脂类消化与吸收
生物化学 第08章 脂代谢(共68张PPT)

合成一分子软脂酸的总反应式
4、脂肪酸的延伸反应
NADPH
5、脂肪酸的去饱和反应
4. 饱和脂肪酸的从头合成与β-氧化的比较
区别要点
从头合成
β-氧化
细胞内进行部位
胞液
酰基载体
ACP-SH
二碳单位参与或断裂形式 丙二酸单酰ACP
电子供体或受体
NADPH+H+
-羟酰基中间物的立体构型不同
D型
对HCO3-和柠檬酸的需求 所需酶
甘油
R1COOH R2COOH R3COOH
脂肪酸
场所: 细胞质内(主要是脂肪组织) 关键酶:脂肪酶(限速酶) 调控: 激素 功能: 水解产物可进一步氧化分解
二、甘油的氧化分解与转化
CH 2OH ATP ADP CH 2OH NAD + NADH+H +
CHOH
CHOH
甘油激酶
CH 2OH (肝 、 肾 、 肠 ) CH 2O
α–lipoprotein (high density 脂酰-CoA的跨线粒体内膜的转运
第十章
FAD+2ATP+3H20
(2)脂酰CoA转运入线粒体
脂类的脂消类化代、谢吸收、 CH3(CH2)nCOOH
(hormone-sensitive lipase , HSL) 这对于某些生活在干燥缺水环境的生物十分重要,像骆驼已将β-氧化作为获取水的一种特殊手段。
5~10 50~70 10~15 10~15
20~25 10 40~50 5
45~50 20 20~22 30
生理功能
转运外源性 TG
转运内源性 TG 转运 Ch 转运PL、Ch
第二节 第十章
脂代谢—脂类的消化与吸收(生物化学课件)

➢部位
主盐 乳化微团
胆固醇酯酶 胰磷脂酶A2
脂肪酸、游离胆固醇 脂肪酸、溶血磷脂
脂肪
胰脂酶
脂肪酸、一酰甘油
血液 淋巴
乳糜微粒 载脂蛋白 重新酯化成 甘油三酯等
脊椎动物脂肪的消化、吸收
脂类的吸收
饮 食脂肪在小肠 被 吸收
〉 吸收部位 十二指肠下段及空肠上段 。
》 吸收方式 中链及 短链 脂酸构成 的T G 乳化 吸收,肠粘膜细胞
甘油 +FFA
脂肪酶
门静脉
血循环
甘油一酯途径 (肠粘膜细胞中)
肝 胆囊 胆盐 (乳化剂)
脂肪 姐 织
以甘 油三酯 形式储存
肌肉 肝 心脏
小肠内有 来自胰腺 的水解酶
模块二:物质代谢及其调节
脂代谢
目 录 CONTENTS
1 脂类的消化吸收 2 血脂 3 甘油三酯的代谢 4 酮体的生成和利用
脂代谢
1 脂类的消化吸收 ➢ 脂类的消化 ➢ 脂类的吸收
为什么胆汁分泌减少和胰腺疾病均可导致脂肪泻呢?
脂类的消化
脂类的消化发生在脂-水界面, 且需 胆汁酸盐参与。
➢条件
甘油三 酯 以CM的形 式 在血 液 运输
卫生资格考点 脂类的消化和吸收

卫生资格考点脂类的消化和吸收正常人一般每日每人从食物中消化60?50克的脂类,其中甘油三脂占到90%以上,除此以外还有少量的磷脂、胆固醇及其酯和一些游离脂肪酸(free fattyacids)。
食物中的脂类在成人口腔和胃中不能被消化,这是由于口腔中没有消化脂类的酶,胃中虽有少量脂肪酶,但此酶只有在中性PH值时才有活性,因此在正常胃液中此酶几乎没有活性(但是婴儿时期,胃酸浓度低,胃中PH值接近中性,脂肪尤其是乳脂可被局部消化)。
脂类的消化及吸收主要在小肠中进行,首先在小肠上段,通过小肠动,由胆汁中的胆汁酸盐使食物脂类乳化,使不溶于水的脂类分散成水包油的小胶体颗粒,提高溶解度增加了酶与脂类的接触面积,有利于脂类的消化及吸收。
在形成的水油界面上,分泌入小肠的胰液中包含的酶类,开始对食物中的脂类进行消化,这些酶包括胰脂肪酶(pancreatic lipase),辅脂酶(colipase),胆固醇酯酶(pancreatic cholesteryl ester hydrolase or cholesterol esterase)和磷脂酶A2(phospholipase A2)。
食物中的脂肪乳化后,被胰脂肪酶催化,水解甘油三酯的1和3位上的脂肪酸,生成2-甘油一酯和脂肪酸。
此反响需要辅脂酶协助,将脂肪酶吸附在水界面上,有利于胰脂酶发挥作用。
食物中的磷脂被磷脂酶A2催化,在第2位上水解生成溶血磷脂和脂肪酸,胰腺分泌的是磷脂酶A2原,是一种无活性的酶原形成,在肠道被胰蛋白酶水解释放一个6肽后成为有活性的磷脂酶A2催化上述反响。
食物中的胆固醇酯被胆固醇酯酶水解,生成胆固醇及脂肪酸。
食物中的脂类经上述胰液中酶类消化后,生成甘油一酯、脂肪酸、胆固醇及溶血磷脂等,这些产物极性明显增强,与胆汁乳化成混合微团(mixed micelles)。
这种微团体积很小(直径20nm),极性较强,可被肠粘膜细胞吸收。
脂类的吸收主要在十二指肠下段和盲肠。
生物化学脂类代谢知识点总结

脂类代谢1、脂类的消化胰腺分泌的脂类消化酶:胰脂酶、辅脂酶、磷脂酶A2(催化磷脂2位酯键水解)、胆固醇酯酶(水解胆固醇酯,生成胆固醇和脂肪酸)2、脂类的吸收及吸收后的运输脂类及其消化产物主要在十二指肠下段及空肠上段吸收乳化、酶解、吸收、甘油三酯的再合成、CM的组装CM经小肠黏膜细胞分泌进入淋巴道→血循环→全身各组织器官甘油三脂的代谢一、脂肪的分解代谢:(1)脂肪动员:脂肪转变为脂肪酸和甘油;脂肪酶脂解激素——启动脂肪动员、促进脂肪水解:胰高血糖素、肾上腺素、去甲肾上腺素抗脂解激素——抑制脂肪动员:胰岛素、前列腺素E2(2)甘油的分解代谢1.甘油在甘油激酶的催化下转变成3'-磷酸甘油,甘油激酶(在肝中活性最高,甘油主要被肝摄取利用)2.3'-磷酸甘油脱氢生成磷酸二羟丙酮,磷酸甘油脱氢酶3.磷酸二羟丙酮进入糖代谢途径进行分解或异生(三)脂肪酸的β氧化1. 脂肪酸的活化:脂肪酸在脂酰CoA合成酶催化下生成脂酰CoA 部位:线粒体外1分子脂肪酸活化消耗2个高能磷酸键2. 脂酰CoA进入线粒体,肉碱脂酰转移酶Ⅰ3.脂肪酸经过多次β-氧化转变为乙酰CoA。
在线粒体内进行(1)脱氢:由EAD接受生成FADH2(2)加水(3)再脱氢,由NAD接受生成NADH+H(4)硫解经过上述反应,生成1分子乙酰CoA和少2碳原子的脂酰CoA。
(三)酮体的生成:部位:在肝细胞线粒体内生成原料:脂肪酸β氧化生成的乙酰CoA1.2分子CoA在乙酰乙酰CoA硫解酶作用下缩合生成乙酰乙酰CoA2.乙酰乙酰CoA在HMGCoA合成酶催化下和1分子乙酰CoA缩合生成羟甲基戊二酸单酰CoA(HMGCoA)3.HMGCoA在HMGCoA裂解酶(肝脏特有的酶)作用下裂解生成乙酰乙酸和乙酰CoA4.乙酰乙酸在β-羟基丁酸脱氢酶的作用下被还原成β-羟基丁酸,还原速度由NADH+H/NAD决定。
少量可以自然脱羧,生成丙酮。
(四)酮体的利用:酮体在肝外组织氧化分解1.乙酰乙酸的活化:(两条途径)(1)在心、肾、脑及骨骼肌线粒体,由琥珀酰CoA转硫酶催化乙酰乙酸活化,生成乙酰乙酰CoA(2)在肾、是、心和脑线粒体,由乙酰乙酸硫激酶催化,直接活化生成乙酰乙酰CoA2.乙酰乙酰CoA硫解生成乙酰CoA,进入三羧酸循环。
生物化学第11章、脂类代谢

5
E SH S O C CH2 OH CH CH3
SH SH
2
E S
CoASH
COCH3
ACP
ACP
ACP
S
COCH2COOH
加氢 NADP+
缩合
E SH S O C CH2 O C CH3
3
β-酮脂酰-ACP合酶
4
NADPH+H+
ACP
CO2
(四)由脂肪酸合酶催化的各步反应
1、启动
CH3CO~SCoA CoASH
1、有利的一面 (1) 酮体具有水溶性,生成后进入血液,输送到 肝外组织利用; (2)作为燃料,经柠檬酸循环提供能量。 因此,酮体是输出脂肪能源的一种形式。 如:禁食、应急及糖尿病时,心、肾、骨骼肌摄 取酮体代替葡萄糖供能,节省葡萄糖以供脑和红 细胞所需,并可防止肌肉蛋白的过多消耗。 长期饥饿时,酮体供给脑组织50~70%的能量。
4、还原
NADPH+H NADP β -酮酰 —SH —SH OH E ACP还原酶 E ACP—S—COCH2CHCH3 ACP—S—COCH2COCH3
+ +
NADPH作为还原剂参与此反应。 脂酸生物合成中所需的NADPH大部分是戊糖磷 酸途径供给的,有些来自苹果酸酶反应。
5、脱水
—SH E
(二)丙二酸单酰CoA的形成
1、脂肪酸合成起始于乙酰-CoA转化成丙二酸单酰 - CoA,该反应是在 乙酰-CoA 羧化酶作用下实现 的。 2、乙酰-CoA羧化酶催化的反应是脂肪酸合成中 的限速步骤。 3、乙酰CoA羧化酶的组成 包括生物素羧基载体蛋白(BCCP)、生物素羧化 酶、羧基转移酶3个亚基,辅基为生物素。
生化简答题(附答案)

⽣化简答题(附答案)1.简述脂类的消化与吸收。
2.何谓酮体?酮体是如何⽣成及氧化利⽤的?3.为什么吃糖多了⼈体会发胖(写出主要反应过程)?脂肪能转变成葡萄糖吗?为什么?4.简述脂肪肝的成因。
5.写出胆固醇合成的基本原料及关键酶?胆固醇在体内可的转变成哪些物质?6.脂蛋⽩分为⼏类?各种脂蛋⽩的主要功⽤?7.写出⽢油的代谢途径?8.简述饥饿或糖尿病患者,出现酮症的原因?9.试⽐较⽣物氧化与体外物质氧化的异同。
10.试述影响氧化磷酸化的诸因素及其作⽤机制。
11.试述体内的能量⽣成、贮存和利⽤12.试从蛋⽩质营养价值⾓度分析⼩⼉偏⾷的害处。
13.参与蛋⽩质消化的酶有哪些?各⾃作⽤?14.从蛋⽩质、氨基酸代谢⾓度分析严重肝功能障碍时肝昏迷的成因。
15.⾷物蛋⽩质消化产物是如何吸收的?16.简述体内氨基酸代谢状况。
17.1分⼦天冬氨酸在肝脏彻底氧化分解⽣成⽔、⼆氧化碳和尿素可净⽣成多少分⼦ATP?简述代谢过程。
18.简述苯丙氨酸和酪氨酸在体内的分解代谢过程及常见的代谢疾病。
19.简述甲硫氨酸的主要代谢过程及意义。
20.简述⾕胱⽢肽在体内的⽣理功⽤。
21.简述维⽣素B6在氨基酸代谢中的作⽤。
22.讨论核苷酸在体内的主要⽣理功能23.简述物质代谢的特点?24.试述丙氨酸转变为脂肪的主要途径?25.核苷、核苷酸、核酸三者在分⼦结构上的关系是怎样的?26.参与DNA复制的酶在原核⽣物和真核⽣物有何异同?27.复制的起始过程如何解链?引发体是怎样⽣成的?28.解释遗传相对保守性及其变异性的⽣物学意义和分⼦基础。
29.什么是点突变、框移突变,其后果如何?30.简述遗传密码的基本特点。
31.蛋⽩质⽣物合成体系包括哪些物质,各起什么作⽤。
32.简述原核⽣物基因转录调节的特点。
阻遏蛋⽩与阻遏机制的普遍性。
33.简述真核⽣物基因组结构特点。
34.同⼀⽣物体不同的组织细胞的基因组成和表达是否相同?为什么?35.简述重组DNA技术中⽬的基因的获取来源和途径。
脂类代谢脂类的消化吸收和转运脂类的消化主要

第九单元脂类代谢一、脂类的消化、吸收和转运(一)脂类的消化(主要在十二指肠中)胃的食物糜(酸性)进入十二指肠,刺激肠促胰液肽的分泌,引起胰脏分泌HCO-3 至小肠(碱性)。
脂肪间接刺激胆汁及胰液的分泌。
胆汁酸盐使脂类乳化,分散成小微团,在胰腺分泌的脂类水解酶作用下水解。
(二)脂类的吸收脂类的消化产物,甘油单脂、脂肪酸、胆固醇、溶血磷脂可与胆汁酸乳化成更小的混合微团(20nm),这种微团极性增大,易于穿过肠粘膜细胞表面的水屏障,被肠粘膜的拄状表面细胞吸收。
被吸收的脂类,在柱状细胞中重新合成甘油三酯,结合上蛋白质、磷酯、胆固醇,形成乳糜微粒(CM),经胞吐排至细胞外,再经淋巴系统进入血液。
小分子脂肪酸水溶性较高,可不经过淋巴系统,直接进入门静脉血液中。
(三)脂类转运和脂蛋白的作用甘油三脂和胆固醇脂在体内由脂蛋白转运。
脂蛋白是由疏水脂类为核心、围绕着极性脂类及载脂蛋白组成的复合体,是脂类物质的转运形式。
载脂蛋白(已发现18种,主要的有7种):在肝脏及小肠中合成分泌至胞外,可使疏水脂类增溶,并且具有信号识别、调控及转移功能,能将脂类运至特定的靶细胞中。
(四)贮脂的动用皮下脂肪在脂肪酶作用下分解,产生脂肪酸,经血浆白蛋白运输至各组织细胞中。
血浆白蛋白占血浆蛋白总量的50%,是脂肪酸运输蛋白,血浆白蛋白既可运输脂肪酸,又可解除脂肪酸对红细胞膜的破坏。
贮脂的降解受激素调节。
促进:肾上腺素、胰高血糖素、肾上腺皮质激素;抑制:胰岛素;植物种子发芽时,脂肪酶活性升高,能利用脂肪的微生物也能产生脂肪酶。
二、甘油三酯的分解代谢(一)甘油三酯的水解甘油三酯的水解由脂肪酶催化。
组织中有三种脂肪酶,逐步将甘油三酯水解成甘油二酯、甘油单酯、甘油和脂肪酸。
这三种酶是:脂肪酶(激素敏感性甘油三酯脂肪酶,是限速酶);甘油二酯脂肪酶;甘油单酯脂肪酶。
肾上腺素、胰高血糖素、肾上腺皮质激素都可以激活腺苷酸环化酶,使cAMP浓度升高,促使依赖cAMP的蛋白激酶活化,后者使无活性的脂肪酶磷酸化,转变成有活性的脂肪酶,加速脂解作用。
食品营养学-3 脂类

10.3μm 966/cm
一、脂类的分类及功能
TFAs的产生(Occurrence of TFAs) • 天然的反式脂肪酸(From PUFAs by bacteria in the first stomach
(rumen) of ruminant animals)
• 油脂的氢化(From industrial hydrogenation, and deodorization of
Maxima 1660–1630 and 730–650/cm 1680–1670 and 980–865/cm 990–980 and 968–950/cm 990–984/cm 989/cm 991/cm 994/cm
Fig. 3 triolein, trielaidin and trist第ea三rin章在脂氯类仿中的红外吸收光谱. (Adapted from Feuge et al., 1951)
生理功能
脂肪 甘油三酯
类脂 糖酯、胆 固醇及其 酯、磷脂
95﹪ 5﹪
脂肪组织、1. 储脂供能
血浆
2. 提供必需脂酸
3. 促脂溶性维生素吸收
4. 热垫作用
5. 保护垫作用
6. 构成血浆脂蛋白
生物膜、 1. 维持生物膜的结构和功能
神经、 2. 胆固醇可转变成类固醇激
血浆
素、维生素、胆汁酸等
3. 构成血浆脂蛋白
第三章 脂类
一、脂类的分类及功能
共轭亚油酸(CLA)
抗癌作用 减肥作用 调节免疫功能的作用 防止动脉粥样硬化作用 对骨质的积极作用 防治糖尿病作用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 脂肪的消化与吸收
脂蛋白 在血液中脂溶性的脂类物质必须与蛋白质结合 成水溶性的物质才能存在和运转,其中除了游离脂肪酸 与血浆白蛋白结合外,其余皆与球蛋白结合成为脂蛋白。 用超速离心或脂蛋白电泳方法可将脂蛋 高密度脂蛋白 白分成高密度脂蛋白 (high density lipoprotein, HDL)、 低密度脂蛋白(LDL)和极低密度脂蛋白(VLDL)三种。
组成常见油脂的重要脂肪酸
类别 名称 葵酸(十烷酸) 月桂酸(十二烷酸) 饱 和 脂 肪 酸 肉豆蔻(十四烷酸) 英文名 构造式 原料 Capric acid CH3(CH2)8COOH 椰子、 CH3(CH2)10COOH Lauric~ 白脱 Myristic~ CH3(CH2)12COOH
棕榈酸(十六烷酸、 Palmitic~ CH3(CH2)14COOH 动、植 软脂酸) 物油 硬脂酸(十八烷酸) Stearic~ CH3(CH2)16COOH
花生酸(二十烷酸)
Arachidic~ CH3(CH2)18COOH 花生
山嵛酸(二十二烷酸) Behenic~ CH3(CH2)20COOH 山嵛
二十四烷酸
Lignoceric CH3(CH2)22COOH 脑脂质 ~
组成常见油脂的重要脂肪酸
类别 名称 棕榈油酸(9-十六碳烯酸) 油酸(9-十八碳俙酸) 构造式 CH3(CH2)5CH=CH(CH2)7COOH CH3(CH2)5CH=CH(CH2)7COOH
第一节 脂肪功能和营养性
一、营养学相关的脂类: 组成油脂的天然脂肪酸的共同特点是: 1. 绝大多数是含偶数碳原子的直链羧酸,其中以 C16和C18为多; 2. 大多数含有一个、两个或三个双键,基中以C18 不饱和酸为主; 3. 几乎所有的不饱和脂肪酸都是顺式构型。
第一节 脂肪功能和营养性
一、营养学相关的脂类: 人体摄入的油脂主要在小肠内进行催化水解,此过 程叫做消化。水解产物透过肠壁被吸收(少量油脂微 粒同时被吸收),进一步合成人体自身的脂肪。这种 吸收后的脂肪除一部分氧化供给能量(每克脂肪在体 内完全氧化放出38.9kJ热能)外,大部分贮存于皮下, 肠系膜等处脂肪组织中。
桐油酸(9,11,13-十八碳三烯酸) CH3(CH2)3(CH=CH)3(CH2)7COOH 花生四烯酸(5,8,11,14-二十碳 CH3(CH2)3(CH2CH=CH)4(CH2)3COOH 烯酸) 鱼祭鱼酸(4,8,12,15,19二十二 CH3(CH2CH=CH)5(CH2)5COOH 碳烯酸) CH3(CH2)7CH=CH(CH2)13COOH 神经酸(15-二十四碳烯酸)
第一节 脂肪功能和营养性
一、营养学相关的脂类: ( 一 ) 、甘油三脂:丙三醇与脂肪酸的结合物,人体 脂类中的脂肪酸绝大部分是由 14~22个偶数碳原子 构成的长链脂肪酸。主要是含有 16个碳原子的软脂 酸和18个碳原子的油酸,亚油酸和硬脂酸。多数脂 肪酸在人体内均能合成,只有亚油酸、亚麻酸及花 生四烯酸是人体内不能合成的。因此,它们在营养 上被称为必需脂肪酸。 结合脂肪酸有饱和脂肪酸和不饱和脂肪酸,植物油 有饱和脂肪酸(saturated fatty acid, SFA),单不饱和 脂肪酸(monounsaturated fatty acid, MUFA), 多不 饱和脂肪酸(polyunsaturated fatty acid, PUFA)。
不 饱 和 脂 肪 酸
蓖麻油酸(12-羟基-9-十八碳烯 CH3(CH2)5CHOHCH2CH=CH(CH2)7CO OH 酸) 亚油酸(9,12-十八碳二烯酸) CH3(CH2)3(CH2CH=CH)2(CH2)7COOH
γ-亚油酸(6,9,12-十八碳三烯酸)CH3(CH2)3(CH2CH=CH)2(CH2)4COOH 亚麻酸(9,12,15-十八碳三烯酸)CH3(CH2CH=CH)3(CH2)7COOH
第四章 脂肪的消化与吸收
要点: 必需脂肪酸 (essential fatty acid, EFA)人体不可缺少而 自身不能合成的一类脂肪酸。 不饱和脂肪酸 (saturated fatty acid, SFA)含有不饱和双 键的脂肪酸,有一个双键的为单不饱和脂肪酸 (monounsaturated fatty acid, MUFA);含有两个以上双 键的为多不饱和脂肪酸(polyunsaturated fatty acid, PUFA)。 乳糜微粒 (chylomicrons)小肠吸收脂肪后在粘膜细胞内 形成的甘油三酯、磷脂、胆固醇以及蛋白质的混合微小 粒体。 血脂 血脂是血液中脂质的总称,总脂量约为 600mg/dl。
第一节 脂肪功能和营养性
一、营养学相关的脂类: (二)、磷脂:磷脂是含磷的类脂化合物,广泛地分 布在动植物中,是细胞原生质和细胞膜构成的重要 组成。磷脂主要存在于脑、神经组织、骨髓、心、 肝及肾等器官中。蛋黄、植物种子、胚芽及大豆中 都含有丰富的磷脂。最常见的磷脂是磷脂酰胆碱、 磷脂酰乙醇胺和神经鞘磷脂。它们的构造与油脂相 似,但组成较为复杂。它们的水解产物有醇(甘油或 其它醇)、脂肪酸、磷酸和含氮的有机碱。
第一节 脂肪功能和营养性
一、营养学相关的脂类: (二)、磷脂: ★ 卵磷脂:学名磷脂酰胆碱(lecithin),磷脂酰胆碱 在脑、神经组织做 卵磷脂。 ★ 脑磷脂:学名磷脂酰乙醇胺(cephaline),磷脂酰乙 醇胺与血液凝固有关。凝血激酶是由磷脂酰乙醇胺 与蛋白质组成的,它存在于血小板内,能促使血液 凝固。
第一节 脂肪功能和营养性
一、营养学相关的脂类: (二)、磷脂: ★鞘磷脂:学名神经鞘磷脂(sphingomyelins),是植 物和动物细胞膜的重要组分,脑和神经组织中含量 相当高,脾、肝及其它 组织中含量较少。
第一节 脂肪功能和营养性
一、营养学相关的脂类: (四)、甾族化合物(steroids): 以环戊烷多氢菲为基 本骨架的一类化合物。是一类广泛存在于动植物体 内的天然有机化合物,如胆甾醇、胆汁酸、维生素 D、肾上腺皮质激素及性激素等。 1.甾醇类(steroils):甾醇是甾环上连有醇羟基的固 态物质,故又叫做固醇。从化学结构上看,甾醇是 一类饱和的或不饱和的仲醇,C-3上的羟基都是β型 的,它们常以游离状态或高级脂肪酸酯的形式存在 于动植物体内。 ★ 胆甾醇(cholesterol): 胆甾醇是从胆石中发现的 固体状醇,故又称胆固醇。存在于人体的各组织中。