平面立体投影作业

合集下载

3立体的投影

3立体的投影
项目3 立体的投影
3.1 投影实例 3.2 平面立体、曲面立 体的投影 3.3 平面截割立体 3.4 立体的相贯线
3.2.1 平面立体
平面立体简称平面体; 平面立体的特点:
各个表面都是平面图形,各平面图形均由棱线围成, 棱线又由其端点确定。 因此,平面立体的投影是由围成它的各平面图形的 投影表示的,其实质是作各棱线与端点的投影。
圆柱体的投影分析(回转轴垂直于H面)
正面投影的左、右边 线分别是圆柱最左、最右 的两条轮廓素线的投影, 这两条素线把圆柱分为前、 后两半,他们在W面上的投 影与回转轴的投影重合。
侧面投影的左、右边 线分别是圆柱最前、最后 的两条轮廓素线的投影, 这两条素线把圆柱分为左、 右两半,他们在V面上的投 影与回转轴的投影重合。
回转轴 母线
回转曲面的有关概念
O
素线:母线在曲面上
的任意位置都称为素
纬 圆 线。
纬圆:母线上任意点 的运动轨迹都是一个 垂直于回转轴且中心 在回转轴上的圆,这 轮廓素线 种圆就称为纬圆。 O1
3.2.3.1 圆柱及其表面点
OO’ AA’
圆柱的形成: 圆柱面是由两条相互平行的 直线,其中一条直线AA’ (称为直母线)绕另一条直 线OO’(称为轴线)旋转一 周而形成。圆柱体由两个相 互平行的底平面和圆柱面围 成。圆柱面上的与OO’平行 的直线,称为柱面上的素线, 每根素线都与轴线平行且等 距,而且任两根素线都互相平 行,当用一垂直于轴线的平 面截断圆柱面时,每个截断 面都是等直径的圆。
m'
纬圆法
m
§3-3 切割体的投影
一、切割体及截交线的概念
• 切割体——基本体被平面截切后的部分 • 截平面——截切立体的平面 • 截断面——立体被截切后的断面 • 截交线——截平面与立体表面的交线

工程制图_05平面立体的投影与曲面立体的投影(含截交线和螺旋面)

工程制图_05平面立体的投影与曲面立体的投影(含截交线和螺旋面)

截平面定位尺寸 60°
应标注立体的原形尺寸
和切口截平面的定位尺
寸,不注切口截交线的
Ø
定形尺寸。
JK系列
切 口 立 体 尺 寸 注 法
截平面定位尺 寸
截平面定位尺寸 SR
平面立体的截交线
截平面:截切立体的平面称为截平面。
JK系列
平 面 立 体 的 截 交 线
截交线:截平面与立体表面的交线称为截交线。
圆球的三个投影均为等径圆,并且是圆球上平行于相应 投影面的最大轮廓圆。H面投影的轮廓圆是上、下两半球的可 见性分界线,V面投影的轮廓圆是前、后两半球的可见性分界 线,W面投影的轮廓圆是左、右两半球的可见性分界线.
JK系列
圆球面上取点
A点在右前上方 B、C点在球面
的球面上
的赤道圆上
VW
a
(a")
a
( a)"
面 的 圆
dc
d"(c")
D
C
例 1 0
R2
a"(b")
B
ab
A
JK系列
[例11] 补绘四分之一圆球被切割后的H、W投影。

1
1
圆球的截交线
都是圆
JK系列
圆柱螺旋线 形成:一动点沿一直线等速移动,而该直线同时绕 螺旋面
螺 线旋
与它平行的一轴线等速旋转时动点的轨迹。
投影:H面投影为圆周,V面投影为正曲线。注意后半圆柱的 螺旋线不可见,

截平面与柱轴平行 截平面与柱轴斜交
矩形
椭圆
投 影 图 与 立 体 图
截平面
截平面
截平面
[例1] 带凸截口圆柱的画法.

习题课(第二章)

习题课(第二章)
3、补全三棱柱缺口的V面投影。
建筑工程制图与识图
2.2 求两平面体相交后的投影
4、画出烟囱、虎头窗与屋面的交线,并补全虎头窗的H面投影。
b' a' c'
1'(3') 2'(4')
b ac
34 12
建筑工程制图与识图
2.2 求两平面体相交后的投影
5、完成三棱锥与三棱柱相贯后的投影。
s'
s''
1'
2' 3'
5、已知带缺口的四棱锥台的V、W面投影,作它的H面投影。
建筑工程制图与识图
2.1 求平面立体及其被平面截切后的投影
6、已知带缺口的三棱柱的V面投影,请完成H、W面投影。
1"
1'
2" 2'
6'
5'
3'(4') 6" (4“)
3"
5"
1(6)
4 3 2(5)
△y △y
建筑工程制图与识图
2.2 求两平面立体相交后的投影
c' a'
c
2
1s
3
1''
2''
b' c''(b'') b
3''
a"
a
建筑工程制图与识图
2.2 求两平面立体相交后的投影
6、补全三角形孔洞的H、W面投影。
1‘(6’)
Z
6"
1"
4‘(5’) 3‘ 2‘(7’)
X
5

工程制图 第五章 平面形体的投影

工程制图 第五章  平面形体的投影
6
7(8)

8 3
● ● ●
6

7

1
2(3) 4(5) 3 1 8

(5) 1 (4)

2
5 7
6


4
2
第三节
直线与平面立体贯穿
直线与立体表面的交点称为贯穿点 求贯穿点的实质是求直线与平面交点的问题。 利用积聚投影 方法: 辅助平面法
例1: 求直线AB与三棱柱的贯穿点
一、长方体组合
二、斜面体组合
b P a(c) c P a b c P
b
a B P C A
例1:已知长方体的三面投影,某一平面被切割后,求其 它两面投影。
例2:已知长方体被切割后的两面投影,求第三面投影。
b a a
b
a b
投影图分析:
底面:水平面 顶面:水平面 侧面: 后面:正平面 左、右后面:铅垂面 左、右前面:铅垂面
正棱柱图例:
五棱柱
五棱柱
六棱柱 六棱柱
三棱柱 三棱柱
四棱柱 四棱柱 (长方体 ) (长方体 )
已知棱柱表面上两点M、N的V面投影,确定其他两面投影。 棱柱表面定点:
m
(n)
k
m
(n)
中途返回请按“ESC” 键
改变例1: 求直线AB 与三棱柱的贯穿点
例2
求直线AB 与三棱锥的贯穿点
改变例2 求直线AB与三棱锥的贯穿点
第四节
两平面立体相贯
例3 画出三棱锥与三棱柱全贯的投影图
例4 画出三棱锥与三棱柱互贯的投影图
第五节 平面基本体的组合
图1 房屋形体的分析 图2 水塔形体分析
第五章 平面形体的投影

平面立体轴测投影图的画法

平面立体轴测投影图的画法

平面立体及其轴测投影
表3-1 轴间角和轴向伸缩系数
第7 页
平面立体及其轴测投影
第8 页
(二)轴测图的性质
由于轴测图是用平行投影法绘制的, 因此它具有平行投影的基本性质,即平 行性和等比性。 ➢ 平行性:形体上相互平行的线段,其
轴测投影也相互平行;与坐标轴平行 的线段,其轴测投影必与相应的轴测 轴平行,如图3-32所示。 ➢ 等比性:形体上两平行线段的长度之 比在投影图上保持不变。
(a)
(b)
(c) 图3-33 绘制三棱锥的正等轴测图
平面立体及其轴测投影
第 11 页
2.端面法
对于棱柱类和棱锥类形体,其轴测图通常可 先画出能反映其特征的一个端面或底面,然后以 此为基础画出可见侧棱和底边棱线,这种画法称 为端面法。利用端面法绘制棱台类形体的轴测图 时,通常先画出其上底面或下底面,然后以此为 基础画出可见侧棱,最后连接各侧棱的顶点,即 可完成形体的轴测图。
将空间物体连同确定其位置的直角坐标系,沿不平行 于任何一个坐标平面的方向,用平行投影法投射在某一选 定的单一投影面上所得到的具有立体感的图形,称为轴测 投影图,简称轴测图,如图3-31所示。
第3 页
图3-31 轴测图的形成
平面立体及其轴测投影
在轴测投影中,我们把选定的投影面P
称 为 轴 测 投 影 面 ; 把 空 间 直 角 坐 标 轴 OX ,
三棱锥的正等轴测图。
作图步骤: (1)在图3-33(a)中建立三棱锥的 坐标系O-XYZ,从而可确定三棱锥上S,A, B,C顶点的坐标值。为作图方便起见, 可使XOY坐标面与锥底面重合,OX轴通 过B点,OY轴通过C点。 (2)按轴间角120°画出正等轴测图 的轴测轴,然后沿各轴测轴上量取每个顶 点的坐标,以确定各顶点在轴测图中的位 置,如图3-33(b)所示。 (3)连接各顶点,擦去不可见棱线, 然后描深可见棱线,结果如图3-33(c) 所示。

平面投影练习题

平面投影练习题

平面投影练习题平面投影是图形学中的一个重要概念,是将三维物体投影到二维平面上的过程。

在工程设计和制图中,掌握平面投影技巧对于准确表达物体形状和尺寸至关重要。

在本文中,我们将介绍一些平面投影的练习题,帮助读者巩固和提升自己的平面投影技能。

1. 练习题一:正方体的正射投影题目:将一个边长为10厘米的正方体,按照所给视点(V)和投影面(P)进行正射投影,请绘制该正方体在投影面上的平面投影图。

解析:首先,确定视点(V)和投影面(P)。

以正方体的中心为视点(V),选择一个合适的平面作为投影面(P)。

然后,将正方体的各个顶点沿着直线投影到投影面上,连接相应的投影点,得到平面投影图。

2. 练习题二:圆柱的轴测投影题目:将一个半径为5厘米,高度为8厘米的圆柱,按照所给视点(V)和投影面(P)进行轴测投影,请绘制该圆柱在投影面上的平面投影图。

解析:首先,确定视点(V)和投影面(P)。

以圆柱的底面圆心为视点(V),选择一个合适的平面作为投影面(P)。

然后,将圆柱的底面投影为一圆,并以底面圆心为轴心,以底面周长为生成线,画出圆柱的外表面。

最后,连接相应的投影点,得到平面投影图。

3. 练习题三:立体图形的剖面投影题目:给定一个底面为边长为10厘米的正方形,高度为15厘米的四棱锥,按照所给视点(V)和投影面(P)进行剖面投影,请绘制该四棱锥的平面投影图。

解析:首先,确定视点(V)和投影面(P)。

以四棱锥的底面中心为视点(V),选择一个合适的平面作为投影面(P)。

然后,将四棱锥的顶点沿着直线投影到投影面上,并标出底面四个顶点的投影点。

最后,连接相应的投影点,得到平面投影图。

通过以上三个练习题的实际操作,我们可以更好地理解平面投影的概念和技巧。

在实际应用中,我们可以通过使用CAD软件或手绘工具来实现平面投影的绘制。

总结:平面投影练习题是巩固和提升平面投影技巧的好方法。

通过练习,我们可以更好地理解平面投影的原理和方法,并能够准确地表达物体在平面上的形状和尺寸。

工程制图第五章立体的投影

工程制图第五章立体的投影

投影的分类
01
02
03
正投影
光线与投影面垂直,物体 的投影与原物体形状、大 小一致。
斜投影
光线与投影面形成一定角 度,物体的投影与原物体 形状、大小可能存在差异。
中心投影
光线通过一点投影到投影 面上,物体的投影与原物 体形状、大小可能存在较 大差异。
投影法在工程中的应用
建筑设计
通过正投影法绘制建筑物 的平面图、立面图和剖面 图,以表达建筑物的外观 和内部结构。
圆锥体的投影
1 2
圆锥体的投影特性
圆锥体在三面投影体系中分别形成圆、椭圆和抛 物线。
圆锥体的三视图
主视图、俯视图和左视图。
3
圆锥体投影的作图方法
根据圆锥体的轴线位置,确定其在三面投影体系 中的位置,然后根据投影规律画出其三视图。
曲面立体投影的作图方法
曲面立体投影的作图步骤
曲面立体投影的应用
首先确定曲面立体的形状和尺寸,然 后根据其在三面投影体系中的位置, 按照投影规律画出其三视图。
曲面立体投影在工程制图、建筑设计、 机械制造等领域有着广泛的应用,是 工程技术人员必须掌握的基本技能之 一。
曲面立体投影的注意事项
在作图过程中,需要注意曲面的曲率、 方向和投影角度等因素,以确保绘制 的图形准确无误。
04 组合体的投影
组合体的构成方式
叠加型
由基本几何体按一定方式叠加而成,各基本体之间相 对位置关系明确。
对于截断立体和相贯立体,尺寸标注更为复杂。需要明确截断和相贯的位置,以及各个部分的大小。这涉及到对立体结构的 深入理解,以确保标注的尺寸能够准确反映立体的实际结构和形状。
Hale Waihona Puke 组合体的尺寸标注全面反映组合体的结构和功能

3-2 平面立体-平面立体三视图及表面上点的投影

3-2 平面立体-平面立体三视图及表面上点的投影

底面//H
锥顶S到底面的垂线垂足是四边形的中心
§3-2 平面立体三视图及表面上点的投影
一、平面立体三视图
3、正四棱锥——绘制三视图
步骤: 选主视图 绘制作图基准线 逐个形体绘制 检查、描深



画基准线 画底面 画左右棱锥面 画前后棱锥面 检查、描深
§3-2 平面立体三视图及表面上点的投影
S


C A B


画基ቤተ መጻሕፍቲ ባይዱ线 画底面ABC 画SAC面 画SAB、SBC面 检查、描深
§3-2 平面立体三视图及表面上点的投影
一、平面立体三视图
§3-2 平面立体三视图及表面上点的投影
二、平面立体表面上点、线的投影
1、正三棱柱上点线的投影
m'
C A B
M
m"
k'
n'
k"
(n ")
K
N
C1
m
n



画基准线 画顶、底 画前后棱面 画其他棱面 检查、描深
§3-2 平面立体三视图及表面上点的投影
一、平面立体三视图
2、正三棱柱——投影分析 由5个表面围成
按图示姿态:
顶面、底面 //H 后棱面 //V
两个前棱面 ⊥H
§3-2 平面立体三视图及表面上点的投影
一、平面立体三视图
2、正三棱柱——绘制三视图
一、平面立体三视图
4、正三棱锥——投影分析 由4个表面围成
按图示姿态:
底面 //H
S
后棱锥面
⊥W
C A B
锥顶S到底面的垂线垂足是三角形的中心
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档