SiP封装共形电磁屏蔽技术简介
关于SIP封装的介绍和应用分析

关于SIP封装的介绍和应用分析一、为什么需要SIP封装?SIP封装是一种新封装技术,SiP 将多种功能芯片,包括处理器、存储器等功能芯片集成在一个封装内,从而实现一个基本完整子系统。
与 SOC (芯片级系统)不同的是系统级封装是采用不同芯片进行并排或叠加的封装方式,而SOC 则是高度集成的单芯片产品。
SiP可以集成不同的主动、被动器件,如基于CMOS、GaAs、GaN、MEMS工艺的多种被动元件等,随着智能手机、智能设备小型化需求,大大推动了SiP封装技术的发展。
SIP结构SIP封装技术采取多种裸芯片或模块进行排列组装,若就排列方式进行区分可大体分为平面2D封装和3D封装的结构。
相对于2D封装,采用堆叠的3D封装技术又可以增加使用晶圆或模块的数量,从而在垂直方向上增加了可放置晶圆的层数,进一步增强SIP技术的功能整合能力。
而内部接合技术可以是单纯的线键合(Wire Bonding),也可使用倒装芯片(Flip Chip),也可二者混用。
几种SIP封装形式另外,除了2D与3D的封装结构外,还可以采用多功能性基板整合组件的方式——将不同组件内藏于多功能基板中,达到功能整合的目的。
不同的芯片排列方式,与不同的内部接合技术搭配,使SIP的封装形态产生多样化组合,并可进行定制化操作。
从苹果iPhone7的拆解来看,iPhone7采用了SiP、WLCSP等先进封装,如安华高的PA采用了SiP封装,Skyworks的PA也是SiP封装。
在产品小型化推动下,SiP封装技术渗透率加速,业内专家预计从2015年到2020年,全球先进封装市场年符合增长率预计为7%,2020年中国先进封装市场规模可达40亿美元。
这五点因素推动了SiP封装技术的发展:1、封装元件的高度、尺寸微型化2、射频、模拟、存储等多种不同元件的集成3、不同工艺晶圆芯片可以支持不同封装融合;4、系统提高信号完整性降低功耗;5、系统需要灵活性和可重构性;还有就是厂商要通过减少系统BOM和复杂性,简化产品板级设计、减少PCB层数,降低研发成本,尽快推向市场。
SiP封装技术简介

SiP封装技术简介SiP(System in Package)技术是一种集成电路封装技术,它的核心思想是将多个功能单元(如芯片、电阻、电容等)集成到一个封装内,以实现高度集成、小型化和高性能的电子系统。
SiP技术在现代电子产品中得到广泛应用,其应用范围涵盖了无线通信、消费电子、医疗器械、汽车电子等多个领域。
本文将对SiP封装技术的基本原理、优势和应用进行详细介绍。
首先,SiP封装技术的基本原理是将多个不同功能的芯片和组件集成到一个封装中。
在SiP封装中,芯片通过先进的封装工艺技术堆叠在一起,并通过局部金属线(TGV)进行连接,实现数据和信号的传输。
在SiP封装中,不同的芯片和组件可以采用不同的封装技术,如芯片大小较小的可以采用TSV(Through Silicon Via)技术,而芯片大小较大的则可以采用CoWoS(Chip-on-Wafer-on-Substrate)技术。
通过这种方式,SiP封装将传统PCB(Printed Circuit Board)封装中的功能分散到多个不同的芯片和组件中,从而实现系统的高度集成和小型化。
SiP封装技术相比于传统封装技术具有多个优势。
首先,SiP封装技术可以提供更高的集成度。
传统封装技术使用PCB将各个功能单元进行连接,而SiP封装技术通过堆叠和连接芯片来实现功能模块的集成,可以将更多的功能单元封装在一个封装内,从而实现更高的集成度。
其次,SiP封装技术可以提供更高的性能。
由于芯片和组件在SiP封装中直接堆叠和连接,可以减少传统PCB上的连接延迟和功耗,从而提高系统性能。
此外,SiP封装技术可以提高系统的可靠性。
由于芯片和组件直接在封装内连接,可以减少上电和下电过程中的功耗和EMI(Electromagnetic Interference),从而提高系统的稳定性和可靠性。
SiP封装技术在多个领域中得到广泛应用。
首先,SiP封装技术在无线通信领域中应用广泛。
SiP封装工艺1—SiP简介

SiP封装⼯艺1—SiP简介什么是SiPSiP模组是⼀个功能齐全的⼦系统,它将⼀个或多个IC芯⽚及被动元件整合在⼀个封装中。
此IC 芯⽚(采⽤不同的技术:CMOS、BiCMOS、GaAs等)是Wire bonding芯⽚或Flipchip芯⽚,贴装在Leadfream、Substrate或LTCC基板上。
被动元器件如RLC、Balun及滤波器(SAW/BAW 等)以分离式被动元件、整合性被动元件或嵌⼊式被动元件的⽅式整合在⼀个模组中。
下图是Apple watch的内部的S1模组,就是典型的SiP模块。
它将AP、BB、WiFi、Bluetooth、PMU、MEMS等功能芯⽚以及电阻、电容、电感、巴伦、滤波器等被动器件都集成在⼀个封装内部,形成⼀个完整的系统。
Apple watch S1模组为什么⽤SiP近⼏年,SiP概念被炒的⽕热,很多产品上都开始采⽤SiP技术,到底SiP技术有什么优点?简单来讲可总结为以下⼏点:1.尺⼨⼩在相同的功能上,SiP模组将多种芯⽚集成在⼀起,相对独⽴封装的IC更能节省PCB的空间。
2.时间快SiP模组本⾝是⼀个系统或⼦系统,⽤在更⼤的系统中,调试阶段能更快的完成预测及预审。
3.成本低SiP模组价格虽⽐单个零件昂贵,然⽽PCB空间缩⼩,低故障率、低测试成本及简化系统设计,使总体成本减少。
4.⾼⽣产效率通过SiP⾥整合分离被动元件,降低不良率,从⽽提⾼整体产品的成品率。
模组采⽤⾼阶的IC封装⼯艺,减少系统故障率。
5.简化系统设计SiP将复杂的电路融⼊模组中,降低PCB电路设计的复杂性。
SiP模组提供快速更换功能,让系统设计⼈员轻易加⼊所需功能。
6.简化系统测试SiP模组出货前已经过测试,减少整机系统测试时间。
7.简化物流管理SiP模组能够减少仓库备料的项⽬及数量,简化⽣产的步骤。
SiP模组的优缺点哪⾥⽤SiPSiP技术已经⾛进我们的⽣活之中,我们的⼿机、相机、电脑⾥都有SiP技术。
什么是系统级封装(SiP)技术?

什么是系统级封装(SiP)技术?SiP 可以将多个具有不同功能的有源电子元件与可选无源器件,诸如 MEMS 或者光学器件等其他器件优先组装到一起,实现一定功能的单个标准封装件,形成一个系统或者子系统。
这么看来,SiP 和 SoC 极为相似,两者的区别是什么?SiP 能最大限度地优化系统性能、避免重复封装、缩短开发周期、降低成本、提高集成度。
对比SoC,SiP 具有灵活度高、集成度高、设计周期短、开发成本低、容易进入等特点。
而SoC 发展至今,除了面临诸如技术瓶颈高、CMOS、DRAM、GaAs、SiGe 等不同制程整合不易、生产良率低等技术挑战尚待克服外,现阶段SoC 生产成本高,以及其所需研发时间过长等因素,都造成SoC 的发展面临瓶颈,也造就 SiP 的发展方向再次受到广泛的讨论与看好。
SiP 与其他封装形式又有何区别?SiP 与 3D、Chiplet 的区别Chiplet 可以使用更可靠和更便宜的技术制造,也不需要采用同样的工艺,同时较小的硅片本身也不太容易产生制造缺陷。
不同工艺制造的 Chiplet 可以通过先进封装技术集成在一起。
Chiplet 可以看成是一种硬核形式的 IP,但它是以芯片的形式提供的。
3D 封装就是将一颗原来需要一次性流片的大芯片,改为若干颗小面积的芯片,然后通过先进的封装工艺,即硅片层面的封装,将这些小面积的芯片组装成一颗大芯片,从而实现大芯片的功能和性能,其中采用的小面积芯片就是 Chiplet。
因此,Chiplet 可以说是封装中的单元,先进封装是由Chiplet /Chip 组成的,3D 是先进封装的工艺手段,SiP 则指代的是完成的封装整体。
通过 3D 技术,SiP 可以实现更高的系统集成度,在更小的面积内封装更多的芯片。
不过,是否采用了先进封装工艺,并不是SiP 的关注重点,SiP 关注系统在封装内的实现。
SiP 与先进封装也有区别:SiP 的关注点在于系统在封装内的实现,所以系统是其重点关注的对象,和SiP 系统级封装对应的为单芯片封装;先进封装的关注点在于:封装技术和工艺的先进性,所以先进性的是其重点关注的对象,和先进封装对应的是传统封装。
SIP封装知识

•SIP封装是指在单一的封装内实现多种功能,或者说将数种功能合并入单一模块中,譬如,这些功能可以是无线通信、逻辑处理和存储记忆等之间的集成,这些集成在蓝牙器件、手机、汽车电子、成像和显示器、数码相机和电源中已得到广泛应用。
目录SIP封装的概述•1、SIP封装是基于SOC的一种新封装技术,将一个或多个裸芯片及可能的无源元件构成的高性能模块装载在一个封装外壳内,包括将这些芯片层叠在一起,且具备一个系统的功能。
•插入定义•无源元件,是电子术语,主要是电阻类、电感类和电容类元件,指在不需要外加电源的条件下,就可以显示其特性的电子元件。
简单地讲就是需能(电)源的器件叫有源器件,无需能(电)源的器件就是无源器件。
有源器件一般用来信号放大、变换等,无源器件用来进行信号传输,或者通过方向性进行“信号放大”。
容、阻、感都是无源器件,IC、模块等都是有源器件2、SIP封装将多个IC和无源元件封装在高性能基板上,可方便地兼容不同制造技术的芯片,从而使封装由单芯片级进人系统集成级。
3、SIP封装是在基板上挖凹槽,芯片镶嵌其中,可降低封装体厚度,电阻、电容、电感等生成于基板上方,最后用高分子材料包封。
常用的基板材料为FR-4、LCP(Liquid Crystal Polymer)。
低温共烧多层陶瓷LTCC、Qsprey Metal Al/SiC颗粒增强金属基复合材料等。
4、SIP封装在一个封装中密封多个芯片,通常采用物理的方法将两个或多个芯片重叠起来,或在同一封装衬底上将叠层一个挨一个连接起来,使之具有新的功能。
5、SIP封装可实现系统集成,将多个IC以及所需的分立器件和无源元件集成在一个封装内,包括多个堆叠在一起的芯片,或将多个芯片堆叠整合在同一衬底上,形成的标准化产品,可以像普通的器件一样在电路板上进行组装。
6、SIP封装为一个封装内集成了各种完成系统功能的电路芯片,是缩小芯片线宽之外的另一种提高集成度的方法,而与之相比可大大降低成本和节省时间。
sip工艺技术介绍

sip工艺技术介绍SIP技术,全称为System in Package,是一种封装技术,将多个芯片组件和其他组件封装在一个单一的模块内,形成一个完整的系统。
SIP技术可以提高电子设备的性能、可靠性和集成度,并且能够更好地满足不同应用场景的需求。
SIP技术主要包括芯片封装、电路设计、芯片组件选择和测试等环节。
在芯片封装方面,常用的封装方式有多芯片模块(MCM)和多芯片封装(MCP)等。
MCM是将多个芯片组件封装在一个模块内,通过晶圆级封装技术实现高集成度和高性能。
MCP是将多个芯片堆叠在一起,通过晶圆级封装或者探针级连接技术实现。
在电路设计方面,SIP技术需要考虑模块内芯片组件的互连和供电等问题。
为了实现高速信号传输和良好的电磁兼容性,需要采用高速互连技术,如高速差分信号线和层间互连。
同时,为了保证电路的稳定供电,采用电源管理技术和射频滤波器等组件。
在芯片组件选择方面,SIP技术需要根据应用需求选择合适的芯片。
不同的应用场景需要不同的功能和性能,比如高性能处理器、射频收发器、传感器等。
同时,还需要考虑芯片组件之间的互连方式,如通过焊接、直接连接或者探针连接等。
在测试方面,SIP技术需要进行系统级测试和可靠性测试。
系统级测试可以验证整个模块的功能和性能,并且保证各个芯片组件之间的互连正常。
可靠性测试可以评估模块的寿命和稳定性,如温度循环测试、振动测试和湿度测试等。
SIP技术在电子设备中有广泛的应用,尤其是在移动通信、消费电子和汽车电子等领域。
SIP技术可以实现更小型化的设备尺寸、更高性能的功能和更低功耗的设计。
例如,在手机中,SIP技术可以将处理器、射频芯片、传感器和存储芯片等集成在一个模块内,大大减少了设备的体积,提高了整体性能。
总之,SIP技术是一种有效的封装技术,可以将多个芯片组件和其他组件封装在一个模块内,形成一个完整的系统。
通过合理的芯片封装、电路设计、芯片组件选择和测试等环节,可以实现高性能、可靠性和集成度的电子设备设计。
SIP封装简介

Molding
Top Marking & Curing
Flux Clean
Singulation (Punch or Routing)
Ball Mount
Ball Scan
Reflow
Final Inspection
2021/4/20
10
SIP应用前景
• SIP封装综合运用现有的芯片资源及多种先进封装技术的 优势,有机结合起来由几个芯片组成的系统构筑而成的封 装,开拓了一种低成本系统集成的可行思路与方法,较好 地解决了SOC中诸如工艺兼容、信号混合、电磁干扰EMI 、芯片体积、开发成本等问题,在移动通信、蓝牙模块、 网络设备、计算机及外设、数码产品、图像传感器等方面 有很大的市场需求量.所Semico公司报道,世界SIP封装营 销收入将从2002年的8200万美元增长到2007年的7.48亿 美元,年均增长率达55.6%。日本新近预测,2013年世界 有关应用SIP封装技术的LSI市场可望达1.2万亿日元.
• 按封装材料划分为:
塑料封装
陶瓷封装
金属封装主要用于军工或航天技术,无 商业化产品;
陶瓷封装优于金属封装,也用于军事产 品,占少量商业化市场;
塑料封装用于消费电子,因为其成本低
SiP工艺技术介绍

SiP工艺技术介绍为习惯集成电路与系统向高密度、高频、高可靠性与低成本方向进展,国际上逐步形成了IC封装的四大主流技术,即:阵列凸点芯片及其组装技术、芯片尺度封装技术(CSP,Chip Scale Package)、圆片级封装技术(WLP, Wafer Level Package)与多芯片模块技术。
目前正朝着更高密度的系统级封装(SiP)进展,以习惯高频与高速电路下的使用需求。
系统级封装是封装进展的方向,它将封装的内涵由简单的器件保护与功能的转接扩展到实现系统或者子系统功能。
SiP产品开发时间大幅缩短,且透过高度整合可减少印刷电路板尺寸及层数,降低整体材料成本,特别是SiP设计具有良好的电磁干扰(EMI)抑制效果,更可减少工程时间耗费。
但是SiP除了以上的优点外,也存在一些问题需要后续去突破,SiP产品的设计与制造工艺较以往进展单颗芯片更为复杂,务必要从IC设计的观点来考量基板与连线等系统模组设计的功能性与封装工艺的可实现性。
我公司目前着力于针对SiP封装技术建立完善的工艺、设计、可靠性分析能力,以拉近与国外同行业者之间的距离。
目前已有下列工艺研发成果:(一)高、低弧度、密间距焊线工艺通常SiP产品中需要在有限的空间中集成数颗尺寸大小各异的芯片与其他的外围元器件,通常都会使用芯片堆叠的封装工艺进行,同时此类产品中芯片的压焊点间距非常的小,因此这类产品的焊线技术与传统的封装产品有着更高的要求。
(1)当芯片堆叠层数增加时,不一致线环形层之间的间隙相应减少,需要降低较低层的引线键合弧高,以避免不一致的环形层之间的引线短路。
为了避免金丝露出塑封体表面,需要严格操纵顶层芯片的金线弧高,因此稳固的金线倒打工艺是确保良率的关键焊线技术。
我司目前已完成40um下列的低弧度焊线工艺技术的研发(超低弧度金线倒打技术、金线直径20um、金丝弧高可达40um)。
(2)为了满足压焊点间距小于60微米、压焊点开口尺寸小于50微米的芯片的焊线工艺,需要开发超密间距劈刀的小球径焊线工艺。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SiP封装共形电磁屏蔽技术简介
前言
移动设备向着轻薄短小的方向发展,手机行业是这一方向的前锋,从几代iPhone的尺寸可以看出----薄,是一直演进的方向(图1)。
随着物联网、可穿戴等市场兴起,将这一方向推向极致。
图1、iPhone厚度变化
手机的薄型化,得益于多方面技术的进步,包括SiP、PCB、显示屏等技术,其中关键的技术之一就是EMI屏蔽技术。
传统的手机EMI屏蔽是采用金属屏蔽罩,屏蔽罩在横向上要占用宝贵的PCB面积,纵向上也要占用设备内部的立体空间,是设备小型化的一大障碍。
新的屏蔽技术共形屏蔽(Conformal shielding),将屏蔽层和封装完全融合在一起,模组自身就带有屏蔽功能,芯片贴装在PCB上后,不再需要外加屏蔽罩,不占用额外的设备空间,从而解决这一难题。
如图2,iPhone 7主板上,大部分芯片都采用了Conformal shielding技术,包括WiFi/BT、PA、Memory等模组,达到高度集成且轻薄短小的目的。
图2、iPhone7主板上采用共形屏蔽技术的模组
SiP封装共形屏蔽
电子系统中的屏蔽主要两个目的:符合EMC规范;避免干扰。
传统解决方案主要是将屏蔽罩安装在PCB上,会带来规模产量的可修复性问题。
此方法也可以在SiP模组中使用,如图3中的模组封装,或Overmolded shielding将屏蔽罩封装在塑封体内。
这两种屏蔽解决方案,虽然实现了屏蔽罩的SiP封装集成,但是并未降低模组的高度,同时也会带来工艺和成本问题。
图3、传统的屏蔽罩模组及SiP封装内集成(Overmolded shielding)屏蔽罩 SiP封装的共形屏蔽,可以解决以上问题。
如图4,SiP封装采用共形屏蔽技。