 4.如果函数f (x )=sin(πx +θ)(0<θ<2π)的最小正周期是T ,且当x =2时取得最大值,那么( ) A .T =2,θ=π 2 B .T =1,θ=π C .T =2,θ=π D .T =1,θ=π 2 5.若sin ? ???? π2-x =-32,且π

7.将函数y =sin x 的图象向左平移φ(0≤φ<2π)个单位长度后,得到y =sin ? ?? ?? x -π6的图象,则φ=( ) A.π6 B.5π6 C.7π6 D.11π6 8.若tan θ=2,则2sin θ-cos θ sin θ+2cos θ的值为( ) A .0 B .1 C.34 D.54 9.函数f (x )=tan x 1+cos x 的奇偶性是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .既不是奇函数也不是偶函数 10.函数f (x )=x -cos x 在(0,+∞)内( ) A .没有零点 B .有且仅有一个零点 C .有且仅有两个零点 D .有无穷多个零点

人教版必修四 同角三角函数的基本关系教案

1.2.2同角三角函数的基本关系(3) 教学目的: 知识目标:根据三角函数关系式进行三角式的化简和证明; 能力目标:(1)了解已知一个三角函数关系式求三角函数(式)值的方法。 (2)灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力; 德育目标:训练三角恒等变形的能力,进一步树立化归思想方法; 教学重点:同角三角函数的基本关系式 教学难点:如何运用公式对三角式进行化简和证明。 授课类型:新授课 教学模式:启发、诱导发现教学. 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.同角三角函数的基本关系式。 (1)倒数关系:sin csc 1αα?=,cos sec 1αα?=,tan cot 1αα?=. (2)商数关系: sin tan cos ααα=,cos cot sin ααα =. (3)平方关系:22sin cos 1αα+=,221tan sec αα+=,221cot csc αα+=. (练习)已知tan α43=,求cos α 2.tan αcos α= ,cot αsec α= ,(sec α+tan α)·( )=1 二、讲解新课: 例82tan α=-,试确定使等式成立的角α的集合。 =|1sin ||1sin |cos ||cos |αααα+-- =1sin 1sin |cos |ααα+-+=2sin |cos | αα. 2tan α-=-, ∴2sin |cos |αα2sin 0cos αα +=, 即得sin 0α=或|cos |cos 0αα=-≠. 所以,角α的集合为:{|k ααπ=或322,}22 k k k Z πππαπ+<<+∈. 例9.化简(1cot csc )(1tan sec )αααα-+-+. 解:原式=cos 1sin 1(1)(1)sin sin cos cos αααααα -+-+ 2sin cos 1cos sin 11(sin cos )sin cos sin cos αααααααααα-+-+--=?=?112sin cos 2sin cos αααα-+?==?. 说明:化简后的简单三角函数式应尽量满足以下几点: (1)所含三角函数的种类最少; (2)能求值(指准确值)尽量求值; (3)不含特殊角的三角函数值。 例10.求证: cos 1sin 1sin cos x x x x +=-. 证法一:由题义知cos 0x ≠,所以1sin 0,1sin 0x x +≠-≠.

高中数学必修4三角函数测试题

高一数学同步测试(1)—角的概念·弧度制 一、选择题(每小题5分,共60分,请将所选答案填在括号内) 1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( ) A .B=A ∩C B .B ∪C=C C .A ?C D .A=B=C 2.下列各组角中,终边相同的角是 ( ) A . π2 k 与)(2Z k k ∈+ π π B .)(3k 3Z k k ∈± ππ π与 C .ππ)14()12(±+k k 与 )(Z k ∈ D .)(6 6Z k k k ∈± + π πππ与 3.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是 ( ) A .2 B . 1 sin 2 C .1sin 2 D .2sin 4.设α角的终边上一点P 的坐标是)5 sin ,5(cos π π ,则α等于 ( ) A . 5 π B .5 cot π C .)(10 32Z k k ∈+ππ D .)(5 92Z k k ∈- ππ 5.将分针拨慢10分钟,则分钟转过的弧度数是 ( ) A . 3 π B .- 3 π C . 6 π D .-6 π 6.设角α和β的终边关于y 轴对称,则有 ( ) A .)(2 Z k ∈-= βπ α B .)()2 1 2(Z k k ∈-+ =βπα C .)(2Z k ∈-=βπα D .)()12(Z k k ∈-+=βπα 7.集合A={}, 32 2|{},2|Z n n Z n n ∈±=?∈= ππααπαα, B={}, 2 1 |{},3 2|Z n n Z n n ∈+=?∈=ππββπ ββ, 则A 、B 之间关系为 ( ) A .A B ? B .B A ? C .B ?A D .A ?B 8.某扇形的面积为12 cm ,它的周长为4cm ,那么该扇形圆心角的度数为 ( ) A .2° B .2 C .4° D .4 9.下列说法正确的是 ( ) A .1弧度角的大小与圆的半径无关 B .大圆中1弧度角比小圆中1弧度角大 ≠ ≠ ≠

高中数学-同角三角函数的基本关系式练习题

高中数学-同角三角函数的基本关系式练习题 5分钟训练(预习类训练,可用于课前) 1.已知sinα= 5 3 ,α∈(0,π),则tanα的值等于( ) A.34 B.43 C.±43 D.±3 4 解析:由sin 2 α+cos 2 α=1,α∈(0,π), ∴cosα=±α2sin 1-=±5 4 . ∴tanα=ααcos sin =±4 3 . 答案:C 2.已知cosθ= 5 4 ,且23π<θ<2π,那么θtan 1的值为( ) A.43 B.43- C.35 D.3 4 - 解析:由sin 2 θ+cos 2 θ=1,得sinθ=±θ2cos 1-. 因为 23π<θ<2π,故sinθ<0,所以sinθ=2)54(1--=53-,tanθ=θθcos sin =3 4 -. 答案:D 3.若tanα=t(t≠0),且sinα=2 1t t +- ,则α是( ) A.第一、二象限角 B.第二、三象限角 C.第三、四象限角 D.第一、四象限角 解析:由tanα= ααcos sin 得cosα=αα tan sin ,所以cosα=211t +-<0,故α是第二、三象 限角. 答案:B 4.若tanα=2,则(1)cos 2α=________________;(2)sin 2α-cos 2 α=________________. 解析:(1)由题意和基本三角恒等式,列出方程组 ? ?? ??==+,2cos sin ,1cos sin 22α α αα 由②得sinα=2cosα,代入①,整理得5cos 2 α=1,cos 2 α=5 1. (2)由(1)得sin 2 α=1-51=5 4,

(精心整理)同角三角函数基本关系式练习题

任意角的三角函数 1.已知sin α=45 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)4 3 (D)4 3- 2.若θ是第三象限角,且02 cos <θ,则2 θ是 ( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限 3.设是第二象限角,则sin cos αα ( ) (A) 1 (B)tan 2α (C) - tan 2α (D) 1- 4.若tan θ=3 1,π<θ<32 π,则sin θ·cos θ的值为 ( ) (A)±3 10 (B) 3 10 5 若α 是三角形的一个内角,且sin α+cos α=3 2 ,则三角形为 ( ) (A) 钝角三角形 (B)锐角三角形 (C)直角三角形 (D)等腰三角形 6.已知α的终边经过P (ππ6 5cos ,6 5sin ),则α可能是 ( ) A .π6 5 B . 6 π C .3 π- D .3 π 7.如果).cos(|cos |π+-=x x 则x 的取值范围是 ( ) A .)(] 22 ,22 [Z k k k ∈++-ππππ B .)() 22 3,22 (Z k k k ∈++ππππ C .)(] 22 3,22 [Z k k k ∈++ππππ D .)()2,2(Z k k k ∈++-ππππ 8.1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为 ( ) A .5 B .-5 C .6 D .-6 9. 扇形的周期是16,圆心角是2弧度,则扇形面积是______________

北师版新课标高中数学必修二教案《同角三角函数的基本关系》

《同角三角函数的基本关系》教学设计 与三角函数的定义域、符号的确定一样,同角三角函数的基本关系式的推导,紧扣了定义,是按照一切从定义出发的原则进行的,通过对基本关系的推导,应注意学生重视对基本概念学习的良好习惯的形成,学会通过对基本概念的学习,善于钻研,从中不断发掘更深层次的内涵. 同角三角函数的基本关系式将“同角”的四种不同的三角函数直接或间接地联系起来,在使用时一要注意“同角”,至于角的表达形式是至关重要的,如sin 24π+cos 24π=1等,二要注意这些关系式都是对于使它们有意义的那些角而言的,如tanα中的α是使得tanα有意义的值,即α≠kπ+2 ,k ∈Z . 已知任意角的正弦、余弦、正切中的一个值便可以运用基本关系式求出另外的两个,这是同角三角函数关系式的一个最基本功能,在求值时,根据已知的三角函数值,确定角的终边的位置是关键和必要的,有时由于角的终边的位置不确定,因此解的情况不止一种,解题时产生遗漏的主要原因一是没有确定好或不去确定终边的位置;二是利用平方关系开方时,漏掉了负的平方根. 1.通过三角函数的定义导出同角三角函数基本关系式,并能运用同角三角函数的基本关系式进行三角函数的化简与证明. 2.同角三角函数的基本关系式主要有三个方面的应用:(1)求值(知一求二);(2)化简三角函数式;(3)证明三角恒等式.通过本节的学习,学生应明了如何进行三角函数式的化简与三角恒等式的证明. 3.通过同角三角函数关系的应用使学生养成探究、分析的习惯,提高三角恒等变形的能力,树立转化与化归的思想方法. 教学重点:课本的三个公式的推导及应用. 教学难点:课本的三个公式的推导及应用.

人教版 高中数学必修4 三角函数知识点

高中数学必修4知识点总结 第一章 三角函数(初等函数二) ?? ?? ?正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<, 则sin y r α= ,cos x r α= ,()tan 0y x x α= ≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:sin α=M P ,cos α=O M ,tan α=AT . 12、同角三角函数的基本关系:()2 2 1sin cos 1αα+=

高一数学必修一三角函数的概念及公式

三角函数的概念及公式 教学目标 1、掌握同终边角的求法,熟悉象限角、轴线角,掌握角度与弧度的互化,会求弧长与扇形面积; 2、掌握三角函数的概念,会求角的三角函数值; 3、同角三角函数的基本关系; 4、掌握诱导公式及应用。 重瞬占分析 重点:''1、角度、弧度的转化; 2、同角三角函数基本关系; 3、诱导公式。 难点:1、角度的表示; 2、同角三角函数值的求解; 3、诱导公式的变换。 知识点梳理 1、角度槪念:角可以看成是平而内一条射线绕着端点从一个位宜旋转到另一个位置所成的图形。 2、角度分类:按逆时针方向旋转的角叫做正角;按顺时针方向旋转的角叫做负角:若一条射线没有任何旋转,我们称它形成了一个零角。 3、彖限角:角的顶点与原点重合,角的始边与兀轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何一个象限。 4、终边相同的角:所有与角&的终边相同的角,连同Q在内,可构成一个集合S=___________________ , 即任一与角α终边相同的角,都可以表示成角α与整数个周角的和。 5、把长度等于半径长的弧所对的圆心角叫做1弧度的角。 6、弧度制与角度制的换算关系式:兀弧度=180°. 7、在弧度制下,弧长公式为l = a?R、扇形而积公式为S = -l?R.(α为圆心角,R为半径) 2 8、一般的,设角Q终边上任意一点的坐标为(x, y),它与原点的距离为厂,那么 (1)上叫做α的正弦,记作Sina; r (2)艺叫做a的余弦,记作COSa ;

(3)上叫做α的正切,记作tana。 X 9、同角三角函数关系的基本关系式 (I)平方关系:sin2 x + cos2 x = l (2)商数关系:UmX =竺上 COSX 10、同角三角函数基本关系式的常用变形 (1) sin2a = ______________ ; cos2a ≡_____________ ; (2)(Sina+ cosa)2=_________________ ;(Sina_cos&)'=_________________ (3)Sina COSa= =_________________ 。 注意:用同角三角函数的基本关系式求值时应注意 (1)注意“同角”,至于角的形式无关重要,如siι√4a+cos2 4a = 1等: (3)对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用),如: CoSa = ±√l-sin2a,开方时要注意正负。 11、诱导公式:奇变偶不变、符号看彖限。

人教A版必修4同角三角函数的基本关系式练习及答案

§1.2.2 同角三角函数的基本关系式 班级 姓名 学号 得分 一、选择题 1.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)43 (D)4 3 - 2.已知sin αcos α=8 1,且4π<α<2π ,则cos α-sin α的值为 ( ) (A) 2 3 (B)4 3 (C)3 (D)± 2 3 3.设是第二象限角,则 2 sin 1 1cos sin ααα - ( ) (A) 1 (B)tan 2α (C) - tan 2α (D) 1- 4.若tan θ= 3 1,π<θ<3 2π,则sin θ·cos θ的值为 ( ) (A)±3 10 (B) 3 10 10 (D)± 10 5.已知 sin cos 2sin 3cos αα αα-+=5 1,则tan α的值是 ( ) (A)±83 (B)83 (C)83- (D)无法确定 * 6.若α是三角形的一个内角,且sin α+cos α=3 2 ,则三角形为 ( ) (A)钝角三角形 (B)锐角三角形 (C)直角三角形 (D)等腰三角形 二.填空题 7.已知sin θ-cos θ=12 ,则sin 3θ-cos 3θ= ; 8.已知tan α=2,则2sin 2α-3sin αcos α-2cos 2α= ; 9.1cos 1cos 1cos 1cos αα αα +--+α为第四象限角)= ; * 10.已知cos (α+ 4π)=1 3 ,0<α<2π,则sin(α+4π)= . 三.解答题 11.若sin x = 35m m -+,cos x =425 m m -+,x ∈(2π,π),求tan x

必修4三角函数所有知识点归纳归纳

《三角函数》【知识网络】 一、任意角的概念与弧度制 1、将沿x轴正向的射线,围绕原点旋转所形成的图形称作角.

逆时针旋转为正角,顺时针旋转为负角,不旋转为零角 2、同终边的角可表示为 {}()360k k Z ααβ? =+∈ x 轴上角:{}()180k k Z αα=∈ y 轴上角:{}()90180k k Z αα=+∈ 3、第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈ 第二象限角:{}()90360180360k k k Z αα??+<<+∈ 第三象限角:{}()180360270360k k k Z αα? ?+<<+∈ 第四象限角: {}()270 360360360k k k Z αα??+<<+∈ 4、区分第一象限角、锐角以及小于90的角 第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈ 锐角: {}090αα<< 小于90的角:{}90αα< 5、若α为第二象限角,那么 2 α 为第几象限角? ππαππ k k 222 +≤≤+ ππ α ππ k k +≤ ≤ +2 2 4 ,24,0παπ≤≤=k ,2345,1παπ≤≤=k 所以2 α 在第一、三象限 6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad . 7、角度与弧度的转化:01745.0180 1≈=?π 815730.571801'?=?≈? = π 8、角度与弧度对应表: 9、弧长与面积计算公式

弧长:l R α=?;面积:211 22 S l R R α=?=?,注意:这里的α均为弧度制. 二、任意角的三角函数 1、正弦:sin y r α=;余弦cos x r α=;正切tan y x α= 其中(),x y 为角α 终边上任意点坐标,r = 2、三角函数值对应表: 3、三角函数在各象限中的符号 口诀:一全正,二正弦,三正切,四余弦.(简记为“全s t c ”)

人教版高中数学必修4三角函数

任意角 一、知识概述 1、角的分类:正角、负角、零角. 2、象限角:(1)象限角. (2)非象限角(也称象限间角、轴线角). 3、终边相同的角的集合:所有与角终边相同的角,连同α角自身在内,都可以写成α+k·360°(k∈Z)的形式;反之,所有形如α+k·360°(k∈Z)的角都与α角的终边相同. 4、准确区分几种角 锐角:0°<α<90°; 0°~90°:0°≤α<90°; 第一象限角:. 5、弧度角:弧长等于半径的弧所对应的角称为1弧度角(1 rad). 1 rad=,1°=rad. 6、弧长公式:l=αR. 7、扇形面积公式:. 二、例题讲解 例1、写出下列终边相同的角的集合S,并把S中适合不等式的元素写出来: (1)60°;(2)-21°;(3)363°14′. 解: (1),

S中满足的元素是 (2), S中满足的元素是 (3), S中满足的元素是 例2、写出终边在y轴上的角的集合. 解析: ∴. 注: 终边在x轴非负半轴:. 终边在x轴上:. 终边在y=x上:.

终边在坐标轴上:. 变式:角α与β的终边关于x轴对称,则β=_______. 答案:. 角α与β的终边关于y轴对称,则β=_______. 答案: 任意角的三角函数 一、知识概述 1、定义:在直角坐标系中,设α是一个任意角,α的终边与圆心在坐标原点的单位圆交于点P(x,y),那么sinα=y,cosα=x,tan α=. 注:①对于确定的角α,其终边上取点,令, 则. ②α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置. 2、公式一:, , ,其中. 3、三角函数线 角α的终边与单位圆交于P点,过P作PM⊥x轴于M,则sinα=MP(正弦线),cosα=OM(余弦线).过A作单位圆的切线,则α的终边或其反向延长线交此切线于点T,则tanα=AT(正切线).

同角三角函数的基本关系教案

同角三角函数的基本关系 东宁县绥阳中学 教学目的: 知识目标:1.能根据三角函数的定义导出同角三角函数的基本关 系式及它们之间的联系; 2.熟练掌握已知一个角的三角函数值求其它三角函 数值的方法。 能力目标: 牢固掌握同角三角函数的两个关系式,并能灵活运用 于解题,提高学生分析、解决三角的思维能力; 教学重点:同角三角函数的基本关系式 教学难点:三角函数值的符号的确定,同角三角函数的基本关系式的变式应用 教学过程: 一、复习引入: 1.任意角的三角函数定义: 设角α是一个任意角,α终边上任意一点(,)P x y ,它与原点的距离为 (0)r r ==>,那么:sin y r α=,cos x r α=,tan y x α=, 2.当角α分别在不同的象限时,sin α、cos α、tg α的符号分别是怎样的? 3.背景:如果5 3sin =A ,A 为第一象限的角,如何求角A 的其它三角函数值; 4.问题:由于α的三角函数都是由x 、y 、r 表示的,则角α的三个三角函数之间有什么关系? 二、讲解新课: (一)同角三角函数的基本关系式:

(板书课题:同角的三角函数的基本关系) 1. 由三角函数的定义,我们可以得到以下关系: (1)商数关系:α ααcon sin tan = (2)平方关系:1sin 22=+ααcon 说明: ①注意“同角”,至于角的形式无关重要,如22sin 4cos 41αα+=等; ②注意这些关系式都是对于使它们有意义的角而言的,如 tan cot 1(,)2 k k Z πααα?=≠∈; ③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、 变形用),如: cos α= 22sin 1cos αα=-, sin cos tan ααα =等。 2.例题分析: 一、求值问题 例1.(1)已知12sin 13α= ,并且α是第二象限角,求cos ,tan ,cot ααα. (2)已知4 cos 5α=-,求sin ,tan αα. 解:(1)∵22sin cos 1αα+=, ∴2222125cos 1sin 1()()1313 αα=-=-= 又∵α是第二象限角, ∴cos 0α<,即有5cos 13 α=- ,从而 sin 12tan cos 5ααα==-, 15cot tan 12αα==- (2)∵22sin cos 1αα+=, ∴222243sin 1cos 1()()55αα=-=--=, 又∵4cos 05α=-<, ∴α在第二或三象限角。 当α在第二象限时,即有sin 0α>,从而3sin 5 α=,sin 3tan cos 4 ααα==-; 当α在第四象限时,即有sin 0α<,从而3sin 5α=-,sin 3tan cos 4ααα==. 总结: 1. 已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值。在求值中,确定角的终边位置是关键和必要的。有时,由于角的终边位置的不确定,因此解的情况不止一种。 2. 解题时产生遗漏的主要原因是:①没有确定好或不去确定角的终边位置;②利用平方关系开平方时,漏掉了负的平方根。 例2.已知tan α为非零实数,用tan α表示sin ,cos αα.

数学必修四三角函数公式总结与归纳

数学必修四三角函数公式盘点与归纳 1、诱导公式: sin(2kπ+α)=sinα, cos(2kπ+α)=cosα sin(-α)=-sinα, cos(-α)=cosα sin(2π-α)=-sinα, cos(2π-α)=cosα sin(π-α)=sinα, cos(π-α)=-cosα sin(π+α)=-sinα, cos(π+α)=-cosα sin(+α)=cosα, cos(+α)=-sinα sin(-α)=cosα, cos(-α)=sinα 2、同角三角函数基本关系: sin2α+cos2α=1, =tanα, tanα×cotα=1, 1+tan2α=, 1+cot2α= cosα=, sinα= 3、两角和与差的三角函数: cos(α+β)=cosαcosβ-sinαsinβ, cos(α-β)=cosαcosβ+sinαsinβ, sin(α+β)=sinαcosβ+cosαsinβ,

sin(α-β)=sinαcosβ-cosαsinβ tan(α+β)=, tan(α-β)=, 4、二倍角的三角函数: sin2α=2sinαcosα, cos2α=cos2α-sin2α =1-2sin2α =2cos2α-1, tan2α=, sin=, cos=, tan= = = 5、万能公式: sin2α=, cos2α= 6、合一变式: asinα+bcosα =sin(α+γ)(tanγ=)7、其他公式: sinαcosβ=[sin(α+β)+sin(α-β)], cosαsinβ=[sin(α+β)-sin(α-β)],

cosαcosβ=[cos(α+β)+cos(α-β)],sinαsinβ=[cos(α+β)-cos(α-β)],sinα+sinβ=2sin cos, sinα-sinβ=2cos sin, cosα+cosβ=2cos cos, cosα-cosβ=2sin cos

(word完整版)高一数学同角三角函数的基本关系式同步练习

1.2.3 同角三角函数的基本关系式 同步练习 1.若sin α=45,且α是第二象限角,则tan α的值等于( ) A .-43 B.34 C .±34 D .±43 解析:选A.∵α为第二象限角, ∴cos α=-1-sin 2α=-1-(45)2=-35 , ∴tan α=sin αcos α=4 5-35 =-43. 2.化简1-sin 2160°的结果是( ) A .cos160° B .-cos160° C .±cos160° D .±|cos160°| 解析:选B. 1-sin 2160°=cos 2160°=-cos160°. 3.若tan α=2,则2sin α-cos αsin α+2cos α 的值为( ) A .0 B.34 C .1 D.54 解析:选B.2sin α-cos αsin α+2cos α=2tan α-1tan α+2=34 . 4.若cos α=-817 ,则sin α=________,tan α=________. 解析:∵cos α=-817 <0, ∴α是第二或第三象限角. 若α是第二象限角,则sin α>0,tan α<0. ∴sin α=1-cos 2α=1517,tan α=sin αcos α=-158 . 若α是第三象限角,则sin α<0,tan α>0. ∴sin α=-1-cos 2α=-1517,tan α=sin αcos α=158 . 答案:1517或-1517 -158或158 一、选择题 1.若α是第四象限的角,tan α=-512 ,则sin α等于( ) A.15 B .-15 C.315 D .-513

同角三角函数的基本关系式_练习题

同角三角函数的基本关系式 练习题 1.若sin α=4 5,且α是第二象限角,则tan α的值等于( ) A .-43 B.34 C .±34 D .±43 2.化简1-sin 2160°的结果是( ) A .cos160° B .-cos160° C .±cos160° D .±|cos160°| 3.若tan α=2,则2sin α-cos α sin α+2cos α的值为( ) A .0 B.34 C .1 D.5 4 4.若cos α=-8 17 ,则sin α=________,tan α=________. 5.若α是第四象限的角,tan α=-5 12 ,则sin α等于( ) A.15 B .-15 C.315 D .-513 6.若α为第三象限角,则cos α1-sin 2α+2sin α 1-cos 2α 的值为( ) A .3 B .-3 C .1 D .-1 7、已知A 是三角形的一个内角,sin A +cos A = 2 3 ,则这个三角形是 ( ) A .锐角三角形 B .钝角三角形 C .不等腰直角三角形 D .等腰直角三角形 8、已知sin αcos α = 1 8 ,则cos α-sin α的值等于 ( ) A .±3 4 B .±23 C .23 D .-2 3 9、已知θ是第三象限角,且9 5 cos sin 4 4 = +θθ,则=θθcos sin ( ) A . 32 B . 32- C . 3 1 D . 31- 10、如果角θ满足2cos sin =+θθ,那么θθcot tan +的值是 ( ) A .1- B .2- C .1 D .2 11、若 2cos sin 2cos sin =-+α αα α,则=αtan ( ) A .1 B .- 1 C .43 D .3 4- 12.A 为三角形ABC 的一个内角,若sin A +cos A =12 25 ,则这个三角形的形状为( ) A .锐角三角形 B .钝角三角形 C .等腰直角三角形 D .等腰三角形 13.已知tan θ=2,则sin 2 θ+sin θcos θ-2cos 2θ等于( ) A .-43 B.54 C.-34 D.45 14.(tan x +cot x )cos 2x =( )

同角三角函数的基本关系式

同角三角函数的基本关系式 倒数关系: 商的关系: 平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱导公式 sin(-α)=-sinα cos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式 万能公式 sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2) 半角的正弦、余弦和正切公式 三角函数的降幂公式

必修4三角函数公式大全

三角函数 公式大全 姓名: 1、两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) = tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 2、倍角公式 tan2A = A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan( 3π+a)·tan(3 π-a) 4、半角公式 sin( 2A )=2cos 1A - cos( 2A )=2 cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan( 2A )=A A sin cos 1-=A A cos 1sin + 5、和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cos b = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos ) sin(+ 6、积化和差 sinasinb = -21 [cos(a+b)-cos(a-b)] cosacosb = 21 [cos(a+b)+cos(a-b)] sinacosb = 2 1 [sin(a+b)+sin(a-b)] cosasinb = 2 1 [sin(a+b)-sin(a-b)]

相关文档
最新文档