课程设计(论文)-卧式钻孔组合机床液压系统设计

合集下载

液压传动课程设计-卧式单面多轴钻孔组合机床动力滑台的液压系统

液压传动课程设计-卧式单面多轴钻孔组合机床动力滑台的液压系统

液压传动课程设计-卧式单面多轴钻孔组合机床动力滑台的液压系统一、课程设计要求1. 设计卧式单面多轴钻孔组合机床动力滑台的液压系统。

2. 列出液压系统的工作原理图和液压元件的选型计算书。

3. 进行机床的控制系统设计及编写控制程序。

二、机床结构简介卧式单面多轴钻孔组合机床是一种多功能机床,可钻、攻丝、铰孔、铣槽、半圆弧等复合工艺操作,适广泛用于水泵、汽车、空气压缩机、发电机、电机、气动工具及家具等行业的生产制造。

机床结构主要由床身、主轴箱、工作台、电气系统、液压系统等组成。

其中,床身用于支撑整机,主轴箱用于装配主轴及各个传动装置,工作台用于夹持工件及执行传动。

注:本设计仅涉及液压系统部分的工作原理图和液压元件的选型。

三、液压系统工作原理图液压系统主要用于机床的升降、夹紧、进给等控制操作。

下面的工作原理图展示了该机床的主要液压系统结构。

液压油泵为双联泵,分别提供高压和低压液压油,高压系统主要用于机床的动力传输和工作台的升降,低压系统则用于工作台和主轴箱的夹持、进给和径向递进。

四、液压元件的选型计算本文中设计的液压系统主要包括液压油泵、液压缸、液压阀、液压滤清器、液压压力表等液压元件。

针对所需控制的液压作用,根据相应的公式和数据手册,进行液压元件的选型计算。

液压元件选型计算书如下:五、控制系统设计本设计中,机床的控制系统主要由PLC控制器、触摸屏、传感器、执行器和电磁阀等组成,通过编写相应的控制程序,实现机床的高效稳定运行。

液压系统的控制程序中主要包括如下控制命令:1. 单向液压缸的伸出和缩回控制命令。

2. 双向液压缸的伸出和缩回控制命令。

3. 液压油泵的控制启停命令。

4. 电磁阀的开关控制命令。

5. 液压滤清器的定期清洗命令。

通过不同的控制命令组合,可以实现机床的不同运动状态和操作需求,从而提高机床的生产效率和工作质量。

六、总结本文对卧式单面多轴钻孔组合机床动力滑台的液压系统进行了详细介绍,并给出了液压系统的工作原理图和液压元件的选型计算书,同时简要讲述了机床的控制系统设计流程和控制命令。

卧式单面多轴钻孔组合机床的液压系统液压传动课程设计说明书

卧式单面多轴钻孔组合机床的液压系统液压传动课程设计说明书

学院学生课程设计(论文)题目:液压传动课程设计——卧式单面多轴钻孔组合机床的液压系统所在院(系):机械工程学院专业:机械设计制造及其自动化学院本科学生课程设计任务书注:任务书由指导教师填写。

课程设计(论文)指导教师成绩评定表目录1 设计题目 (1)2 负载分析 (1)3 负载图和速度图的绘制 (3)3.1 绘制负载图 (3)3.2 绘制速度图 (3)4 液压缸主要参数的确定 (4)4.1 初选液压缸的工作压力 (4)4.2 液压缸面积计算 (4)4.3 计算各个工作阶段中的压力、流量和功率值 (5)5 液压系统图的拟定 (6)5.1 液压回路的选择 (6)5.2 液压回路的综合 (7)6 液压元件的选择 (9)6.1 液压泵 (9)6.2 阀类元件及辅助元件选择 (10)6.3 油管 (11)6.4 油箱 (13)7 液压系统性能验算 (13)7.1 验算系统压力损失并确定阀的调整值 (13)7.2 油液温升验算 (15)8 致 (16)9 参考文献 (16)1 设计题目1. 设计题目试设计一卧式单面多轴钻孔组合机床的液压系统,要求液压系统完成的工作循环是:快进——工进——快退——停止;系统参数如下表,动力滑台采用平面导轨,其静、动摩擦系数分别为0.2、0.1,往复运动的加减速时间要求不大于0.2s。

2. 设计容完成系统设计计算,5000字左右的课程设计论文,包含动作循环图、负载图、速度图、系统原理图。

绘制系统图,液压缸图纸。

3. 设计数据卧式单面多轴钻孔组合机床的液压系统设计已知数据见表1-1:表1-1 卧式单面多轴钻孔组合机床的液压系统设计已知数据2 负载分析 负载与运动分析:工作负载:高速钢钻头钻铸铁孔时的轴向切削力t F (单位为N )与钻头直径D (单位为mm )、每转进给量s (单位为mm/r )和铸铁硬度HBW 之间的经算式为:0.80.625.5()t F Ds HBW = (2-1) 钻孔时的主轴转速n 和每转进给量s (参考《组合机床设计手册》)选取:对φ13.8mm 的孔,1n =360r/min ,1s =0.147mm/r 对φ8.5的孔, 2n =550r/min, 2s =0.096mm/r 代入式(1-1)求得:6.08.06.08.0240096.05.85.254240147.08.135.2512⨯⨯⨯⨯+⨯⨯⨯⨯=s F =27975N惯性负载 m=G g = 8.99800kg=1000kg m v F mt ∆=∆=1000⨯2.0607⨯=583N 阻力负载 静摩擦阻力N N F fs 196098002.0=⨯=动摩擦阻力N N F fd 98098001.0=⨯=由此得出液压缸在各工作阶段的负载如下表2-1所示:表2-1 液压缸在各工作阶段的负载 (单位:N )注: 1. 液压缸的机械效率通常取0.9-0.95,此处取0.9。

课程设计-卧式多轴钻孔机床液压系统设计

课程设计-卧式多轴钻孔机床液压系统设计

目录一、动力滑台的受力分析----------------------------------------------2二、绘制负载图和速度图----------------------------------------------4三、确定液压系统参数-------------------------------------------------41.初定液压缸的工作压力-----------------------------------------------42.计算液压缸尺寸--------------------------------------------------------43.设计液压缸在工作循环中各阶段所需要的压力-----------------54.绘制液压缸工况图-----------------------------------------------------6四、拟定液压系统原理图----------------------------------------------61.调速方式的选择-------------------------------------------------------72.快速回路和速度换接方式的选择----------------------------------73.油源的选择-------------------------------------------------------------74.液压系统的组合-------------------------------------------------------8五、选择液压元件------------------------------------------------------91.选择液压泵和电机----------------------------------------------------92.元件选择----------------------------------------------------------------113.确定管道尺寸----------------------------------------------------------114.确定油箱容积----------------------------------------------------------11六、液压系统的发热与温升验算------------------------------------121.液压泵的输入功率----------------------------------------------------122.液压泵的输入功率----------------------------------------------------133.液压泵的输入功率----------------------------------------------------13任务书设计一台卧式多轴钻孔机床液压系统(1) 要求完成快进——工进——快退——原位停止工作循环。

卧式单面多轴钻孔组合机床液压课程设计

卧式单面多轴钻孔组合机床液压课程设计

卧式单面多轴钻孔组合机床液压课程设计以卧式单面多轴钻孔组合机床液压课程设计为标题,本文将从机床结构设计、液压系统设计、控制系统设计三个方面进行详细阐述。

一、机床结构设计卧式单面多轴钻孔组合机床是一种具有多轴钻孔功能的机床,其结构设计至关重要。

在设计过程中,需要考虑以下几个方面:1.1 机床整体结构设计卧式单面多轴钻孔组合机床的整体结构应具有良好的刚性和稳定性,以确保加工过程中的精度和稳定性。

同时,还需要考虑机床的操作便捷性和安全性。

1.2 主轴设计主轴是机床的核心部件之一,其设计应考虑主轴的转速范围、功率和扭矩需求,以满足不同工件的加工要求。

1.3 工作台设计工作台是机床上用于夹持工件的部件,其设计应考虑工件的尺寸和重量,以确保工件在加工过程中的稳定性和精度。

二、液压系统设计液压系统是卧式单面多轴钻孔组合机床的重要组成部分,其设计应满足以下要求:2.1 液压元件的选择液压系统中的液压元件包括液压泵、液压马达、液压缸等,其选择应根据机床的工作负荷和工作条件进行合理搭配,以确保液压系统的正常运行。

2.2 液压系统的工作压力和流量设计液压系统的工作压力和流量设计应根据机床的工作要求和液压元件的额定参数进行合理选取,以确保液压系统能够稳定可靠地提供所需的液压能力。

2.3 液压管路设计液压管路的设计应考虑液压系统的布局和液压元件的连接方式,以确保液压油能够顺畅地流动,并且减少液压泄漏的可能性。

三、控制系统设计控制系统是卧式单面多轴钻孔组合机床的关键部分,其设计应满足以下要求:3.1 控制方式的选择控制系统可以采用传统的机械控制方式,也可以采用现代的数控控制方式。

在选择控制方式时,需要考虑机床的加工精度要求和操作人员的技术水平。

3.2 控制系统的功能设计控制系统的功能设计应根据机床的工作要求和操作人员的操作习惯进行合理设计,以提高机床的工作效率和加工质量。

3.3 控制系统的安全设计控制系统的安全设计应考虑到机床在工作过程中可能出现的故障和意外情况,采取相应的安全措施,保障操作人员的人身安全。

卧式钻孔组合机床的液压系统课程设计

卧式钻孔组合机床的液压系统课程设计

摘要关键词:液压液压系统组合机床液压系统已经在各个部门得到越来越广泛的应用,而且越先进的设备,其应用液压系统的部门就越多。

液压传动是用液体作为来传递能量的,液压传动有以下优点:易于获得较大的力或力矩,功率重量比大,易于实现往复运动,易于实现较大范围的无级变速,传递运动平稳,可实现快速而且无冲击,与机械传动相比易于布局和操纵,易于防止过载事故,自动润滑、元件寿命较长,易于实现标准化、系列化。

液压传动的基本目的就是用液压介质来传递能量,而液压介质的能量是由其所具有的压力及力流量来表现的。

而所有的基本回路的作用就是控制液压介质的压力和流量,因此液压基本回路的作用就是三个方面:控制压力、控制流量的大小、控制流动的方向。

所以基本回路可以按照这三方面的作用而分成三大类:压力控制回路、流量控制回路、方向控制回路。

一.设计要求及工况分析1.1设计要求要求设计一台卧式钻孔组合机床的液压系统。

要求完成如下工作循环:快进→工进→快退→停止。

机床的切削力为F e =25000N ,工作部件的重量为9800N ,快进与快退的速度均为7m/min ,工进速度为0.05m/min ,快进行程为150mm ,工进行程为40mm ,加速、减速时间要求不大于0.2s ,动力平台采用平导轨,静摩擦系数0.2;动摩擦系数为0.1。

要求活塞杆固定,油缸与工作台连接。

设计该组合机床的液压传动系统。

设计参数如下:切削力F e =25000N 工作部件质量G=9.8KN 快进速度1V =7m/min=0.12m/s 工进速度2V =0.05m/s=8.3×410-m/s 快退速度3V =7m/min=0.12m/s快进行程1S =150mm ,工进行程2S =40mm,则快退行程3S =150+40=190mm 1.2负载与运动分析(1)工作负载。

工作负载即轴向切削力,F e =25000N 。

(2)摩擦负载工作部件重量为G=9.8KN ,则摩擦负载为f F =µG静摩擦负载 0.298001960fs F N =⨯= 动摩擦负载 0.19800980fd F N =⨯=(3)惯性负载 取加速、减速时间均为0.2s ,则惯性负载为 a 98000.126009.80.2G v F N N g t ∆=⨯=⨯=∆ (4) 液压缸在各工作阶段的负载值设液压缸的机械效率 w η=0.9,根据公式计算得出液压缸在各阶段的负载和推力。

液压课程设计--设计一台卧式钻孔组合机床的液压系统

液压课程设计--设计一台卧式钻孔组合机床的液压系统

目录0.摘要 (1)1.设计要求 (2)2.负载与运动分析 (2)2.1负载分析 (2)2.2快进、工进和快退时间 (3)2.3液压缸F-t图与v-t图 (3)3.确定液压系统主要参数 (4)3.1初选液压缸工作压力 (4)3.2计算液压缸主要尺寸 (4)3.3绘制液压缸工况图 (5)4.拟定液压系统的工作原理图 (7)4.1拟定液压系统原理图 (7)4.2原理图分析 (8)5.计算和选择液压件 (8)5.1液压泵及其驱动电动机 (8)5.2阀类元件及辅助元件的选 (10)6.液压系统的性能验算 (10)6.1系统压力损失验算 (10)6.2系统发热与温升验算 (11)7.课设总结 (12)0.摘要液压传动技术是机械设备中发展最快的技术之一,特别是近年来与微电子、计算技术结合,使液压技术进入了一个新的发展阶段,机、电、液、气一体是当今机械设备的发展方向。

在数控加工的机械设备中已经广泛引用液压技术。

作为机械制造专业的学生初步学会液压系统的设计,熟悉分析液压系统的工作原理的方法,掌握液压元件的作用与选型是十分必要的。

液压传动在国民经济的各个部门都得到了广泛的应用,但是各部门采用液压传动的出发点不尽相同:例如,工程机械、压力机械采用液压传动的主要原因是取其结构简单、输出力大;航空工业采用液压传动的主要原因取其重量轻、体积小;机床上采用液压传动的主要原因则是取其在工作过程中能无级变速,易于实现自动化,能实现换向频繁的往复运动等优点。

关键词:钻孔组合机床卧式动力滑台液压系统1.设计要求设计一台卧式钻孔组合机床的液压系统,要求完成如下工作循环式:快进→工进→快退→停止。

机床的切削力为25000N ,工作部件的重量为9800N ,快进与快退速度均为7m/min ,工进速度为0.05m/min ,快进行程为150mm ,工进行程40mm ,加速、减速时间要求不大于0.2s ,动力平台采用平导轨,静摩擦系数为0.2,动摩擦系数为0.1 。

液压课程设计-设计一卧式单面多轴钻孔组合机床动力滑台的液压系统毕业论文

5.设计一卧式单面多轴钻孔组合机床动力滑台的液压系统,动力滑台的工作循环是:快进——工进——快退——停止。

液压系统的主要参数与性能要求如下:轴向切削力为用21000N,移动部件总重力为10000N,快进行程为100mm,快进与快退速度均为4.2m/min,工进行程为20mm,工进速度为0.05m/min,加速、减速时间为0.2s,利用平导轨,静摩擦系数为0.2,动摩擦系数为0.1,动力滑台可以随时在中途停止运动。

课程设计装订顺序:1.封面(附件一)2.攀枝花学院本科学生课程设计任务书(附件二)3.课程设计(论文)指导教师成绩评定表(附件三)4.正文:①液压系统的工况分析(做速度-位移曲线以便找出最大速度点;做负载-位移曲线以便找出最大负载点。

液压缸在各阶段所受的负载需要计算,为简单明了起见可列表计算);②绘制负载和速度循环图;(液压缸工况图包括压力循环图p -s 、流量循环图q -s 和功率循环图P-s 绘制目的是为了方便地找出最大压力点、最大流量点和最大功率点。

计算过程可列表计算。

)③进行方案设计和拟定液压系统原理图;(方案设计包括供油方式、调速回路、速度换接控制方式、系统安全可靠性平衡、锁紧及节约能量等性能的方案比较根据工况分析选择出合理的基本回路并将这些回路组合成液压系统初步拟定液压系统原理图。

)④计算和选择液压元件;(计算液压泵的工作压力,计算液压泵的流量,选择液压泵的规格计算功率,选择原动机,选择控制阀,选择液压辅助元件)⑤验算液压系统性能;(验算液压系统的效率,验算液压系统的温升)⑥绘制正式工作图编制设计计算说明书。

(编制课程设计计算说明书,液压传动系统原理图一张3号图纸,包括工作循环图和电磁铁动作顺序表,液压缸2号图纸1张)5.参考资料一、设计任务1.1工作循环快进—工进—快退—停止。

1.2工作参数工作参数轴向切削力30000N ,移动部件总重20000N ,快进行程 100mm ,快进与快退速度 6m /min ,工进行程 20mm ,工进速度 40~250mm /min ,加、减速时间为0.2s ,静摩擦系数0.2,动摩擦系数0.1,动力滑台可在中途停止。

卧式钻镗组合机床液压课程设计

卧式钻镗组合机床液压课程设计介绍卧式钻镗组合机床是一种多功能的机床,它能够进行钻孔、镗孔等加工操作。

在机床的液压系统中,液压传动技术起到了至关重要的作用。

液压传动技术能够提供可靠的动力源和稳定的运动控制,使得机床的加工效率得到提高。

本文将围绕卧式钻镗组合机床的液压系统展开课程设计,包括以下几个方面:液压系统的工作原理、系统的组成部分、系统的调试与故障排除以及系统参数的优化。

液压系统的工作原理液压系统是利用液体进行能量传递和控制的系统。

在卧式钻镗组合机床中,液体主要起到传动动力和控制运动的作用。

液压系统的工作原理可以归纳为以下几个方面:1.液压泵通过驱动装置产生液体流动,形成一定的压力。

2.液压泵将液体通过管道输送到执行元件(如液压缸)。

3.执行元件接收到液体后,将液体转换为机械能,控制机床运动。

4.控制元件对液压系统中的液体压力进行调节和控制,以实现机床各部分的运动和协调。

系统的组成部分卧式钻镗组合机床的液压系统包括以下几个组成部分:1.液压泵:液压泵是液压系统的动力源,主要负责将液体流动和形成一定的压力。

通常采用柱塞泵或齿轮泵。

2.液压缸:液压缸是执行元件之一,负责将液体能量转换为机械能,实现机床运动。

液压缸通常采用单作用或双作用液压缸。

3.液压阀:液压阀是控制元件,用于调节和控制液压系统中液体的流动方向、压力和流量。

常见的液压阀有单向阀、溢流阀、比例阀等。

4.液压油箱:液压油箱是液压系统的储油装置,主要用于储存液压油并起到冷却、过滤和除气的作用。

5.管道和连接件:用于输送液体和连接各个液压元件的管道和连接件。

系统的调试与故障排除在卧式钻镗组合机床液压系统的调试过程中,常见的问题和故障有:1.液压泵无法启动:可能是电源故障、电机故障或传动装置故障。

需要仔细检查各个部分的连接是否正常,并进行相应的修复。

2.液压泵噪音过大:可能是液压泵内部零件损坏或泵体松动。

需要拆卸液压泵进行检修,并更换损坏的零件。

毕业设计论文机械设计制造及其自动化专业毕业设计卧式单面多轴钻孔组合机床液压系统设计

毕业设计论文机械设计制造及其自动化专业毕业设计卧式单面多轴钻孔组合机床液压系统设计在机械设计制造及其自动化专业毕业设计中,卧式单面多轴钻孔组合机床液压系统设计是一个重要的研究课题。

液压系统作为机床的重要组成部分,对机床的工作性能和精度有着直接的影响。

因此,针对卧式单面多轴钻孔组合机床的液压系统进行设计和优化具有重要的意义。

首先,卧式单面多轴钻孔组合机床液压系统设计的目标是提高工作效率和精度。

为了实现这一目标,设计的液压系统需要具备以下特点:1.高静态刚度:机床在工作时需要承受较大的载荷和惯性力,因此液压系统需要具备高静态刚度,以保证机床在工作时的稳定性和精度。

2.快速响应:钻孔过程需要快速准确地控制液压缸的行程和速度,因此液压系统需要具备快速响应的特点,以提高钻孔的效率和精度。

3.确保工装的牢固性:液压系统需要提供足够的压力和稳定的控制力来保证工装的牢固性,防止在钻孔过程中出现工装的移动或松动现象。

4.节能环保:液压系统需要设计合理的节能措施,如采用高效的液压元件和控制系统,以减少能源的消耗和对环境的污染。

为了实现上述需求,液压系统设计需要进行以下步骤:1.确定液压系统的工作参数:根据机床的工作要求和性能指标,确定液压系统的工作参数,如液压缸的工作压力、流量和速度等。

2.选择液压元件:根据液压系统的工作参数,选择适当的液压元件,如液压泵、液压缸、液压阀和液压油缸等。

3.设计液压系统的控制回路:根据机床的工作过程和功能要求,设计合理的液压系统控制回路,如单向控制、双向控制和比例控制等。

4.进行液压系统的仿真分析:使用液压仿真软件对设计的液压系统进行仿真分析,评估其工作效果和性能指标,优化设计参数以达到设计要求。

5.制定液压系统的维护和保养计划:根据液压系统的工作特点和维护要求,制定液压系统的维护和保养计划,以延长液压系统的使用寿命和提高维修效率。

总之,卧式单面多轴钻孔组合机床液压系统设计是一项复杂而重要的任务,需要综合考虑机床的工作要求和性能指标,合理选择液压元件,设计合理的控制回路,并进行仿真分析和维护保养计划制定,以更好地提高机床的工作效率和精度。

【精品】液压课程设计卧式单面多轴钻孔组合机床液压系统

【精品】液压课程设计卧式单面多轴钻孔组合机床液压系统一、设计背景卧式单面多轴钻孔组合机床通常被应用于大型工件的钻孔、铣削、攻丝等加工过程中。

本文的任务是设计出一套卧式单面多轴钻孔组合机床液压系统,确保工件在加工中具有较高的精度和稳定性。

二、设计目标1. 设计一套稳定性高、精度高的液压系统,确保工件在加工过程中具有稳定可靠的加工质量。

2. 降低系统维护成本,提高使用寿命。

3. 确保系统安全性高,防止系统故障对加工工作造成危害。

三、设计方案本系统采用开环控制策略,其主要组成部分包括:泵站、控制阀、执行元件、油箱、管路等。

1. 泵站:泵站主要由电机、泵、油温计、压力计、压力开关等组成,其中电机驱动泵的运转,油温计和压力计用来监测液压油的温度和压力水平,压力开关用来控制泵的运转状态。

2. 控制阀:控制阀用于控制液压系统中的流量大小和方向,以便实现机床的各项功能操作。

3. 执行元件:执行元件包括缸体、柱塞、电磁阀等,其作用是将液压系统中的动力传递给工件进行加工。

4. 油箱:油箱用于储存液压油,其容积需要根据机床的工作强度进行合理估算。

5. 管路:管路是连接各组成部分的管道,其泄漏率应该控制在合理的范围内,以确保机床的加工质量。

四、系统优点1. 稳定性高:本系统采用开环控制策略,其稳定性较高。

2. 驱动力强:泵站的驱动力较强,可以满足机床加工过程中的各种需求。

3. 具有良好的控制效果:控制阀的开关操作可以控制液压油的流量大小和方向,以实现机床的各项功能操作。

4. 安全性高:本系统的压力开关可以保证系统安全性,避免机床在工作过程中出现危险情况。

五、总结本文设计了一套卧式单面多轴钻孔组合机床液压系统,其稳定性高,驱动力强,控制效果良好,安全性高,能够满足机床加工的各项需求,同时降低了系统维护成本,提高了使用寿命。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录1 题目 (3)2技术参数和设计要求 (3)3工况分析 (3)4拟定液压系统原理图 (5)4.1确定供油方式 (5)4.2调速方式的选择 (5)4.3速度换接方式的选择 (5)5液压系统的计算和选择液压元件 (6)5.1液压缸主要尺寸的确定 (6)5.1.1 工作压力P的确定 (6)5.1.2 计算液压缸内径D和活塞杆直径d (6)5.1.3 计算在各工作阶段液压缸所需的流量 (7)5.2确定液压泵的流量、压力和选择泵的规格 (7)5.2.1 泵的工作压力的确定 (7)5.2.2泵的流量确定 (8)5.2.3 选择液压泵的规格 (8)5.2.4 与液压泵匹配的电动机的选定 (8)5.3液压阀的选择 (9)5.4确定管道尺寸 (9)5.5液压油箱容积的确定 (9)6液压系统的验算 (10)6.1 压力损失的验算 (10)6.1.1 工作进给时进油路压力损失 (10)6.1.2 工作进给时回油路的压力损失 (10)6.1.3 变量泵出口处的压力P p (11)6.1.4 快进时的压力损失 (11)6.2 系统温升的验算 (12)7液压缸的设计 (12)7.1 液压缸工作压力的确定 (12)7.2 液压缸的内径D和活塞杆d前面已经计算 (12)7.3液压缸的壁厚和外径的计算 (12)7.4缸盖厚度的确定 (13)7.5 最小导向长度 (13)7.6 导向滑动面长度 (13)7.7活塞宽度 (13)7.8 隔套的长度 (13)7.9缸体长度 (13)8 结束语 (13)9 参考文献 (13)1. 设计题目:卧式钻孔组合机床液压系统设计2.技术参数和设计要求设计一台卧式钻孔组合机床的液压系统,要求完成如下工作循环:快进→工进→快退→停止。

机床的切削力为2×104N,工作部件的重量为7.8×103 N,快进与快退速度均为6 m/min,工进速度为0.05 m/min,快进行程为100 mm,工进行程为50 mm,加速、减速时间要求不大于0.2 s,采用平导轨,静摩擦系数为0.2,动摩擦系数为0.1。

设计该组合机床的液压传动系统。

3工况分析根据已知条件,绘制运动部件的速度循环图,如图速度循环图液压缸所受外负载F包括三种类型,即F = F w+ F f + F m式中:F w—工作负载;F m—运动部件速度变化时的惯性负载;F f—导轨摩擦阻力负载,启动时为静摩擦阻力,启动后为动摩擦阻力,对于平导轨F f可由下式求得:F f = f ×GG —运动部件重力;f —导轨摩擦系数于是可得:F fs = 0.2×7.8×103 =1560NF fd = 0.1×7.8×103=780N上式中,F fs为静摩擦阻力,F fd为动摩擦阻力。

F m = GΔv/(g.Δt)式中:g —重力加速度;Δt —加速或减速时间;Δv —Δt时间内的进度变化量在本例中F m = 7.8 ×103×6/(9.8×0.2×60) = 398N根据上述计算结果,列出各工作阶段所受外负载4 拟定液压系统原理图4.1 确定供油方式考虑到该机床在工作进给时负载较大,速度较低,而在快进、快退时负载较小,速度较高,从节省能量,减少发热考虑,泵源系统宜选用双泵供油或变量泵供油,现采用带压力反馈的限压式变量叶片泵。

4.2 调速方式的选择在中小型专业机床的液压系统中,进给速度的控制一般采用节流阀或调速阀。

根据钻孔类专用机床工作时对低速性能和速度负载特性都有一定要求的特点,决定采用限压式变量泵和调速阀组成的容积节流调速。

这种调速回路具有效率高、发热小和速度刚性好的特点,并且调速阀装在回油路上,具有承受负切削力的能力。

4.3 速度换接方式的选择本系统采用电磁阀的快慢速换接回路,它的特点是结构简单、调节行程比较方便、阀的安装也较简单,但速度换接的平稳性较差。

若要提高系统的换接平稳性,则可改用行程阀切换的速度换接回路。

5 液压系统的计算和选择液压元件5.1 液压缸主要尺寸的确定5.1.1 工作压力P的确定工作压力P可根据负载大小及机器的类型来初步确定,现参阅指导书表2-1取液压缸的工作压力为3-5Mpa,本系统取液压缸的工作压力为5Mpa.5.1.2 计算液压缸内径D和活塞杆直径d由负载图知最大负载F为20780N,按指导书表2-2执行元件背压的估算值:可取P2为0.5MPa,ηcm为0.95,考虑到快进、快退速度相等,取d/D为0.7。

将上述数据代入公式可得D ={(4×20780)/[3.14×50×100000×0.95(1-5(1-0.72)/5 0)]}1/2=0.084 (m) 圆整为标准值100mm.根据指导书表2-4液压缸内径尺寸系列(GB2348-80),将液压缸内径圆整为标准系列直径D=100mm,活塞杆直径d,按d/D=0.7及指导书表2-5活塞杆直径尺寸系列(GB2348-80)活塞杆直径系列取d=70mm。

按最低工进速度验算液压缸的最小稳定速度,可得:A≥Q min / V min =0.05×1000/5=10(cm2)式中:Q min是由产品样本查得GE系列调速阀AQF3-E10B的最小稳定流量为0.05L/min。

A=π×(D2-d2)/4 =π×(102-72)/4 = 40(cm2)可见上述不等式能满足,液压缸能达到所需低速。

5.1.3 计算在各工作阶段液压缸所需的流量Q(快进) = πd2V(快进)/4 =π(0.07)2×6/4 = 23.08(L/min)Q(工进) = πD2V(工进)/4 =π(0.1)2×0.05/4 = 3.93(L/min)Q(快退) = π(D2-d2)V(快退)/4 =π(0.12-0.072)×6/4= 24.02(L/min)5.2 确定液压泵的流量、压力和选择泵的规格5.2.1 泵的工作压力的确定考虑到正常工作中进油管路有一定的压力损失,所以泵的工作压力为P p = P1 +ΣΔp式中:P p—液压泵最大工作压力;P1—执行元件最大工作压力;ΣΔp—进油管路中的压力损失,初算是简单系统可取0.2~0.5MPa,复杂系统可取0.5~1.5MPa。

本题中取0.5MPa。

因此P p = P1 +ΣΔp = 5+0.5 = 5.5(MPa)上述计算所得的P p是系统的静态压力,考虑到系统在各种工况的过渡阶段出现的动态压力往往超过静态压力。

另外考虑到一定的压力贮备量,并确保泵的寿命,因此选泵的额定压力P a应满足P a≥(1.25~1.6)P p。

中低压系统取小值,高压系统取大值。

在本题中P a = 1.3Pp,P p =5.5MPa。

5.2.2泵的流量确定液压泵的最大流量应为Q p≥K L(ΣQ)max式中:Q —液压泵的最大流量;(ΣQ)max—各执行元件所需流量之和的最大值。

如果这时溢流阀正进行工作,尚须加1溢流阀的最小流量2~3 L/min;K L—系统泄露系数,一般取1.1~1.3,现取K L = 1.2。

因此Q p = K L(ΣQ)max = 1.2×24.02= 28.82(L/min)5.2.3 选择液压泵的规格根据以上算得的P p和Q p,查阅有关手册,现选用YBX—25限压式变量叶片泵,该泵的基本参数为:每转排量q = 25mL/r,泵的额定压力P0 = 7.3MPa,电动机转速n0 = 1450r/min,容积效率ηv = 0.85,总效率η= 0.72。

5.2.4 与液压泵匹配的电动机的选定首先分别算出快进与工进两种不同工况时的功率,取两者较大值作为选择电动机规格的依据。

由于在慢进时泵输出的流量减小,泵的效率急剧降低,一般当流量在0.2~1L/min范围内时,可取η= 0.03~0.14。

同时还应注意到,为了使所选择的电动机在经过泵的流量特性曲线最大功率点时不致停转,需进行验算,即P b = Q p/η≤P d式中:P d—所选电动机额定功率;P b—限压式变量泵的限定压力;Q p—压力为P b时,泵的输出流量。

首先计算快进时的功率,快进时的外负载为780N,进油路的压力损失定为0.3MPa,由公式可得:P b = [780/(π0.072/4) ×10-6+0.3] = 0.50MPa快进时所需电机功率为:P = P b Q p/η= 0.50×23.08/(60×0.72) = 0.267(kW)工进时:P b=[20780/(π0.12/4) ×10-6+0.3] = 2.947(MPa)工进时所需电机功率为:P = P b Q p/η= 2.947×3.93/(60×0.72) = 0.268(kW)查阅电动机产品样本,选用Y90S—4型电动机,其额定功率为1.1kW,额定转速为1400r/min。

根据产品样本可查得YBX—25的流量压力特性曲线。

再由已知的快进时流量为23.08L/min,工进时的流量为3.93L/min,压力为4.5MPa,作出泵的实际工作时的流量压力特性曲线,如图3-1所示,查得该曲线拐点处的流量为30L/min,压力为3MPa,该工作点对应的功率为P = 3×30/(60×0.7)= 2.14(kW)所选电动机功率满足要求,拐点处能正常工作。

图3-1 YBX—25液压泵特性曲线1—额定压力下的特性曲线;2—实际工作时的特性曲线5.3 液压阀的选择该液压系统可采用力士乐系列阀或GE系列阀。

本题均选用GE系列阀。

根据所拟定的液压系统图,按通过各元件的最大流量来选择液压元件的规格。

选定的液压元件如下表:5.4 确定管道尺寸油管内径尺寸一般可参照选用的液压元件接口尺寸而定,也可按管路允许流速进行计算。

本系统油路流量为差动时流量Q = 55L/min,压油路的允许流速取V = 4m/s,则内径d = 4.6(Q / V)1/2 = 4.6(55 / 4)1/2 = 17.06(mm)若系统主油路流量按快退时取Q = 24.02L/min,则可算得油路内径 d = 12.28mm。

综合诸因素,现取油管的内径d为15mm。

吸油管同样可按上式计算,现参照YBX—25变量泵吸油口连接尺寸,出吸油管内径d为25mm。

5.5 液压油箱容积的确定本题为中压液压系统,液压油箱有效容量按泵的流量的5~7倍来确定,现选用容量为160L的油箱。

6液压系统的验算已知该液压系统的进、回油管的内径均为15mm,各段管道的长度分别为:AB = 0.3m,AC = 1.7m,AD = 1.7m,DE = 2m。

相关文档
最新文档