匀速圆周运动的实例

合集下载

匀速圆周运动的实例分析

匀速圆周运动的实例分析

对离心运动的进一步理解 当F=mω2r时,物体做匀速圆周运动 当F= 0时, 物体沿切线方向飞出 当F<mω2r时,物体逐渐远离圆心 当F>mω2r时,物体逐渐靠近圆心
离心的条件:做匀速圆周运动的物体合外力消失或不足以提供所需的向心力.
离心运动是物体逐渐远离圆心的一种物理现象
02
离心现象的本质是物体惯性的表现
B
2、为了防止汽车在水平路面上转弯时出现“打滑”的现象,可以:( ) a、增大汽车转弯时的速度 b、减小汽车转弯时的速度 c、增大汽车与路面间的摩擦 d、减小汽车与路面间的摩擦 A、a、b B、a、c C、b、d D、b、c
要使原来作圆周运动的物体作离心运动,该怎么办?
?问题一:
A、提高转速,使所需向心力增大到大于物体所受合外力。
B、减小合外力或使其消失
三、离心运动的防止:
υ υ r 2 F 汽车
?问题二:
要防止离心现象发生,该怎么办? 减小物体运动的速度,使物体作圆周运动时所需的向心力减小 增大合外力,使其达到物体作圆周运动时所需的向心力
巩固练习:
A、作匀速圆周运动的物体,在所受合外力突然消失时,将沿圆周半径方向离开圆心
B、作匀速圆周运动的物体,在所受合外力突然消失时,将沿圆周切线方向离开圆心
C、作匀速圆周运动的物体,它自己会产生一个向心力,维持其作圆周运动
D、作离心运动的物体,是因为受到离心力作用的缘故
1、下列说法正确的是 ( )
3、下列说法中错误的有:( ) A、提高洗衣机脱水筒的转速,可以使衣服甩得更干 B、转动带有雨水的雨伞,水滴将沿圆周半径方向离开圆心 C、为了防止发生事故,高速转动的砂轮、飞轮等不能超过允许的最大转速 D、离心水泵利用了离心运动的原理

匀速圆周运动实例分析

匀速圆周运动实例分析

18
第19页/共31页
【例题1】如图所示,一质量为m=2kg的小球,在半径大小
为R=1.6m的轻绳子作用下在竖直平面内做圆周运动。
(1)小球恰好经过最高点的速度V2=?此时最低点要给 多大的初速度V1=?(2)若在最低点的速度V1=10m/s, 则在最高点绳的拉力为多大?
T
解:(1)依题意得,物体恰好经过最高点,mg提供做
3、汽车过凹形桥时,车对桥的压力大于 自身重力。此时汽车处于超重状态。
3
第4页/共31页
例一 、当汽车通过桥面粗糙的拱形桥顶时拱形桥顶的速度为10m/s
时,车对桥顶的压力为车重的3/4,如果汽车行驶至该桥顶时刚好不
受摩擦力作用,则汽车通过桥顶时速度应为 ( B )
A、25m/s
B、20m/s
C、15m/s
离心运动本质: (1)离心现象的本质是物体惯性的表现。 (2)离心运动是物体逐渐远离圆心的一 种物理现象。
15
第16页/共31页
离心运动的应用:
1、洗衣机脱水桶
原理:利用离心运动把附 着在衣物上的水分甩掉。
解释当:脱水桶快速转动时,
衣物对水的附着力F不足以
ν
提供水随衣服转动所需的向 心力 F,于是水滴做离心运 动,穿过网孔,飞到脱水桶
一、汽车过拱形桥
在各种公路上拱形桥是常 见的,质量为m的汽车在 拱桥上以速度v前进,桥 面的圆弧半径为R,分析 汽车通过桥的最高点时对 桥面的压力。
问题:汽车通过桥顶时重力G和支持 力N相等吗,为什么?
1
第2页/共31页
分析:
1、当汽车在桥面上运动到最高点时,重力G和桥的支持 力N在一条直线上,它们的合力是使汽车做圆周运动的向 心力F向。

匀速圆周运动的实例分析

匀速圆周运动的实例分析

匀速圆周运动的实例分析运动是物理学研究的重要方向,其中圆周运动,作为一种常见的运动形式,被广泛应用于各种物理学问题的研究中。

匀速圆周运动是指物体在圆周运动过程中,以恒定的速度绕圆周做匀速运动。

本文将通过实例分析,介绍匀速圆周运动的相关概念和实际应用。

1.实例分析假设有一质点在平面内绕一个半径为R的圆做匀速圆周运动,其速率为v。

我们来分析一下这个运动的相关物理量。

首先,介绍一下圆周运动的基本概念。

我们用质点做匀速圆周运动时,最基本的两个物理量是圆周运动的角速度ω和线速度v,它们之间的关系是:v = Rω。

圆周运动的周期T和频率f分别满足:T =2πR/v,f=1/T。

其次,我们来分析一些关于匀速圆周运动的性质。

在匀速圆周运动中,物体所受到的合力方向始终指向圆心,称为向心力;而切向速度始终保持不变,称为切向速度。

向心力的大小为F = mv²/R,其中m为物体质量。

顺便提一下,由于向心力的方向总是指向圆心,故物体的运动轨迹是一个圆形或弧形。

接下来,我们来看一个具体的实例,来更加深入地理解匀速圆周运动的相关概念。

2.实际应用例如,一个人手中握着一只小球,做匀速圆周运动,可以模拟地球绕太阳做的匀速圆周运动。

我们来计算一下这个小球的相关物理量。

假设这个小球的质量为m,半径为R,匀速圆周运动的速度为v。

根据向心力的定义,我们可以列出这个小球所受到的向心力的公式:F = mv²/R。

接下来,我们用圆周运动的角速度ω和线速度v,来表示小球的向心力F。

由于v = Rω,所以ω = v/R。

将ω代入向心力的公式中,可以得到:F = mω²R。

在这个例子中,我们可以用向心力的公式,计算出这个小球所受到的向心力。

当然,我们也可以通过小球的运动轨迹计算出小球所受到的向心力。

这个小球做匀速圆周运动时,其运动轨迹是一个圆形或弧形,因此我们可以用圆的相关公式计算出小球的向心力。

除此之外,对于圆周运动,还有许多其他的实际应用。

匀速圆周运动 典型例题

匀速圆周运动 典型例题

匀速圆周运动 典型例题【例1】如图所示的传动装置中,A 、B 两轮同轴转动.A 、B 、C 三轮的半径大小的关系是RA=RC=2RB.当皮带不打滑时,三轮的角速度之比、三轮边缘的线速度大小之比、三轮边缘的向心加速度大小之比分别为多少?【例2】一圆盘可绕一通过圆盘中心O 且垂直于盘面的竖直轴转动.在圆盘上放置一木块,当圆盘匀速转动时,木块随圆盘一起运动(见图),那么()A.木块受到圆盘对它的摩擦力,方向背离圆盘中心B.木块受到圆盘对它的摩擦力,方向指向圆盘中心C.因为木块随圆盘一起运动,所以木块受到圆盘对它的摩擦力,方向与木块的运动方向相同D.因为摩擦力总是阻碍物体运动,所以木块所受圆盘对它的摩擦力的方向与木块的运动方向相反【例3】在一个水平转台上放有A 、B 、C 三个物体,它们跟台面间的摩擦因数相同.A 的质量为2m ,B 、C 各为m.A 、B 离转轴均为r,C 为2r.则()A.若A 、B 、C 三物体随转台一起转动未发生滑动,A 、C 的向心加速度比B 大B.若A 、B 、C 三物体随转台一起转动未发生滑动,B 所受的静摩擦力最小C.当转台转速增加时,C 最先发生滑动D.当转台转速继续增加时,A 比B 先滑动【例4】如图,光滑的水平桌面上钉有两枚铁钉A 、B ,相距L0=0.1m.长L=1m 的柔软细线一端拴在A 上,另一端拴住一个质量为500g 的小球.小球的初始位置在AB 连线上A 的一侧.把细线拉直,给小球以2m/s的垂直细线方向的水平速度,使它做圆周运动.由于钉子B的存在,使细线逐步缠在A、B上.若细线能承受的最大张力Tm=7N,则从开始运动到细线断裂历时多长?【例5】如图(a)所示,在光滑的圆锥顶用长为L的细线悬挂一质量为m的小球,圆锥顶角为2θ,当圆锥和球一起以角速度ω匀速转动时,球压紧锥面.此时绳的张力是多少?若要小球离开锥面,则小球的角速度至少为多少?【例6】杂技节目中的“水流星”表演,用一根绳子两端各拴一个盛水的杯子,演员抡起杯子在竖直面上做圆周运动,在最高点杯口朝下,但水不会流下,如下图所示,这是为什么?【例7】用长L1=4m和长为L2=3m的两根细线,拴一质量m=2kg的小球A,L1和L2的另两端点分别系在一竖直杆的O1,O2处,已知O1O2=5m如下图(g=10m⋯−2)(1)当竖直杆以的角速度ω匀速转动时,O2A线刚好伸直且不受拉力.求此时角速度ω1.(2)当O1A线所受力为100N时,求此时的角速度ω2.。

第二讲匀速圆周运动典型实例

第二讲匀速圆周运动典型实例

2018/3/24
同步训练 1. 乘坐游乐园的翻滚过山车,质 量为 m 的人随车在竖直平面内旋转时,下列 说法中正确的是( ) A.车在最高点时,车在轨道内侧,人处于倒 坐状态,被保险带拉住,没有保险带,人就 会掉下来 B.人在最高点时对座位仍可能产生压力,但 压力一定小于mg C.人在最低点时对座位的压力等于mg D.人在最低点时对座位的压力大于mg
同步训练1.如图所示,一轻杆一端固定质量为m的小球, 以另一端O为圆心,使小球做半径为R的圆周 运动,以下说法正确的是( )
O
A.小球过最高点时,杆所受的弹力可以等于零 B. 小球过最高点时的最小速度为
gr
C. 小球过最低点时,杆对球的作用力可以与球所受重力方向相反,
此时重力可能大于杆对球的作用力 D. 小球过最高点时,杆对球作用力一定与小球所受重力方向相反
此时,关注小球恰 好完成圆周运动的 条件?拉力差?
二、细绳(单轨)模型
在最高点没有物体支撑的小球圆周运动过最高点的情况:
1.临界条件:绳子或轨道对小 球没有力的作用:
(可理解为恰好转过或恰好转不过的速度) 2.能过最高点的条件:v≥ 3.不能过最高点的条件:V< (实际是球还没到最高点时就脱离了轨道称为内脱落问题) ,当V> 时,
绳对球产生拉力,轨道对球产生压力.
三、细杆模型(圆管)
1.小球用轻杆支撑在竖直平面内做圆周运动
2.小球在竖直放置的光滑圆管内做圆周运动
如图所示,有物体支撑的小球,在竖直平面做圆周运动过 最高点的情况:临界条件: 0 小球通过最高点时,轻质杆或圆管对小球产生力的情况: 1.当v=0时,N=mg(N为支持力)
小球在最高点
mg十T1=mV12/r
G

匀速圆周运动实例分析

匀速圆周运动实例分析

v2 正确理解公式 F向 = m 中 , 提 供 的 F提 r
与需要的向心力F需之间的关系。对于匀速 圆周运动的试题, 一定要分析需要的向心 力与提供的向心力,这样才不能弄错。
(2)汽车在水平路面上转弯:由摩擦力
提供向心力。类似:单车、摩托车在水平 面上转弯。
(3)旋转的磨盘上的物体:由静摩 擦力提供向心力。
五、离心运动 物体做圆周运动所的向心力
F需 = m r
2
= mw 2 r
=m
2p T
2
r
= mw v
当外界所提供的向心力恰好等于它做圆周运动 所需要的向心力时,则物体做圆周运动、、、、
个提供呢?ຫໍສະໝຸດ 做匀速圆周运动的物体由合外力提供
所需要的向心力。 看下面具体的实例分析。
一、火车转弯问题
水平轨道上匀速行驶的火车所受合 外力为零,在水平弯道上匀速行驶的火 车,做匀速圆周运动,需要向心力,是 什么力提供这个向心力呢?
N F合

G
火车做圆周运动,先找圆心和半径。其 圆心就是弯道的圆心,半径是弯道的半径。
——对桥面有压力作用。
三、汽车过凹桥的情况
如图所示,若汽车经过如图所示的
凹桥的最低点时呢?
提示:汽车对凹桥的压力大小为:
v F =Gm R
2

讨论:汽车经过凸桥最高点容易爆胎
还是在凹桥最低点容易爆胎?
四、航天器中的失重现象 航天器作近地圆周运动时: 1、轨道半径近似等于地球半径 2、航天器所受引力近似等于它 在地球表时所测得的重力
匀速圆周运动实例分析
回顾:匀速圆周运动的有关公式
向心加速度:
v2 an = r = w 2r 2p = r T

匀速圆周运动实例分析PPT课件

匀速圆周运动实例分析PPT课件
六、匀速圆周运动实例分析
一、火车拐弯
火车转弯时所 需的向心力是 有重力G支持力 FN的合力F来提 供.
二、汽车过拱桥或凹桥
经凸桥最高点时
mg
FN
m v2 R
FN
mg
m v2 R
mg
由牛顿第三定律可知,汽车对桥面压力小于汽车的重力.
当 v Rg时
FN
mg
m
v2 R
FN
mg m v2 R
mg
由牛顿第三定律可知,汽车对桥面压力大 于汽车的重力.
例题:
如图所示,用细绳拴着质量为 m的物体,在竖直平面内做圆周 运动,圆周半径为R则下列说法 正确的是( ) A. 小 球 过 最 高 点 时 , 绳 子 张 力 可以为零 B. 小 球 过 最 高 点 时 的 最 小 速 度 为零
You Know, The More Powerful You Will Be
Thank You
在别人的演说中思考,在自己的故事里成长
Thinking In Other People‘S Speeches,Growing Up In Your Own Story
讲师:XXXXXX XX年XX月XX日
C.小球刚好过最高点时的速度是 Rg
D.小球过最高点时,绳子对小球的作用力可以与球 所受的重力方向相反
小结:
解决圆周运动问题关键在于找出向心力的 来源.
向心力公式、向心加速度公式虽然是从匀 速圆周运动这一特例得出,但它同样适用 于变速圆周运动.
三、离心现象及其应用
绳栓着小球做圆周运动时,小球所需的向心力由形 变的绳产生的弹力提供。若m、r、ω一定,向心力
FF=mmωr, 2如果ω增大,则F也增大,F增大到一定程

高一物理匀速圆周运动实例分析

高一物理匀速圆周运动实例分析

V 且 F G 所以 F压 G m r 向心力和向心加速度的公式 对于对匀速圆周运动同样适用

2
G
比较三种桥面受力的情况 N
G N
v N Gm r
2
G
v N Gm r
2
实例分析2旋转秋千
小球做圆锥摆时细绳长L,与竖直方向成 θ角,求小球做匀速圆周运动的角速度ω。
O‘ 解: 小球受力: 竖直向下的重力G 沿绳方向的拉力T
2.3匀速圆周运动实例分析
圆周运动的实例
圆周运动的实例
圆周运动的实例
圆周运动的实例
实例分析
1、汽车过拱桥
汽车在拱桥上以速度v前进,桥面的 圆弧半径为R,求汽车过桥的最高点时对 桥面的压力?
解析:
a:选汽车为研究对象
b:对汽车进行受力分析:受到重力和桥对车的支持力 c:上述两个力的合力提供向心力、且向心力方向向下 F1 d:建立关系式:G-F1=mv2/r e:又因支持力与压力是一对作用力与反作用力,
内外轨道一样高时
外轮
内轮
外轨
内轨
a:此时火车车轮受三个力:重力、支持力、外轨对轮缘的弹 力。 b:外轨对轮缘的弹力F提供向心力。 c:由于该弹力是由轮缘和外轨的挤压产生的,且由于火车质 量很大,故轮缘和外轨间的相互作用力很大,易损坏铁轨。
外轨略高于内轨时
FN
说明:转 弯处要选择内 外轨适当的高 度差,使转弯 时所需的向心 力F完全由重 力G和支持力N 的合力来提供, 这样外轨就不 受轮缘的挤压 了。
θ
小球的向心力:
由T和G的合力提供
L FT O F mg
2
F向心 F mgtg
小球做圆周运动的半径 由牛顿第二定律:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F<mω2r时,物体逐渐远离圆心。 3 .本质:离心现象的本质——物体惯性的表现。 二、离心运动的应用与防止 1.应用实例——洗衣机的脱水筒、棉花糖的产生
等。 2.防止实例——汽车拐弯时的限速、高速旋转的飞轮、
砂轮的限速等。
A.r不变,v变小,ω变小 B.r增大,ω减小,v不变 C.r减小,v不变,ω增大 D.r减小,ω不变,v变小
小结:
离心运动 1.定义:做匀速圆周运 动的物体,在所受合力突然
消失或者不足于提供圆周运动的所需的向心力的情 况下,就做逐渐远离圆心的运动,这种运动称作为 离心运动。 2 .条件:①当F= 0时,物体沿切线方向飞出。
A.沿飞出点半径方向飞出,做平抛运动。
B.沿飞出点切线方向飞出,做平抛运动。
C.雨滴落在地面上后形成一个和伞半径相同的
圆圈。
D.雨滴落在地面上后形成一个半径
r=R
பைடு நூலகம்
的圆圈
例题6.物体m用线通过光滑的水平板上 的小孔与砝码M相连,并且正在做匀速 圆周运动,如图所示.如果减小M的质 量,则物体的轨道半径r,角速度ω线速 度v的大小变化情况是…… ( )
2、为了防止汽车在水平路面上转弯时出现“打滑” 的现象,可以:( D )
a、增大汽车转弯时的速度 b、减小汽车转弯时的速度
c、增大汽车与路面间的摩擦 d、减小汽车与路面间的摩擦
A、a、b
B、a、c
C、b、d
D、b、c
3、下列说法中错误的有:( B )
A、提高洗衣机脱水筒的转速,可以使衣服甩得更干
B、转动带有雨水的雨伞,水滴将沿圆周半径方向离开圆心
离心运动本质:
(1)离心现象的本质是物体惯性的表现
(2)离心运动是物体逐渐远离圆心的 一种物理现象
离心运动的特点 : (1)做圆周运动的质点,当合外力消失时,它 就以这一时刻的线速度沿切线方向飞去. (2)做离心运动的质点是做半径越来越大的运 动或沿切线方向飞出的运动,它不是沿半径方向 飞出. (3)做离心运动的质点不存在所谓的“离心力” 作用,因为没有任何物体提供这种力 .
C、为了防止发生事故,高速转动的砂轮、飞轮等不能超过 允许的最大转速
D、离心水泵利用了离心运动的原理
例题4.物体做离心运动时,运动轨迹是( ) A.一定是直线。 B.一定是曲线。 C.可能是直线,也可能是曲线。 D.可能是圆。
例题5.雨伞半径为R,高出地面h,雨伞以角速度
ω旋转时,雨滴从伞边缘飞出…( )
?问题一:
要使原来作圆周运动的物体作离心运动,该怎么办?
A、提高转速,使所需向心力增大到大于物体所受合外力。
B、减小合外力或使其消失
三、离心运动的防止:
1、在水平公路上行驶的汽
车转弯时
在水平公路上行驶的汽车,转
弯时所需的向心力是由车轮与路
面的静摩擦力提供的。如果转弯
时速度过大,所需向心力F大于
υ2 υ
2、洗衣机的脱水筒 3、用离心机把体温计的 水银柱甩回玻璃泡内
当离心机转得比较慢时, 缩口的阻力 F 足以提供所需 的向心力,缩口上方的水银 柱做圆周运动。当离心机转 得相当快时,阻力 F 不足以 提供所需的向心力,水银柱 做离心运动而进入玻璃泡内。
4、制作“棉花”糖的原理:
内筒与洗衣机的脱水筒相 似,里面加入白砂糖,加热使 糖熔化成糖汁。内筒高速旋转, 黏稠的糖汁就做离心运动,从 内筒壁的小孔飞散出去,成为 丝状到达温度较低的外筒,并 迅速冷却凝固,变得纤细雪白, 像一团团棉花。
离心运动
1.离心运动定义:
做匀速圆周运动的 物体,在所受合力突然 消失,或者不足以提供 圆周运动所需的向心力 的情况下,就做逐渐远 离圆心的运动。这种运 动叫做离心运动。
2.离心的条件:做匀速 圆周运动的物体合外力 消失或不足以提供所需 的向心力.
对离心运动的进一步理解 当F=mω2r时,物体做匀速圆周运动 当F= 0时, 物体沿切线方向飞出 当F<mω2r时,物体逐渐远离圆心 当F>mω2r时,物体逐渐靠近圆心
最大静摩擦力Fmax,汽车将做
r
离心运动而造成交通事故。因此, F < m
在公路弯道处,车辆行驶不允许
F
汽车
超过规定的速度。
2、高速转动的砂轮、飞轮等
?问题二:
要防止离心现象发生,该怎么办?
A、减小物体运动的速度,使物体作圆周运动 时所需的向心力减小
B、增大合外力,使其达到物体作圆周运动时 所需的向心力
离心运动的应用
1、离心干燥器的金属网笼
利用离心运动把附着在物 体上的水分甩掉的装置
解释当:网笼转得比较慢时,
水滴跟物体的附着力F 足以
ν
提供所需的向心力F 使水滴 做圆周运动。当网笼转得比 较快时,附着力 F 不足以提
F<mrω 2 F
o
供所需的向心力 F,于是水
滴做离心运动,穿过网孔,
飞到网笼外面。
巩固练习:
1、下列说法正确的是 ( B )
A、作匀速圆周运动的物体,在所受合外力突然消失时,将 沿圆周半径方向离开圆心
B、作匀速圆周运动的物体,在所受合外力突然消失时, 将沿圆周切线方向离开圆心
C、作匀速圆周运动的物体,它自己会产生一个向心力, 维持其作圆周运动
D、作离心运动的物体,是因为受到离心力作用的缘故
相关文档
最新文档