(完整版)高中数学向量的加减与数乘知识总结+题库
(完整版)向量运算培优题(超全面、详细分类)

(完整版)向量运算培优题(超全面、详细分
类)
本文将分享关于向量运算的优秀题目,并对题目进行分类,让读者更加容易理解和掌握向量运算。
向量基本概念
1. 向量的基本概念及其表示方法
2. 向量的数量特征:模长、方向角、方向余弦及相互关系式
3. 向量相加的几何意义及其运算方法
4. 向量相减的几何意义及其运算方法
5. 向量的数量积及其几何意义
平面向量的运算
1. 平面向量及其图形表示
2. 平面向量的加法及其运算法则
3. 平面向量的减法及其运算法则
4. 平面向量数量积的几何意义及其计算方法
5. 平面向量相互垂直的判定方法
空间向量的运算
1. 空间向量及其图形表示
2. 空间向量的加法及其运算法则
3. 空间向量的减法及其运算法则
4. 空间向量数量积的几何意义及其计算方法
5. 空间向量相互垂直的判定方法
向量的应用
1. 向量的应用领域及特点
2. 向量的应用实例:平面几何和立体几何的计算问题
3. 向量的应用实例:平抛运动、斜抛运动和竖直上抛运动的问题
4. 向量的应用实例:物理力学中的向量问题
本文旨在帮助读者全面、系统地了解和掌握向量运算的知识,并提供大量高质量的题目供读者练习。
希望读者在学习过程中能够
深刻理解向量的概念、性质和应用,并在实际问题中灵活运用向量的思想和方法。
高一向量知识点加例题(含答案)

向量复习题知识点归纳一.向量的基本概念与基本运算 1、向量的概念:①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量 ④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量2、向量加法:设,AB a BC b ==,则a+b =AB BC +=AC(1)a a a =+=+00;(2)向量加法满足交换律与结合律;AB BC CD PQ QR AR +++++=,但这时必须“首尾相连”.3、向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b的差。
③作图法:b a -可以表示为从b 的终点指向a 的终点的向量(a 、b有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下:(Ⅰ)a a⋅=λλ; (Ⅱ)当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a 的方向相反;当0=λ时,0=a λ,方向是任意的5、两个向量共线定理:向量b 与非零向量a共线⇔有且只有一个实数λ,使得b =a λ6、平面向量基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底 二.平面向量的坐标表示 j i ,分别为与x 轴,y 轴正方向相同的单位向量 1平面向量的坐标表示:平面内的任一向量a 可表示成a xi yj =+,记作a =(x,y)。
2平面向量的坐标运算:(1)若()()1122,,,a x y b x y ==,则()1212,a b x x y y ±=±± (2)若()()2211,,,y x B y x A ,则()2121,AB x x y y =-- (3)若a =(x,y),则λa =(λx,λy) (4)若()()1122,,,a x y b x y ==,则1221//0a b x y x y ⇔-=(4)若()()1122,,,a x y b x y ==,则1212a b x x y y ⋅=⋅+⋅ ,若a b ⊥,则02121=⋅+⋅y y x x三.平面向量的数量积1两个向量的数量积:已知两个非零向量a 与b ,它们的夹角为θ,则a ·b =︱a ︱·︱b ︱cos θ叫做a 与b 的数量积(或内积) 规定00a ⋅=2向量的投影:︱b ︱cos θ=||a ba ⋅∈R ,称为向量b 在a 方向上的投影投影的绝对值称为射影 3数量积的几何意义: a ·b 等于a 的长度与b 在a 方向上的投影的乘积 4向量的模与平方的关系:22||a a a a ⋅==5乘法公式成立:()()2222a b a b ab a b +⋅-=-=-; ()2222a ba ab b ±=±⋅+222a a b b =±⋅+6平面向量数量积的运算律:①交换律成立:a b b a ⋅=⋅②对实数的结合律成立:()()()()a b a b a b R λλλλ⋅=⋅=⋅∈③分配律成立:()a b c a c b c ±⋅=⋅±⋅()c a b =⋅± 特别注意:(1)结合律不成立:()()a b c a b c ⋅⋅≠⋅⋅;(2)消去律不成立a b a c⋅=⋅不能得到b c =⋅(3)a b ⋅=0不能得到a =0或b =07两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y ==,则a ·b =1212x x y y + 8向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ (001800≤≤θ)叫做向量a 与b 的夹角cos θ=cos ,a b a b a b•<>=•=当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题9垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥b10两个非零向量垂直的充要条件:a ⊥b ⇔a ·b=O ⇔2121=+y y xx 平面向量数量积的性质11≤±≤- 注意取等条件(共线)一、选择题(本大题共12小题,每小题5分,共60分)1.已知两点()3,2M ,()5,5N --,12MP MN =,则P 点坐标是 ( ) A .()8,1- B .31,2⎛⎫--⎪⎝⎭ C .31,2⎛⎫ ⎪⎝⎭D .()8,1- 2.下列向量中,与向量(1,1)a =-平行的向量是 ( )A .(0,2)b =B .(2,0)c =C .(2,2)d =D .(2,2)f =-3.a (2,1)=,b ()3,4=,则向量a 在向量b 方向上的投影长度为 ( ) A .25 B .2 C .5 D .10 4.在三角形ABC 中,C=450, a=5 ,b=4, 则=⋅CA BC( )A .102B .202C .210-D .-2025.已知b a b a ,),5,2(),3,(-==λ的夹角为钝角,则λ的范围是 ( )A .215>λ B .215<λ C .56<λ D .56>λ 6.一只鹰正以水平方向向下300角飞行直扑猎物,太阳光从头上直射下来,鹰在地面上影子的速度为40m/s ,则鹰飞行的速度为 ( ) A .20m/s B .3380m/s C .20m/s D .80m/s 7.O 为平面中一定点,动点P 在A 、B 、C 三点确定的平面内且满足(OA OP -)·(AC AB -) =0,则点P 的轨迹一定过△ABC 的 ( ) A.外心B.内心C.重心D.垂心8.已知OA a,OB b ==,C 为AB 上距A 较近的一个三等分点,D 为CB 上据C 较近的一个三等分点,用a,b 表示OD 的表达式为 ( ) A.4a 5b 9+ B.9a 7b 16+ C.2a b 3+ D.3a b4+ 9.已知ABC ∆的三个顶点A 、B 、C 及平面内一点P ,且→→→→=++AB PC PB PA ,则点P 与ABC ∆ 的位置关系是( )A .P 在ABC ∆内部B .P 在ABC ∆外部C .P 在AB 边上或其延长线上D .P 在AC 边上或其延长线上10. 若i = (1,0), j =(0,1),则与2i +3j 垂直的向量是 ( )A .3i +2jB .-2i +3jC .-3i +2jD .2i -3j11.对于菱形ABCD ,给出下列各式:①AB BC = ;②||||AB BC =;③||||AB CD AD BC -=+;④22||||4||AC BD AB += 2其中正确的个数为 ( ) A .1个 B .2个 C .3个 D .4个12.在平面直角坐标系中,已知两点A (cos80o ,sin80o ),B(cos20o ,sin20o),则|AB |的值是( )A .12BC D .1二、填空题13.已知A(2,1),B(3,2),C(-1,5),则△ABC 的形状是 .14.已知实数x,y ,向量,a b 不共线,若(x+y-1)a +(x-y )b =0,则x= ,y= 15.若三点(1,2),(2,4),(,9)P A B x --共线,则x =16.在ABC ∆中,有命题:①AB AC BC -=;②AB BC CA ++=0;③若()()0AB AC AB AC +⋅-=,则ABC ∆为等腰三角形;④若0AC AB ⋅>,则ABC ∆为锐角三角形.其中正确的命题序号是 .(把你认为正确的命题序号都填上) 三、解答题17.(满分12分)设两个非零向量1e 和2e 不共线.(1)如果2121212,3,2e e CD e e CB e k e AB -=+=+=,若A 、B 、D 三点共线,求k 的值.(2) 若||1e =2,||2e =3,1e 与2e 的夹角为60,是否存在实数m ,使得m 1e 2e +与1e -2e 垂直?并说明理由. 18.(12分)已知向量)1,0(),0,1(,4,23212121==+=-=→→→→→→→→e e e e b e e a 其中;求(1)→→→→+⋅b a b a ;的值;(2)→a 与→b 的夹角的正弦值.19.(本小题满分12分)在,中ABC ∆设,,AB a BC b AC c ===, 060,3,4=∠==ABC BC AB , 求:(1)2a b -; (2)()()2a b a b -⋅+ ; (3)cos >+<b a a ,; 20. (本小题满分12分)已知a 、b 、c 是同一平面内的三个向量,其中a ()1,2=.(1) 若=c c //a ,求c 的坐标;(2) 若b ()1,m =()0m <且a +2b 与a -2b 垂直,求a 与b 的夹角θ.21.(本小题满分12分) 已知向量(2,1),(1,7),(5,1),OP OA OB X OP ===设是直线上的一点(O 为坐标原点),求XA XB ⋅的最小值.22.(本小题满分14分)已知点A 、B 、C 的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),α∈(2π,23π). (I )若|AC |=|BC |,求角α的值;(II )若AC ·BC =-1,求αααtan 12sin sin 22++的值.BDBCA BDA DC CD 4.C=⋅CABC =⨯⨯>=<⋅0135cos 45,cos CA BC 210-5.A><b a ,为钝角,0<⋅⇔b a 且b a ,不反向.6.B设鹰飞行的速度为v ,其在地面上的影子的速度为1v4030cos 0==⋅3380=. 二.填空13.锐角三角形 14. 0.5,0.5 15.17616.③三.解答 17. 证明:(1)AD =AB +BC +CD =(1e +2e )+(128e +2e )+(133e -2e ) =6(1e +2e )=6AB (2分)∴ //AD AB 且AD 与AB 有共同起点 (3分)∴ A 、B 、D 三点共线 (4分) (2)假设存在实数m ,使得m 1e 2e +与1e -2e 垂直,则(m 1e 2e +)⋅(1e -2e )=0∴221122(1)0me m e e e +-⋅-= (6分)||1e =2,||2e =3,1e 与2e 的夹角为60∴ 22114e e ==,22229e e ==,1212cos 23cos603e e e e θ⋅==⨯⨯= ∴ 43(1)90m m +--= ∴ 6m =故存在实数6m =,使得m 1e 2e +与1e -2e 垂直.18.解:显然→a =3(1,0)—2(0,1)=(3,—2),→b =4(1,0)+(0,1)=(4,1);易得:①→→⋅b a =3×4+(—2)×1=10;→→+b a =(3,—2)+(4,1)=(7,—1),→→+b a =22)1(7-+=25。
人教版高中数学必修第二册6.2.1-6.2.2 向量的减法运算 向量的加法运算 同步精练(含解析)

人教版高中数学必修第二册6.2.1-6.2.2向量的减法运算向量的加法运算同步精练【考点梳理】考点一向量加法的定义及其运算法则1.向量加法的定义:求两个向量和的运算,叫做向量的加法.2.向量求和的法则考点二向量加法的运算律交换律a +b =b +a 结合律(a +b )+c =a +(b +c )技巧:向量加法的平行四边形法则和三角形法则的区别和联系区别联系三角形法则(1)首尾相接(2)适用于任何向量求和三角形法则作出的图形是平行四边形法则作出图形的一半考点三:相反向量1.定义:与向量a 长度相等,方向相反的向量,叫做a 的相反向量,记作-a .2.性质(1)零向量的相反向量仍是零向量.(2)对于相反向量有:a +(-a )=(-a )+a =0.(3)若a ,b 互为相反向量,则a =-b ,b =-a ,a +b =0.考点四:向量的减法向量求和的法则三角形法则已知非零向量a ,b ,在平面内任取一点A ,作AB →=a ,BC →=b ,则向量AC →叫做a 与b 的和,记作a +b ,即a +b =AB →+BC →=AC →.这种求向量和的方法,称为向量加法的三角形法则.对于零向量与任意向量a ,规定a +0=0+a =a平行四边形法则以同一点O 为起点的两个已知向量a ,b 为邻边作▱OACB ,则以O 为起点的对角线OC →就是a 与b 的和.把这种作两个向量和的方法叫做向量加法的平行四边形法则1.定义:向量a加上b的相反向量,叫做a与b的差,即a-b=a+(-b),因此减去一个向量,相当于加上这个向量的相反向量,求两个向量差的运算,叫做向量的减法.2.几何意义:在平面内任取一点O,作OA→=a,OB→=b,则向量a-b=BA→,如图所示.3.文字叙述:如果把两个向量的起点放在一起,那么这两个向量的差是以减向量的终点为起点,被减向量的终点为终点的向量.【题型归纳】题型一:向量加法法则1.(2021·全国·高一课时练习)如图,已知向量a,b,c不共线,作向量a+b+c.2.(2021·全国·高一课时练习)如图,已知向量a,b不共线,求作向量a b .3.(2021·全国·高一课时练习)如图,O 为正六边形ABCDEF 的中心,作出下列向量:(1)OA OC +;(2)BC FE +(3)OA FE +.题型二:向量加法的运算律4.(2021·陕西·宝鸡市陈仓区教育体育局教学研究室高一期中)向量AB CB BD BE DC ++++化简后等于()A .A EB .ACC .ADD .AB5.(2021·全国·高一课时练习)如图,四边形ABCD 是梯形,AD ∥BC ,对角线AC 与BD 相交于点O ,则OA BC AB DO +++等于()A .CDB .DC C .DAD .DO6.(2021·广东·茂名市华英学校高一阶段练习)向量()()AB PB BO BM OP ++++化简后等于()A .BCB .ABC .ACD .AM题型三:向量加法法则的几何应用7.(2021·全国·高一课时练习)如图,D ,E ,F 分别为ABC 的边AB ,BC ,CA 的中点,则()A .0AD BE CF ++=B .0++=BD CF DFC .0++=AD CE CF D .0++=BD BE FC 8.(2021·全国·高一课时练习)如图,在正六边形ABCDEF 中,BA CD FB ++等于()A .0B .BEC .AD D .CF9.(2021·江西省修水县英才高级中学高一阶段练习)如图,在平行四边形ABCD 中,E 是CD 的中点,设AB a =,AD b =,则向量BE =().A .12a b-B .12a b-+C .12a b-D .12a b-+题型四:相反向量10.(2021·辽宁·建平县实验中学高一期末)如图,在四边形ABCD 中,AC 与BD 交于点O ,若AD BC =,则下面互为相反向量的是()A .AC 与CBB .OB 与ODuuu rC .AB 与DCD .AO 与OC11.(2021·山西临汾·高一阶段练习)在任意四边形ABCD 中,E ,F 分别为AD ,BC 的中点,设,AB a CD b ==,下列式子正确的是()A .2a b EF+=B .2a b EF-=C .a b EF+=D .a b EF-=12.(2021·全国·高一单元测试)若b 是a 的负向量,则下列说法中错误的是()A .a 与b 的长度必相等B .//a bC .a 与b 一定不相等D .a 是b 的负向量题型五:向量减法法则13.(2021·全国·高一课时练习)如图,已知向量a ,b ,c ,求作向量a b c --.14.(2021·全国·高一课时练习)如图,点O 是ABCD 的两条对角线的交点,AB a =,DA b =,OC c =,求证:b c a OA +-=.15.(2021·全国·高一课时练习)如图,已知OA a =,OB b =,OC c =,OD d =,OF f =,试用a ,b ,c ,d ,f r表示以下向量:(1)AC ;(2)AD ;(3)AD AB -;(4)AB CF +;(5)BF BD -.题型六:向量减法的运算律16.(2021·全国·高一课时练习)下列运算正确的个数是()①()326a a -⋅=-;②()()223a b b a a +--=;③()()220a b b a +-+=.A .0B .1C .2D .317.(2021·北京市第一六六中学高一期中)在ABC 中,13BD BC =,若AB a =,AC b =,则AD =()A .1233a b-B .1233a b+C .2133a b+D .2133a b-18.(2021·浙江·金乡卫城中学高一阶段练习)在平行四边形ABCD 中,设M 为线段BC 的中点,N 为线段AB 上靠近A 的三等分点,AB a =,AD b =,则向量NM =()A .1132a b+B .2132a b+C .1132a b-D .2132a b-题型七:向量减法法则的几何应用19.(2021·全国·高一课时练习)已知非零向量a 与b 方向相反,则下列等式中成立的是()A .a b a b -=-B .a b a b +=-C .a b a b+=-D .a b a b+=+20.(2021·全国·高一单元测试)已知正方形ABCD 的边长为1,AB a =,BC b =,AC c =,则||a b c +-等于()A .0B .1C .2D .221.(2021·全国·高一课时练习)如图,向量AB a →=,AC b →=,CD c →=,则向量BD →可以表示为()A .a b c --B .b a c +-C .a b c-+D .b a c-+【双基达标】一:单选题22.(2021·全国·高一课时练习)化简下列各式:①AB BC CA ++;②()AB MB BO OM +++uu u r uuu r uu u r uuu r;③OA OC BO CO +++;④AB CA BD DC +++.其中结果为0的个数是()A .1B .2C .3D .423.(2021·全国·高一课时练习)已知a 、b 是不平行的向量,若2AB a b =+,4BC a b =--,53CD a b =--,则下列关系中正确的是()A .AD CB =B .AD BC =C .2AD BC=D .2AD BC=-24.(2021·全国·高一课时练习)若非零向量a 和b 互为相反向量,则下列说法中错误的是().A .//a br r B .a b≠C .a b≠r r D .b a=-25.(2021·全国·高一课时练习)已知点O 是ABCD 的两条对角线的交点,则下面结论中正确的是().A .AB CB AC +=B .AB AD AC+=C .AD CD BD+≠D .0AO CO OB OD +++≠26.(2021·全国·高一课时练习)下列四式不能化简为PQ 的是()A .()AB PA BQ ++B .()()AB PC BA QC ++-C .QC CQ QP +-D .PA AB BQ+-27.(2021·全国·高一课时练习)已知六边形ABCDEF 是一个正六边形,O 是它的中心,其中,,OA a OB b OC c ===,则EF =()A .a b +B .b a -C .-c bD .b c-r r28.(2021·全国·高一课前预习)下列等式中,正确的个数为()①0a a -=-;②()a a --=;③()0a a +-=;④0a a +=;⑤()a b a b -=+-;⑥()0a a --=.A .3B .4C .5D .629.(2021·重庆实验外国语学校高一阶段练习)如右图,D ,E ,P 分别是ABC 的边AB ,BC ,CA 的中点,则()A .0AD BE CF ++=B .0BD CF DF -+=uu u r uu u r uuu r rC .0AD CE CF +-=uuu r uur uu u r r D .0BD BE FC --=30.(2021·山东济南·高一期末)在ABC 中,若点D 满足3BC DC =,则()A .1233AD AB AC =+B .2133AD AB AC =-C .1344AD AB AC =+D .3144AD AB AC =-31.(2021·山东滨州·高一期末)在ABC 中,2BD DC =,AE ED =,则BE =()A .1536AC AB-+B .1536AC AB-C .1136AC AB-+D .1136AC AB-【高分突破】一:单选题32.(2021·全国·高一课时练习)设()()a AB CD BC DA =+++,b 是任一非零向量,则在下列结论中:①//a b r r;②a b a +=;③a b b +=;④a b a b +<+;⑤a b a b +=+.正确结论的序号是()A .①⑤B .②④⑤C .③⑤D .①③⑤33.(2021·山东枣庄·高一期中)已知点G 是三角形ABC 所在平面内一点,满足0GA GB GC ++=,则G 点是三角形ABC 的()A .垂心B .内心C .外心D .重心34.(2021·全国·高一课时练习)下列命题中正确的是()A .如果非零向量a 与b 的方向相同或相反,那么a b +的方向必与a ,b 之一的方向相同B .在ABC 中,必有0AB BC CA ++=C .若0AB BC CA ++=,则A ,B ,C 为一个三角形的三个顶点D .若a ,b 均为非零向量,则||a b +与||||a b +一定相等35.(2021·福建·莆田第二十五中学高一期中)如图,已知OA a =,OB b =,OC c =,2AB BC =,则下列等式中成立的是()A .2c a b =-B .2=-c b aC .3122c b a =-D .3122c a b =-36.(2021·安徽·六安市裕安区新安中学高一期中)在平行四边形ABCD 中,14AE AC =,设AB a =,BC b =,则向量DE =uuu r ()A .1344a b-B .3144a b-C .2133a b-D .1233a b-37.(2021·湖南·高一阶段练习)在ABC 中,点E ,F 在边AB 上,且E ,F 为AB 边上的三等分点(其中E 为靠近点A 的三等分点),且CE mCB nCA =+,则()A .23m =,13n =-B .13m =,23n =C .23m =,13n =D .13m =,23n =-38.(2021·全国·高一课时练习)(多选)下列结论中错误的是()A .两个向量的和仍是一个向量B .向量a 与b 的和是以a 的始点为始点,以b 的终点为终点的向量C .0a a+=D .向量a 与b 都是单位向量,则||2a b +=r r 39.(2021·广东·江门市新会第二中学高一阶段练习)下列各式结果为零向量的有()A .AB CA BC→→→++B .AB AC BD CD+++C .OA OD AD-+D .NQ QP MN MP++-40.(2021·广东·南方科技大学附属中学高一期中)已知点D ,E ,F 分别是ABC 的边,,AB BC AC 的中点,则下列等式中正确的是()A .FD DA FA +=B .0FD DE EF ++=C .DE DA EC+=D .DA DE FD+=41.(2021·江苏·南京二十七中高一期中)已知OD OE OM +=,则下列结论正确的是()A .OD EO OM +=B .OM DO OE +=C .OM OE OD-=D .DO EO MO+=42.(2021·广东·洛城中学高一阶段练习)化简以下各式,结果为0的有()A .AB BC CA ++B .AB AC BD CD -+-C .OA OD AD-+D .NQ QP MN MP++-43.(2021·福建·永安市第三中学高中校高一阶段练习)下列命题中,正确的命题为()A .对于向量,a b ,若||||a b =,则a b =或=-a bB .若e 为单位向量,且a //e ,则||a a e =±C .若a 与b 共线,b 与c 共线,则a 与c 共线D .四边形ABCD 中,AB CD AD CB+=+uu u r uu u r uuu r uu r 二:填空题44.(2021·全国·高一课时练习)已知平面内三个不同的点A 、B 、C ,则“A 、B 、C 是一个三角形的三个顶点”是“0AB BC AC ++=”的___________条件.(填“充分不必要”、“必要不充分”或“充要”)45.(2021·全国·高一课时练习)已知下列各式:①AB BC CA ++;②()AB MB BO OM +++;③OA OC BO CO +++;④AB CA BD DC +++.其中结果为0的是____.(填序号)46.(2021·全国·高一课时练习)在ABC 中,D 是BC 的中点.若AB c =,AC b =,BD a =,d AD =,则下列结论中成立的是________.(填序号)①d a b -=;(2)d a b -=-;③d a c -=;④d a c -=-.47.(2021·全国·高一课时练习)如图,在正六边形ABCDEF 中,与OA OC CD -+相等的向量有__.①CF ;②AD ;③BE ;④DE FE CD -+;⑤CE BC +;⑥CA CD -;⑦AB AE +.三:解答题48.(2021·全国·高一课时练习)化简.(1)AB CD BC DA +++.(2)()()AB MB BO BC OM ++++.49.(2021·上海·高一课时练习)向量,,,,a b c d e r r r u r r 如图所示,据图解答下列问题:(1)用,,a d e 表示DB ;(2)用,b c 表示DB ;(3)用,,a b e 表示EC ;(4)用,d c 表示EC .50.(2021·全国·高一课时练习)化简:(1)AB BC CA ++;(2) ()AB MB BO OM +++;(3)OA OC BO CO +++;(4)AB AC BD CD -+-;(5)OA OD AD -+;(6)AB AD DC --;(7)NQ QP MN MP ++-.51.(2021·全国·高一课时练习)如图,四边形OADB 是以向量OA a =,OB b =为边的平行四边形,又13BM BC =,13CN CD =,试用a 、b 表示OM 、ON 、MN .【答案详解】【详解】由向量加法的三角形法则,a +b +c 如图,2.作图见解析,BA a b=-【分析】利用向量的加法法则求解.【详解】如图,在平面内任取一点O ,作OA a =,OB b =.因为OB BA OA +=,即b BA a +=,所以BA a b =-.3.(1)答案见解析(2)答案见解析(3)答案见解析【分析】利用向量加法的三角形法则或平行四边形法则进行求解﹒(1)因为四边形OABC 是以OA ,OC 为邻边的平行四边形,OB 为其对角线,所以OA OC OB +=uu r uuu r uu u r .(2)因为BC 与FE 方向相同且长度相等,所以BC 与FE 是相同的向量,从而BC FE +与BC 方向相同,长度为BC 长度的2倍,因此,BC FE +可用AD 表示,即BC FE AD +=.(3)因为OA 与FE 是一对相反向量,所以0OA FE +=.4.A【分析】根据向量的线性运算求解即可.【详解】由AB CB BD BE DC AC CB BE AE →→++++=++=,故选:A5.B【分析】利用向量加法的三角形法则以及向量加法的交换律即可求解.【详解】OA BC AB DO DO OA AB BC DC =++++=++.故选:B6.D【分析】根据向量的加法运算即可得到结果.【详解】()()()()AB PB BO BM OP AB BM PB BO OP AM++++=++++=故选:D7.A【分析】根据平面向量的线性运算法则计算可得;【详解】解:D Q ,E ,F 分别是ABC 的边AB ,BC ,CA 的中点,∴12AD AB =,12BE BC =,12CF CA =,则1111()02222AD BE CF CA AB CA CA AB CA ++=++=++=,故A 正确;()1111122222BD CF DF BA CA BA CA BA BC BC ++=++=++=,故B 错误;()1111122222AD CE CF AB CB CA CA AB CB CB ++=++=++=,故C 错误;()1111122222BD BE FC BA BC AC BA AC BC BC ++=++=++=,故D 错误;故选:A .8.A【分析】根据相等向量和向量加法运算直接计算即可.【详解】CD AF =,∴0BA CD FB BA AF FB ++==++.故选:A.9.B【分析】根据平行四边形的性质,利用向量加法的几何意义有BE BC CE =+,即可得到BE 与a 、b 的线性关系.【详解】由题设,AB DC a ==,则12EC a =,又AD BC b ==uuu r uu u r r ,∴12BE BC CE b a =+=-.故选:B10.B【分析】首先根据题意得到四边形ABCD 是平行四边形,从而得到OB 与OD uuu r 为相反向量.【详解】因为AD BC =,所以四边形ABCD 是平行四边形,所以AC ,BD 互相平分,所以OB OD =-,即OB 与OD uuu r 为相反向量.故选:B11.B【分析】根据题意,由向量的加法可得:EF EA AB BF =++和 EF ED DC CF =++,两个式子相加,化简即可得到答案.【详解】在任意四边形ABCD 中,E ,F 分别为AD ,BC 的中点,设,AB a CD b ==,则EF EA AB BF =++,同时有 EF ED DC CF =++,则有2 EF EA ED AB DC BF CF =+++++,因为E 、F 分别为AD,BC 的中点,则0, 0EA ED BF CF +=+=则有2a b EF -=.故选:B.12.C【分析】根据向量的定义判断.【详解】b 是a 的负向量,即b a =-,因此它们的长度相等,方向相反,即共线(平行),a 也是b 的负向量,但a 与b 一般不相等(只有它们为零向量时相等).错误的C .故选:C .13.见解析【分析】利用向量减法的三角形法则即可求解.【详解】由向量减法的三角形法则,令,a OA b OB →→→==,则a b OA OB BA →→→→→-=-=,令c BC →→=,所以a b c BA BC CA →→→--=-=.如下图中CA →即为a b c --.14.证明见解析【分析】利用向量的加法法则和向量相等求解.【详解】证明:因为四边形ABCD 是平行四边形,所以DA CB =.因为b c DA OC OC CB OB +=+=+=,OA a OA AB OB +=+=,所以b c OA a +=+,即b c a OA +-=.15.(1)c a→→-(2)d a→→-(3)d b→→-(4)b a f c→→→→-+-(5)f d→→-【分析】由向量减法法则依次计算即可得出各小问的结果.(1)AC OC OA c a →→→→=-=-.(2)AD OD OA d a →→→→=-=-.(3)AD AB BD OD OB d b →→→→→-==-=-.(4)AB CF OB OA OF OC b a f c →→→→→→→→+=-+-=-+-.(5)BF BD DF OF OD f d →→→→→-==-=-.16.C【分析】利用平面向量的加法,减法,数乘运算及其运算律判断.【详解】①()326a a -⋅=-,由数乘运算知正确;②()()223a b b a a +--=,由向量的运算律知正确;③()()220a b b a +-+=,向量的加法,减法和数乘运算结果是向量,故错误.故选:C17.C【分析】根据平面向量的线性运算法则,用AB ,AC ,表示出AD 即可.【详解】()112121333333AD AB BD AB BC AB AC AB AB AC a b =+=+=+-=+=+.故选:C18.B【分析】根据题意作出图形,将AM 用a 、b 的表达式加以表示,再利用平面向量的减法法则可得出结果.【详解】解:由题意作出图形:在平行四边形ABCD 中,M 为BC 的中点,则12AM AB BM a b =+=+又N 为线段AB 上靠近A 的三等分点,则1133AN AB a ==11212332NM AM AN a b a a b ∴=-=+-=+故选:B19.C【分析】根据方向相反的两个向量的和或差的运算逐一判断.【详解】A.a b -可能等于零,大于零,小于零,0a b a b -=+>,A 不成立B.a b a b +=-r r r r ,a b a b -=+,B 不成立C.a b a b -=+,C 成立D.a b a b a b +=-≠+,D 不成立.故选:C.20.A【分析】根据向量的线性运算即可求出.【详解】因为AB a =,BC b =,AC c =,所以0a b c AB BC AC AC AC +-=+-=-=.故选:A .21.D【分析】根据平面向量的加减法法则结合图形即可得到答案.【详解】如图,BD BC CD AC AB CD b a c →→→→→→→→→=+=-+=-+.故选:D.22.B【分析】根据向量的加减运算法则计算,逐一判断①②③④的正确性,即可得正确答案.【详解】对于①:0AB BC CA AC CA ++=+=,对于②:()AB MB BO OM AB BO OM MB AM MB AB +++=+++=+=uu u r uuu r uu u r uuu r uu u r uu u r uuu r uuu r uuu r uuu r uu u r,对于③:()()0OA OC BO CO BO OA CO OC BA BA +++=+++=+=,对于④:()()0AB CA BD DC AB BD DC CA AD DA +++=+++=+=,所以结果为0的个数是2,故选:B23.C【分析】结合向量的加法法则运算即可.【详解】AD =AB +BC +CD =8a -2b -=()24a b --=2BC .故选:C24.C【分析】根据相反向量的定义逐项判断即可.【详解】解:由平行向量的定义可知A 项正确;因为a 和b 的方向相反,所以a b ≠,故B 项正确;由相反向量的定义可知a b =-,故选D 项正确;由相反向量的定义知||||a b =,故C 项错误;故选:C .25.B【分析】根据平面向量线性运算法则计算可得;【详解】对于A :AB CB AB DA DB +=+=,故A 错误;对于B :AB AD AC +=,故B 正确;对于C :A B AD CD D B A D +=+=,故C 错误;对于D :0AO CO OB OD +++=,故D 错误;故选:B26.D【分析】由向量加减法法则计算各选项,即可得结论.【详解】A 项中,()()AB PA BQ AB BQ AP AQ AP PQ ++=+-=-=;B 项中,()()()()AB PC BA QC AB AB PC CQ PQ ++-=-++=;C 项中,QC CQ QP QP PQ +-=-=;D 项中,PA AB BQ PB BQ PQ +-=-≠.故选:D.27.D【分析】由图形可得EF CB OB OC ==-,从而可得正确的选项.【详解】EF CB OB OC b c -=-==,故选:D.28.C【分析】利用向量加减法的运算性质,转化各项表达式即可知正误.【详解】由向量加减法的运算性质知:①0a a -=-;②()a a --=;③()0a a +-=;④0a a +=;⑤()a b a b -=+-,正确;⑥()2a a a a a --=+=,错误.故选:C29.A【分析】根据向量加法和减法的运算法则结合图像逐一运算即可得出答案.【详解】解:0AD BE CF DB BE ED DE ED ++=++=+=,故A 正确;BD CF DF BD FC DF BC -+=++=,故B 错误;AD CE CF AD FE AD DB AB +-=+=+=,故C 错误;2BD BE FC ED FC ED DE ED --=-=-=,故D 错误.故选:A.30.A【分析】利用向量加减法公式,化简已知条件,即可判断结果.【详解】由条件可知()3AC AB AC AD -=-,得1233AD AB AC =+.故选:A31.B【分析】利用向量加法和减法计算即可求解.【详解】()1122BE AE AB AD AB AC CD AB =-=-=+-()11112323AC CB AB AC AB AC AB ⎛⎫⎡⎤=+-=+-- ⎪⎢⎥⎝⎭⎣⎦1211523336AC AB AB AC AB ⎛⎫=+-=- ⎪⎝⎭,故选:B.32.D【分析】根据向量线性运算可确定a 为零向量,由此可判断得到结果.【详解】()()()()0a AB CD BC DA AB BC CD DA AC CA =+++=+++=+=,又b 是任一非零向量,//a b ∴,a b b +=,a b a b +=+,∴①③⑤正确.故选:D.33.D【分析】由题易得GA GB CG +=,以GA 、GB 为邻边作平行四边形GADB ,连接GD ,交AB 于点O ,进而可得CG GD =,进而可得13GO CO =,所以CG 所在的直线CO 是AB 边上的中线,同理可证AG 所在的直线是BC 边上的中线,BG 所在的直线是AC 边上的中线,最后得出答案即可.【详解】因为0GA GB GC ++=,所以GA GB GC CG +=-=,以GA 、GB 为邻边作平行四边形GADB ,连接GD ,交AB 于点O ,如图所示:则CG GD =,所以13GO CO =,点O 是AB 边的中点,所以CG 所在的直线CO 是AB 边上的中线,同理可证AG 所在的直线是BC 边上的中线,BG 所在的直线是AC 边上的中线,所以G 点是三角形ABC 的重心.故选:D .34.B【分析】根据向量的线性运算法则,逐一分析各个选项,即可得答案.【详解】对于A :当a 与b 为相反向量时,0a b +=,方向任意,故A 错误;对于B :在ABC 中,0AB BC CA ++=,故B 正确;对于C :当A 、B 、C 三点共线时,满足0AB BC CA ++=,但不能构成三角形,故C 错误;对于D :若a ,b 均为非零向量,则a b a b +≤+,当且仅当a 与b 同向时等号成立,故D 错误.故选:B35.C【分析】结合图形,利用向量加,减法,计算向量.【详解】2AB BC =,()2OB OA OC OB ∴-=-,得3122OC OB OA =-,即3122c b a =-r r r .故选:C36.A【分析】利用向量的加、减法法则计算即可.【详解】解:()()1111344444DE AE AD AC BC AB BC BC a b b a b =-=-=+-=+-=-.故选:A.37.B【分析】利用向量的加法、减法线性运算即可求解.【详解】()22123333CE CB BE CB BA CB CA CB CB CA ==+=++-=+,所以13m =,23n =.故选:B38.BD【分析】根据向量的相关概念,对选项逐一判断即可.【详解】两个向量的和差运算结果都是是一个向量,所以A 正确;两个向量的加法遵循三角形法则,只有当,a b 首尾相连时才成立,故B 错误;任何向量与0相加都得其本身,故C 正确;两个单位向量的方向没有确定,当它们方向相同时才成立,故D 错误;故选:BD39.ACD【分析】根据平面向量的线性运算逐个求解即可【详解】对A ,0AB CA BC CA AB BC CB BC ++=++=+=,故A 正确;对B ,()()2AB AC BD CD AB BD AC CD AD AD AD +++=+++=+=,故B 错误;对C ,0OA OD AD DA AD -+=+=,故C 正确;对D ,0NQ QP MN MP NP PN ++-=+=,故D 正确;故选:ACD【点睛】本题主要考查了平面向量的线性运算,属于基础题40.ABC【分析】根据向量线性运算确定正确选项.【详解】对于A 选项,FD DA FA +=,正确;对于B 选项,0FD DE EF FE EF ++=+=,正确;对于C 选项,根据向量加法的平行四边形法则可知DE DA DF EC =+=,正确;对于D 选项,DA DE DF FD +=≠,所以D 错误.故选:ABC41.BCD【分析】根据向量的线性运算,逐项变形移项即可得解.【详解】根据复数的线性运算,对A ,化简为OD EO ED +=,错误;对B ,即OM OD OE -=,即OD OE OM +=,正确;对C ,对OM OE OD -=移项可得OD OE OM +=,正确;对D ,由OD OE OM --=-,移项即OD OE OM +=,正确;故选:BCD42.ABCD【分析】根据向量的加减运算法则分别判断.【详解】0AB BC CA ++=,0AB AC BD CD AB BD AC CD AD AD -+-=+--=-=,0OA OD AD OA AD OD -+=+-=,0NQ QP MN MP NP PN ++-=+=.所以选项全正确.故选:ABCD43.BD【分析】直接利用向量的线性运算,向量的共线,单位向量的应用判断A 、B 、C 、D 的结论.【详解】对于A :对于向量,a b ,若||||a b =,则a 与b 不存在关系,故A 错误;对于B :若e 为单位向量,且//a e ,则||a a e =±,故B 正确;对于C :若a 与b 共线,b 与c 共线,且0b ≠,则a 与c 共线,当=0b ,则a 与c 不一定共线,故C 错误;对于D :四边形ABCD 中,AB CD AD CB +=+uu u r uu u r uuu r uu r ,整理得AB AD CB CD DB -=-=,故D 正确;故选:BD .44.充分不必要【分析】利用向量加法的三角形法则结合充分条件、必要条件的定义判断可得出结论.【详解】充分性:若A 、B 、C 是一个三角形的三个顶点,由平面向量加法的三角形法则可得出0AB BC AC ++=,充分性成立;必要性:若A 、B 、C 三点共线,则0AB BC AC ++=成立,此时A 、B 、C 不能构成三角形,必要性不成立.因此,“A 、B 、C 是一个三角形的三个顶点”是“0AB BC AC ++=”的充分不必要条件.故答案为:充分不必要.45.①④【分析】利用向量加法的运算法则化简各项向量的线性表达式,即可确定结果是否为0.【详解】①0AB BC CA AC CA ++=+=uu u r uu u r uu r uuu r uu r r ;②()()()0AB MB BO OM AB BO OM MB AO OB AB +++=+++=+=≠;③0OA OC BO CO OA BO BA +++=+=≠;④()()0AB CA BD DC CA AB BD DC CB BC +++=+++=+=.故答案为:①④.46.③【分析】根据平面向量的加减法判断即可.【详解】d a AD BD AB c -=-==,故③成立;故答案为:③47.①④【分析】根据向量加减法运算可化简OA OC CD -+为CF ,根据相等向量的定义依次判断各个选项即可得到结果.【详解】四边形ACDF 是平行四边形,OA OC CD CA CD CF ∴-+=+=,①正确;AD 与CF 方向不同,②错误;BE 与CF 方向不同,③错误;DE FE CD CE FE CE EF CF -+=-=+=,④正确;CE BC CE CB BE +=-=,⑤错误;CA CD DA -=与CF 方向不同,⑥错误;四边形ABDE 为平行四边形,AB AE AD ∴+=,⑦错误.故答案为:①④.48.(1)0;(2)AC .【分析】(1)利用平面向量加法的三角形法则化简可得所求代数式的结果;(2)利用平面向量加法的三角形法则化简可得所求代数式的结果.【详解】(1)0AB CD BC DA AB BC CD DA +++=+++=;(2)()()AB MB BO BC OM AB BO OM MB BC AC ++++=++++=.49.(1)DB d e a =++uu u r u r r r ;(2)DB b c =--uu u r r r ;(3)EC e a b =++uu u r r r r ;(4)EC c d =--uu u r r u r .【分析】利用向量的加法法则、减法法则运算即可【详解】由图知,,,,AB a BC b CD c DE d EA e =====,(1)DB DE EA AB d e a =++=++;(2)DB CB CD BC CD b c =-=--=--;(3)EC EA AB BC e a b =++=++;(4)()EC CE CD DE c d=-=-+=--50.(1)0.(2)AB (3)BA .(4)0(5)0(6)CB .(7)0解:(1)原式0AC AC =-=.(2)原式AB BO OM MB AB=+++=(3)原式OA OC OB OC BA =+--=.(4)原式0AB BD DC CA =+++=(5)原式0OA AD DO =++=(6)原式()AB AD DC AB AC CB =-+=-=.(7)原式0MN NQ QP PM =+++=【点睛】本题考查了平面向量的加法与减法的运算问题,属于基础题.51.解:13BM BC =,BC CA =,16BM BA ∴=,∴111()()666BM BA OA OB a b ==-=-.∴()115666OM OB BM b a b a b =+=+-=+.13CN CD =,CD OC =,∴2222()3333ON OC CN OD OA OB a b =+==+=+.∴221511336626MN ON OM a b a b a b =-=+--=-.。
人教A版高中数学必修第二册强化练习题 6.2.1向量的加法运算 6.2.2向量的减法运算(含答案)

人教A版高中数学必修第二册6.2 平面向量的运算6.2.1 向量的加法运算 6.2.2 向量的减法运算基础过关练题组一 向量的加法运算1.(2024河北石家庄第二十四中期末)化简:AB+(OM+BO)+MB=( )辽宁葫芦岛第一高级中学期末)已知等腰Rt△ABC的直角边长为1,E为斜边上一动点,则|AB+BE|的最小值为( )4.5.的边AB,BC,CD,DA(2)EG+CG+DA+EB.6.(教材习题改编)一艘小船在静水中的航行速度的大小为20 m/min,一小河的水流速度的大小为10 m/min,如果船从河岸出发,沿垂直于水流的航线到达对岸需3 h,求小船的实际航行速度和航程.,O为BC的中点,记D.m+n的取值范围是[5,15],则题组三 向量加、减法的综合运算及应用11.(2024四川绵阳月考)下列运算结果不正确的是( )A.AB+BC+CA=0B.AB-BD-DA=0C.OA-OD+AD=0D.AB-AC+BD-CD=012.(教材习题改编)已知a,b为非零向量,则下列说法错误的是( )A.若|a|+|b|=|a+b|,则a与b方向相同B.若|a|+|b|=|a-b|,则a与b方向相反C.若|a|+|b|=|a-b|,则a 与b 的模相等D.若||a|-|b||=|a-b|,则a 与b 方向相同13.(2024辽宁抚顺月考)如图,在△ABC 中,若D 是边BC 的中点,E 是△ABC 所在平面内任意一点,则BE -DC +ED = .14.(2023浙江杭州期中)如图,在平面直角坐标系Oxy 中,两个非零向量OA ,OB 与x 轴的非负半轴的夹角分别为π6和2π3,向量OC 满足OA +OB +OC =0,则OC 与x 轴的非负半轴的夹角的取值范围是 .15.(2023河南南阳阶段练习)如图所示,在平行四边形ABCD 中,E,F 分别为边AB 和BC 的中点,G 为AC 与BD 的交点.(1)若|AB |=|AB +BC +CD |,则四边形ABCD 是什么特殊的平行四边形?(2)化简AD -GC -EB ,并在图中作出化简后的向量.答案与分层梯度式解析6.2 平面向量的运算6.2.1 向量的加法运算6.2.2 向量的减法运算基础过关练1.B 2.D 3.A 7.A 8.B 9.A 11.B 12.C1.B AB+(OM+BO)+MB=AB+BO+OM+MB=AB.故选B.2.D 因为f1+f2+f3=0,所以f1+f2=-f3,所以f1与f2的合力的方向与f3的方向相反,长度相等,由向量加法的平行四边形法则可知D正确.故选D.3.A 易得|AB+BE|=|AE|,显然当E为斜边BC的中点时,AE最短,此时AE⊥BC,AE=BC2=22,即|AB+BE|的最小值为22.故选A.3m/min,方向与水流速度方向间的夹角为7.A AB+BC-AD=AC-AD=DC.故选A.8.B OA-ED=EO-ED=DO.故选B.9.A AC=AO+OC=-OA-OB=-m-n,故选A.10.答案 10;5解析 因为a-b=|OA|-|OB|≤|OA-OB|=|BA|≤|OA|+|OB|=a+b,所以a+b=15,a-b=5,解得a=10,b=5.11.B 对于A,AB+BC+CA=AC+CA=0,故该选项运算结果正确;对于B,AB-BD-DA=AB-(BD+DA)=AB-BA=2AB,故该选项运算结果错误;对于C,OA-OD+AD=OA+AD-OD=OD-OD=0,故该选项运算结果正确;对于D,AB-AC+BD-CD=AB+BD-(AC+CD)=AD-AD=0,故该选项运算结果正确.故选B. 12.C 由向量三角不等式可知,当且仅当非零向量a,b同向时,有|a|+|b|=|a+b|,||a|-|b||=|a-b|,故A,D中说法正确;当且仅当非零向量a,b反向时,有|a+b|=||a|-|b||,|a|+|b|=|a-b|,故B中说法正确,C中说法错误.故选C.13.答案 0解析 BE-DC+ED=BE+ED-DC=BD-DC.因为D是BC边的中点,所以BD=DC.所以BE-DC+ED=0.14.解析 由题意得OC=-OA-OB=-(OA+OB).如图,以OA,OB为邻边作平行四边形OADB,连接OD,则由向量加法的几何意义得OC=-OD,所以OC与x轴的非负半轴的夹角的取值介于-OB 和-OA与x轴的非负半轴的夹角之间.由题意得,-OA,-OB与x轴的非负半轴的夹角分别为5π6,故OC与x和π315.解析 (1)|AB|=|AB+BC+CD|=|AD|,故平行四边形ABCD是菱形.(2)因为E为AB的中点,所以AE=EB.又F为BC的中点,所以由三角形中位线定理知AC,故GC=EF.所以AD-GC-EB=AD-EF-AE=AD-(AE+EF)=AD-AF=FD.作出向EF∥AC,EF=12量FD,如图所示.。
高中数学向量重点知识和练习题

向量一、向量的运算1.加法,减法,数乘(……)2.数量积(点积,内积):是一个数量(没有方向),a·b =|a|·|b|·cos〈a,b〉向量的数量积的运算律:注意没有(!)结合律,更没有消去律向量的数量积的性质a·a=|a|的平方。
a⊥b〈=〉a·b=0。
|a·b|≤|a|·|b|。
向量数量积的物理意义:机械功(力和位移)3.向量积(叉积,外积):是一个向量,记作a×b。
这里∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系(这是什么?去查一下好啦!)。
特别地,若a、b 共线,则a×b=0。
向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积。
a×a=0;a垂直b〈=〉a×b=|a||b|。
向量的向量积运算律:a×b=-b×a(λa)×b=λ(a×b)=a×(λb)a×(b+c)=a×b+a×c向量向量积的物理意义:力矩(力和力臂),洛伦兹力(磁场强度和速度,和记忆的公式不一样……如果记的是qvB就得用左手定则!顺序错了就彻底跪了……)二、向量的表示方法1.基底和分解(……)2.坐标表示向量的数量积的坐标表示:若a=(x,y),b=(x’,y’)则a·b=x·x'+y·y'向量的向量积的坐标表示:若a=(x,y,z),b=(x’,y’,z’)则a×b=|i j k ||x y z ||x’ y’ z’|这是一个三阶行列式,其中i=(1,0,0),j=(0,1,0),k=(0,0,1)定比分点公式:移轴:(按某个向量把坐标系平移,原来各点的坐标是什么?)三、三角形中的向量(真正比较奇妙的东西)1.若OC=bOB+aOA,则ABC三点共线等价于a+b=1。
高中数学向量基础及应用题库

高中数学向量基础及应用题库一、向量基础知识1. 向量的定义在数学中,我们可以用一个有方向和大小的箭头表示向量。
向量被定义为有序数对,例如(a,b)。
其中,a和b分别代表向量在水平方向和垂直方向上的分量。
2. 向量的表示向量可以用箭头AB表示,其中A和B分别代表向量的起点和终点。
向量也可以用坐标表示,例如向量AB可以表示为AB = (x2 - x1, y2 -y1),其中(x1, y1)和(x2, y2)分别代表向量的起点和终点的坐标。
3. 向量的运算向量之间可以进行加法、减法和乘法运算。
- 向量的加法:向量的加法满足交换律和结合律。
如果有向量AB和向量CD,则它们的和为AB + CD。
- 向量的减法:向量的减法满足减去一个向量等于加上该向量的相反向量。
如果有向量AB和向量CD,则它们的差为AB - CD。
- 向量的乘法:向量的乘法有数量积和向量积两种。
4. 向量的数量积向量的数量积又称为点积,记作AB·CD。
对于向量AB和CD,它们的数量积可以表示为AB·CD = |AB| |CD| cosθ,其中|AB|和|CD|分别代表向量的模长,θ为AB和CD之间的夹角。
5. 向量的向量积向量的向量积又称为叉积,记作AB × CD。
对于向量AB和CD,它们的向量积可以表示为AB × CD = |AB| |CD| sinθ n,其中|AB|和|CD|分别代表向量的模长,θ为AB和CD之间的夹角,n为垂直于AB和CD所在平面的单位向量。
二、向量的应用题1. 平面向量运用(题目)2. 向量的共线与垂直(题目)3. 向量的夹角(题目)4. 向量的投影(题目)5. 向量的模长(题目)6. 向量的数量积(题目)7. 向量的向量积(题目)8. 平面向量的定理(题目)9. 平面向量的解析几何(题目)10. 平面向量与三角形(题目)以上是一些高中数学向量基础及应用题的题目,通过解答这些题目,可以帮助你巩固和应用向量的基础知识,提高数学解题能力。
【推荐】平面向量加减法、数乘、数量积(必修4精华)
= 时, , 垂直。
性 !( 因 为 有 ) ; ④ 三 点
共 线 (2)平面向量的数量积:如果两个非零向量 , ,
共线; (6)相反向量:长度相等方向相反的向量叫做相
反向量。 的相反向量是- 。 2、向量的表示方法:(1)几何表示法:用带箭头 的有向线段表示;(2)符号表示法:用一个小写的
∥ ,规定零向量和任何向量平行。提醒:①
相等向量一定是共线向量,但共线向量不一定相 等;②两个向量平行与与两条直线平行是不同的两 个概念:两个向量平行包含两个向量共线, 但两条 直线平行不包含两条直线重合;③平行向量无传递
注意: ≠0。 5、平面向量的数量积: (1)两个向量的夹角:对于非零向量 , ,作
区别:对于一个向量等式,可以移项,两边平方、
两边同乘以一个实数,两边同时取模,两边同乘以
一个向量,但不能两边同除以一个向量,即两边不
能约去一个向量,切记两向量不能相除(相约);(2)
向量的“乘法”不满足结合律,即
(2)坐标运算:设 则: ①向量的加减法运算:
,
,为什么?
8、向量平行(共线)的充要条件:
,
。
②实数与向量的积:
。
=0。 9、向量垂直的充要条件:
③若
,则
..特别地
,即一个向量的坐标等
于表示这个向量的有向线段的终点坐标减去起点
坐标。
。
④平面向量数量积:
10.线段的定比分点: 。
(1)定比分点的概念:设点 P 是直线 P P 上异 于 P 、P 的任意一点,若存在一个实数 ,使
,则 叫做点 P 分有向线段
英文字母来表示,如 , , 等;(3)坐标表示 法:在平面内建立直角坐标系,如果向量的起点在 原点,那么向量的坐标与向量的终点坐标相同。 3.平面向量的基本定理:如果 e1 和 e2 是同一平面内 的两个不共线向量,那么对该平面内的任一向量 a,
高一7-1向量概念、加减运算知识梳理、经典例题、课后练习带答案
环 球 雅 思 教 育 学 科 教 师 讲 义讲义编号: ______________ 副校长/组长签字: 签字日期:【考纲说明】1、理解平面向量的概念和几何表示,掌握向量的加、减、数乘运算及其几何意义,会用坐标表示.2、了解平面向量的基本定理,掌握平面向量的坐标运算.3、本部分在高考中占5分.【趣味链接】1、向量最初被应用于物理学,被称之为矢量。
很多物理量,如力、速度、位移、电场强度、磁场强度等都是向量.2、大约公元前350年,古希腊著名学者亚里士多德就知道了力可以表示为向量,向量一词来自力学、解析几何中的有向线段.3、大陆与台湾在2008年12月25日开通了直航,在此之前乘飞机要先从台北到香港,再从香港到上海,这里发生了两次位移.【知识梳理】一、 向量的基本概念与线性运算 1、向量的概念(1)向量:既有大小又有方向的量,记作AB ;向量的大小即向量的模(长度),记作|AB|,向量不能比较大小,但向量的模可以比较大小.(2)零向量:长度为0的向量,记为0 ,其方向是任意的,0与任意向量平行.(3)单位向量:模为1个单位长度的向量,常用e 表示.(4)平行向量(共线向量):方向相同或相反的非零向量,记作a ∥b,平行向量也称为共线向量(5)相等向量:长度相等且方向相同的向量,相等向量经过平移后总可以重合,记为b a=,大小相等,方向相同),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x .(6)相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量.记作a-,零向量的相反向量仍是零向量.若a 、b是互为相反向量,则a =b -,b =a -,a +b =0 .2、向量的线性运算(1)向量的加法:求两个向量和的运算叫做向量的加法.向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”.(2)向量的减法 :求向量a 加上b 的相反向量的运算叫做a 与b的差.向量的减法有三角形法则,b a -可以表示为从b 的终点指向a 的终点的向量(a 、b有共同起点).(3)向量的数乘运算:求实数λ与向量a 的积的运算,记作λa.①a a ⋅=λλ;②当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a的方向相反; 当0=λ时,0 =a λ,方向是任意的.③数乘向量满足交换律、结合律与分配律. 二、平面向量的基本定理与坐标表示 1、平面向量的基本定理如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底.2、平面向量的坐标表示(1)在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j作为基底. 由平面向量的基本定理知,该平面内的任一向量a 可表示成a xi yj =+ ,由于a 与数对(x,y)是一一对应的,因此把(x,y)叫做向量a的坐标,记作a =(x,y),其中x 叫作a在x 轴上的坐标,y 叫做在y 轴上的坐标.显然0 =(0,0),(1,0)i = ,(0,1)j =.(2)设OA xi y j =+.则向量OA 的坐标(x,y)就是终点A 的坐标,即若OA =(x,y),则A 点的坐标为(x,y),反之亦成立ECBA(O 是坐标原点). 3、平面向量的坐标运算(1)若()()1122,,,a x y b x y == ,则()1212,a b x x y y ±=±±.(2)若()()2211,,,y x B y x A ,则()2121,AB x x y y =-- ,AB =(3)若a =(x,y),则λa=(λx, λy).(4)若()()1122,,,a x y b x y == ,则1221//0a b x y x y ⇔-=. (5)若()()1122,,,a x y b x y == ,则1212a b x x y y ⋅=⋅+⋅.【经典例题】【例1】(2010全国)△ABC 中,点D 在边AB 上,CD 平分∠ACB ,若CB a =,CA b =,1,2a b ==,则CD =( ) A.1233a b +B.2133a b +C.3455a b +D.4355a b + 【例2】(2009湖南)如图,D ,E ,F 分别是∆ABC 的边AB ,BC ,CA 的中点,则( )A .0AD BE CF ++=B .0BD CF DF -+=C .0AD CE CF +-= D .0BD BE FC --=【例3】(2009全国)设非零向量a 、b 、c 满足c b a c b a =+==|,|||||,则>=<b a , ( )A .150° B.120° C.60° D.30°【例4】(2012辽宁)已知两个非零向量a ,b 满足|a +b |=|a -b |,则下面结论正确的是( ) A .a ∥b B .a ⊥b C .{0,1,3} D .a +b =a -b【例5】(2009广东)已知平面向量a =,1x (),b =2,x x (-),则向量+a b ( )A. 平行于x 轴B. 平行于第一、三象限的角平分线C. 平行于y 轴D. 平行于第二、四象限的角平分线【例6】(2012浙江)设a ,b 是两个非零向量,以下说法正确的是( )A .若|a +b |=|a |-|b |,则a ⊥bB .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得a =λbD .若存在实数λ,使得a =λb ,则|a +b |=|a |-|b |【例7】若向量,2,()a b a b a b a ==-⊥满足,则向量b a 与的夹角等于 .【例8】已知平面上的向量PA 、PB满足224PA PB += ,2AB = ,设向量2PC PA PB =+ ,则PC 的最小值是 .【例9】(2009湖南)已知向量(sin ,cos 2sin ),(1,2).a b θθθ=-=(1)若//a b ,求tan θ的值;(2)若||||,0,a b θπ=<< 求θ的值。
高中数学向量知识点总结
1、向量的加法:AB+BC=AC设a=(x,y)b=(x',y')则a+b=(x+x',y+y')向量的加法满足平行四边形法则和三角形法则。
向量加法的性质:交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)a+0=0+a=a2、向量的减法AB-AC=CBa-b=(x-x',y-y')若a//b则a=eb则xy`-x`y=0·若a垂直b则a·b=0则xx`+yy`=03、向量的乘法设a=(x,y)b=(x',y')用坐标计算向量的内积:a·b(点积)=x·x'+y·y'a·b=|a|·|b|*cosθa·b=b·a(a+b)·c=a·c+b·ca·a=|a|的平方向量的夹角记为∈[0,π]Ax+By+C=0的方向向量a=(-B,A)(a·b)·c≠a·(b·c)a·b=a·c不可推出b=c设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。
则存在一个实数λ,使向量P1P=λ向量PP2,λ叫做点P分有向线段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y)x=(x1+λx2)/(1+λ)则有y=(y1+λy2)/(1+λ)我们把上面的式子叫做有向线段P1P2的定比分点公式4、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣*∣a∣,当λ>0时,与a 同方向;当λ<0时,与a反方向。
实数λ叫做向量a的系数,乘数向量的几何意义时把向量a沿着的方向或反方向放大或缩小。
向量复习题大全
向量复习题大全向量复习题大全在高中数学中,向量是一个非常重要的概念。
它不仅在数学中有着广泛的应用,还在物理学、工程学等领域中发挥着重要的作用。
为了帮助大家复习和巩固向量的知识,下面将为大家提供一些向量复习题。
问题一:已知向量a = (2, 3)和向量b = (4, -1),求向量a + b和向量a - b的结果。
解析:向量的加法和减法运算是将对应位置的分量相加或相减。
所以,向量a+ b = (2 + 4, 3 + (-1)) = (6, 2),向量a - b = (2 - 4, 3 - (-1)) = (-2, 4)。
问题二:已知向量a = (3, -2)和向量b = (1, 4),求向量a与向量b的数量积和向量积。
解析:向量的数量积是将对应位置的分量相乘后相加。
所以,向量a·b = 3 × 1+ (-2) × 4 = 3 - 8 = -5。
向量的向量积是一个新的向量,其方向垂直于原来的两个向量,并且大小等于两个向量的模长乘积再乘以它们之间的夹角的正弦值。
所以,向量a × b = |a| × |b| × sinθ = √(3^2 + (-2)^2) × √(1^2 + 4^2) × sinθ= √13 × √17 × sinθ。
问题三:已知向量a = (2, 3)和向量b = (4, -1),求向量a与向量b的夹角。
解析:两个向量的夹角可以通过向量的数量积来求解。
夹角θ满足cosθ = (a·b) / (|a| × |b|)。
所以,cosθ = (2 × 4 + 3 × (-1)) / (√(2^2 + 3^2) × √(4^2 + (-1)^2)) = (8 - 3) / (√13 × √17) = 5 / (√13 × √17)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向量要求层次重难点平面向量的相关概念B①理解平面向量的概念,理解两个向量相等的含义.②理解向量的几何表示.向量的线 性运算向量加法与减法C ① 掌握向量加法、减法的运算,并理解其几何意义.② 掌握向量数乘的运算及其几何意义,理解两个向量共线的含.③ 了解向量线性运算的性质及其几何意义.向量的数乘 C 两个向量共线B(一) 知识内容⑴ 向量的概念:在高中阶段,我们把具有大小和方向的量称为向量.有些向量不仅有大小和方向,而且还有作用点.例如,力就是既有大小和方向,又有作用点的向量.有些量只有大小和方向,而无特定的位置.例如,位移、速度等,通常把后一类向量叫做自由向量.高中阶段学习的主要是自由向量,以后我们说到向量,如无特别说明,指的都是自由向量.是可以任意平行移动的.向量不同于数量,数量之间可以进行各种代数运算,可以比较大小,两个向量不能比较大小.⑵ 向量的表示:①几何表示法:用有向线段表示向量,有向线段的方向表示向量.的方向,线段的长度表示向量的长度.②字母表示法:AB ,注意起点在前,终点在后.⑶ 相等向量:同向且等长的有向线段表示同一向量,或相等向量.可根据右图的正六边形,或根据下题平行四边形讲解相等向量.POE DCBA例题精讲高考要求板块一:向量的基本概念向量的概念、加减、数乘B已知E、F、G、H分别是平行四边形ABCD边AB、DC、BC、AD的中点,O为对角线AC与BD的交点,分别写图中与DF,BH,AO相等的向量.解:DF FC GO OH AE EB========BH HC AG GD=AO OC⑷向量共线或平行:通过有向线段AB的直线,叫做向量AB的基线.如果向量的基线互相平行或重合,则称这些向量共线或平行.向量a平行于向量b,记作a∥b.说明:共线向量的方向相同或相反,注意:这里说向量平行,包含向量基线重合的情形,与两条直线平行的概念有点不同.事实上,在高等数学中,重合直线是平行直线的特殊情形.⑸零向量:长度等于零的向量,叫做零向量.记作:0.零向量的方向不确定,零向量与任意向量平行.⑹用向量表示点的位置:任给一定点O和向量a,过点O作有向线段OA a=,则点A相对于点O 位置被向量a所唯一确定,这时向量OA又常叫做点A相对于点O的位置向量.⋅=.AB AC3(二)典例分析:【例1】给出命题⑴零向量的长度为零,方向是任意的.⑵若a,b都是单位向量,则a=b.⑶向量AB与向量BA相等.⑷若非零向量AB与CD是共线向量,则A,B,C,D四点共线.以上命题中,正确命题序号是()A.⑴ B.⑵ C.⑴⑶ D.⑴⑷【例2】下列命题中正确的有:( )⑴四边形ABCD是平行四边形当且仅当AB DC=;⑵向量AB与BA是两平行向量;⑶向量AB与CD是共线向量,则A,B,C,D四点必在同一直线上;⑷单位向量不一定都相等;⑸a 与b 共线,b 与c 共线,则a 与c 也共线; ⑹平行向量的方向一定相同;【变式】 平面向量a ,b 共线的充要条件是( )A .a ,b 方向相同B .a ,b 两向量中至少有一个为零向量C .λ∃∈R ,b a λ=D .存在不全为零的实数1λ,2λ,120a b λλ+=【例3】 ⑴设0a 为单位向量,①若a 为平面内的某个向量,则0a a a =⋅;②若a 与0a 平行,则0a a a =⋅;③若a 与0a 平行且1a =,则0a a =.上述命题中,假命题个数是( ) A .0B .1C .2D .3⑵若非零向量a ,b 满足a b b -=,则( )A .22b a b >-B .22b a b <-C .22a a b >-D .22a a b <-【变式】 给出下列命题:①若a b =,则a b =;②若A B C D ,,,是不共线的四点,则AB DC =是四边形ABCD 为平行四边形的充要条件; ③若a b =,b c =,则a c =; ④a b =的充要条件是a b =且a b ∥; ⑤若a b ∥,b c ∥,则a c ∥;其中正确的序号是 .【例4】 如图所示,1A ,2A ,3A ,…,8A 是O 的8个等分点,以1A ,2A ,…,8A 及O 这9个点中任意两个为起始点和终点的向量中,模等于半倍的向量有多少个?【变式】 (海淀区2008-2009学年度第一学期期末试卷)如图,在正方形ABCD 中,下列描述中正确的是( )A .AB BC =B .AB CD =C .2AC AB = D.AB BC AB BC +=-A 35A D CBA(一) 知识内容1. 向量的加法:a+babbabb aba a+b CCOBa+b b+ccbaa+b+c⑴ 向量加法的三角形法则:已知向量,a b ,在平面上任取一点A ,作AB a =,BC b =,再作向量AC ,则向量AC 叫做a 和b 的和(或和向量),记作a b +,即a b AB BC AC +=+=. ⑵ 向量求和的平行四边形法则:① 已知两个不共线的向量a ,b ,作AB a =,AD b =,则A ,B ,D 三点不共线,以AB ,AD 为邻边作平行四边形ABCD ,则对角线上的向量AC a b =+,这个法则叫做向量求和的平行四边形法则. ② 向量的运算性质:向量加法的交换律:a b b a +=+ 向量加法的结合律:()()a b c a b c ++=++关于0:00a a a +=+= ⑶ 向量求和的多边形法则:已知n 个向量,依次把这n 个向量首尾相连,以第一个向量的始点为始点,第n 个向量的终点为终点的向量叫做这n 个向量的和向量.这个法则叫做向量求和的多边形法则.2. 向量的减法:dcbaa+b+c+dbacda-b baO⑴ 相反向量:与向量a 方向相反且等长的向量叫做a 的相反向量,记作a -. 零向量的相反向量仍是零向量.⑵ 差向量定义:如果把两个向量的始点放在一起,则这两个向量的差是以减向量的终点为始点,被减向量的终点为终点的向量.推论:一个向量BA 等于它的终点相对于点O 的位置向量OA 减去它的始点相对于点O 的位置向量OB ,或简记“终点向量减始点向量”.⑶ 一个向量减去另一个向量等于加上这个向量的相反向量板块二:向量的加减运算(三)典例分析:【例5】 设P 是ABC △所在平面内的一点,2BC BA BP +=,则( )A .0PA PB += B .0PC PA += C .0PB PC +=D .0PA PB PC ++=【变式】 如图,在平行四边形ABCD 中,下列结论中错误的是( )A .AB DC = B .AD AB AC += C .AB AD BD -= D .0AD CB +=【例6】 D 是ABC ∆的边AB 上的中点,则向量CD =( )A .12BC BA -B .12BC BA -- C .12BC BA -+D .12BC BA +.【例7】 设D ,E ,F ,分别是ABC ∆的三边BC 、CA 、AB 上的点,且2,DC BD =2,CE EA =2,AF FB =则AD BE CF ++与BC ( ) A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直【例8】 根据图示填空:⑴ a b += ;⑵ e b d ++= .【例9】 化简下列各式:⑴ 7()8()a b a b +--; ⑵ 12(2)(432)6a b c a b c +---+【例10】 如图,D ,E ,F 分别是ABC ∆的边AB ,BC ,CA 的中点,则( )A .0AD BE CF ++=B .0BD CF DF -+=C .0AD CE CF +-= D .0BD BE FC --=DCBAFE DCBA【例11】 已知O A B ,,是平面上的三个点,直线AB 上有一点C ,满足20AC CB +=,则OC =( )A .2OA OB - B .2OA OB -+C .2133OA OB -D .1233OA OB -+【例12】 如图所示,E F 、是四边形ABCD 的对角线AC BD 、的中点,已知,AB a CD c ==,求向量EF .【例13】 已知O A B ,,是平面上的三个点,直线AB 上有一点C ,满足20AC CB +=,则OC =( )A .2OA OB - B .2OA OB -+C .2133OA OB -D .1233OA OB -+【例14】 已知任意四边形ABCD 中,,E F 分别是,AD BC 的中点,求证:1()2EF AB DC =+.【例15】 ⑴ 已知ABCD □的两条对角线交于点O ,设AB a =,AD b =,用向量a 和b 表示向量BD ,AO .⑵ 已知ABCD □的两条对角线交于点O ,设对角线AC =a ,BD =b ,用a ,b 表示BC ,AB .CAAC【例16】 设P 是正六边形OABCDE 的中心,若OA a =,OE b =,试用向量a ,b 表示OB 、OC 、ODOE .【例17】 在ABC △中,AB c =,AC b =.若点D 满足2BD DC =,则AD =( )A .2133b c +B .5233c b -C .2133b c -D .1233b c +⑵在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点.若AC AE AF λμ=+,其中λ,μ∈R ,则λμ+= .【变式】 证明:若向量,,OA OB OC 的终点A B C 、、共线,当且仅当存在实数,λμ满足等式1λμ+=,使得OC OB OA λμ=+.OCA【变式】 如图,在ABC △中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM =,AC nAN =,则m n +的值为.ONM CBA【变式】 在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的点.且1BF a FC a =-,1DE bEC b=-, 若AC AE AF λμ=+,其中λ,μ∈R ,则λμ+= .FB【变式】 设正六边形ABCDEF 的对角线,AC CE 分别被内点,M N 分成为AM CNr AC CE==,如果,,B M N 共线,求r 的值.【变式】 证明:若向量,,OA OB OC 的终点A B C 、、共线,当且仅当存在实数,λμ满足等式1λμ+=,使得OC OB OA λμ=+.(一) 知识内容3. 数乘向量:定义:实数λ和向量a 的乘积是一个向量,记作a λ,且a λ的长a a λλ=<教师备案> 判断正误:已知λμ∈R ,.①()a b a b λλλ+=+;(√) ②()a a a λμλμ+=+;(√) ③()()a a λμλμ=;(√) ④()()a b a b λμλμ+=++.(×)4. 向量共线的条件⑴ 平行向量基本定理:如果a b λ=,则a ∥b ;反之,如果a ∥b ,且0b ≠,则一定存在唯一的一个实数λ,使a b λ=.⑵ 单位向量:给定一个非零向量a ,与a 同方向且长度等于1的向量,叫做向量a 的单位向量.如果a 的单位向量记作0a ,由数乘向量的定义可知0a a a =或0a a a=.(三)典例分析:【例18】 设12,e e 是不共线的向量,已知向量1212122,3,2AB e ke CB e e CD e e =+=+=-,若A B D 、、三点共线,求k 的值.OCBA板块三:向量的数乘与共线【变式】 设a ,b ,c 为非零向量,其中任意两个向量不共线,已知a b +与c 共线,且b c +与a 共线,则b a c ++= .【变式】 已知,a b 是不共线的向量,25AB a b =+,8BC a b =-+,3()CD a b =-,则A B D 、、C 、四点中共线的三点是___________【变式】 设,a b 是不共线的两个向量,已知22(2)AB ka k b =+-,BC a b =+,2CD a b =-,若A B D、、三点共线,求k 的值.【变式】 证明对角线互相平分的四边形是平行四边形.ODCBA【例19】 如图,平行四边形ABCD 中,E F 、分别是BC DC 、的中点,G 为DE BF 、的交点,若AB =a ,AD =b ,试以a ,b 为基底表示DE 、BF 、CG .F CBA【变式】 如图,在∆ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,则下列各等式中不正确的是( ) A .23BG BE = B .2CG GF =C .12DG AG =D .121332DA FC BC +=【变式】 已知五边形ABCDE ,M 、N 、P 、Q 分别是边AB 、CD 、BC 、DE 的中点,K 、H 分别是MN 和PQ 的中点,求证:KH 平行且等于14AE .ED CBA MNP Q K HGFEDC BA【变式】 如图,E 、F 分别是平行四边形ABCD 的边AD 、CD 的中点,BE 、BF 与对角线AC 分别交于点R 和点T .求证AR RT TC ==.(向量法)TRF E D CB A【变式】 四边形ABCD 中,E ,F ,M ,N 分别为BC ,AD ,BD ,AC 的中点,O 为MN 的中点,试用向量的方法证明:O 也是EF 的中点.FEO MNDCB A【变式】 ⑴在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若AC a =,BD b =,则AF =( )A .1142a b +B .2133a b +C .1124a b +D .1233a b +⑵如图,两块斜边长相等的直角三角板拼在一起.若AD xAB y AC =+, 则x = ,y = .OF E DCBA【变式】 若等边ABC ∆的边长为23,平面内一点M 满足1263CM CB CA =+,则MA = ,MB = .(用CB ,CA 向量表示) FECBA M三角形有五心:内心、外心、垂心、重心和旁心,这里我们用向量这个工具来研究三角形的前四心,有些地方涉及到数量积,老师可以根据情况先补充数量积的知识,或将这些地方跳过去以后再讲.板块四:三角形有五心相关证明60︒45︒EDBCA⑴内心:过点A ,方向平行于向量()(0)||||AB ACAB AC λλ+≠的直线过ABC ∆的内心(BAC ∠的角分线所在直线);||||||0AB PC BC PA CA PB P ++=⇔为ABC ∆的内心;⑵外心:PA PB PC ==⇔P 为ABC ∆的外心;⑶垂心:PA PB PB PC PC PA P ⋅=⋅=⋅⇔为ABC ∆的垂心(先补充数量积的相关知识) ⑷重心:0PA PB PC P ++=⇔为ABC ∆的重心.另外:在ABC ∆中,G 为平面上任意一点,有1()3GO GA GB GC =++⇔O 为ABC ∆的重心1()()()()03GO GA GB GC GA GO GB GO GC GO =++⇒-+-+-=,即0OA OB OC ++=,知O 为ABC ∆的重心;若O 为ABC ∆的重心,则11()(3)33GA GB GC GO OA OB OC ++=+++20OA OB OC OA OE ++=+=,故1()3GA GB GC GO ++=.【例20】 在OAB ∆中,M 为OB 的中点,N 为AB 的中点,P 为,ON AM 交点,利用向量证明23AP AM =,即重心为中线的一个三等分点.【变式】 ⑴已知3()2(2)4()0m a m a m a b -++-+-=,则m =⑵已知a ,b 方向相同,且3a =,7b =,则2a b -=【变式】 若O 是ABC ∆内一点,0OA OB OC ++=,则O 是ABC ∆的( )A.内心 B .外心 C .垂心 D .重心【变式】 (2003年天津)O 是平面内一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足AB AC OP OA AB AC λ⎛⎫ ⎪=++ ⎪⎝⎭,[0,)λ∈+∞,则P 的轨迹一定通过ABC ∆的( ) A .外心 B .内心 C .重心 D .垂心【变式】 若点O 是ABC △的外心,且0OA OB CO ++=,则内角C 的大小为____OEDC BA【变式】 已知点G 是ABC ∆的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且设AM xAB =,AN y AC =,则113x y+=.NMGCBA【变式】 非正ABC △的外接圆的圆心为O ,两条边上的高的交点为H ,()OH m OA OB OC =++,求实数m 的值.【变式】 如图,设G 为OAB ∆的重心,过G 的直线与,OA OB 分别交于P 和Q ,已OP hOA =,OQ kOB =,OAB ∆与OPQ ∆的面积分别为S 和T .求证:⑴113h k+=;⑵4192S T S ≤≤.【例21】 已知任意四边形ABCD 中,,E F 分别是,AD BC 的中点,求证:1()2EF AB DC =+.E BBAMG QP O【例22】 如图所示,E F 、是四边形ABCD 的对角线AC BD 、的中 点,已知,AB a CD c ==,求向量EF .A【变式】 在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC a =,BD b =,则AF =( )A . 1142a b +B . 2133a b +C . 1124a b +D . 1233a b +【变式】 已知点M 是ABC ∆的重心,,MA a MB b ==,用,a b 表示,,AB AC BC .FEDCBAM【变式】 M 、N 分别是ABC ∆的边AB 、AC 的靠近A 的三等分点.求证:13MN BC =,且MN ∥BC .【变式】 已知矩形ABCD 中,宽为2,长为AB a =,BC b =,AC c =,试作出向量a b c ++,并求其长度.OFE DCBA【变式】 如图,在ABC △中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM =,AC nAN =,则m n +的值为 .ONMCBA。