鸡兔同笼问题1-5

合集下载

鸡兔同笼题目练习及解答

鸡兔同笼题目练习及解答

鸡兔同笼题目练习及解答鸡兔同笼是中国古代著名的数学趣题之一,也是小学数学中常见的一类问题。

它对于培养孩子们的逻辑思维和解题能力有着重要的作用。

下面我们就来通过一些题目练习及解答,深入了解鸡兔同笼问题。

题目一:笼子里有若干只鸡和兔,从上面数有 35 个头,从下面数有 94 只脚,问鸡和兔各有多少只?解答:我们可以用假设法来解决这个问题。

假设笼子里全是鸡,那么每只鸡有 2 只脚,35 只鸡就应该有 35×2= 70 只脚。

但实际有 94 只脚,多出来的脚就是兔子的。

每只兔子比每只鸡多 4 2 = 2 只脚。

所以兔子的数量就是(94 70)÷ 2 = 12(只)鸡的数量就是 35 12 = 23(只)题目二:一个笼子里鸡兔共有 20 只,脚共有 56 只,问鸡兔各有几只?解答:同样先假设全是鸡,20 只鸡就有 20×2 = 40 只脚。

实际有 56 只脚,多出的脚是兔子的,兔子数量为(56 40)÷ 2 = 8(只)鸡的数量就是 20 8 = 12(只)题目三:鸡兔同笼,鸡比兔多 10 只,共有脚 110 只,求鸡兔各有多少只?解答:设兔有 x 只,那么鸡就有 x + 10 只。

每只兔 4 只脚,每只鸡 2 只脚,可列出方程:4x + 2×(x + 10) = 1104x + 2x + 20 = 1106x = 90x = 15 ,即兔有 15 只。

鸡的数量就是 15 + 10 = 25 只。

题目四:有鸡兔同笼,它们共有 48 个头,132 只脚,鸡和兔各有几只?解答:假设全是鸡,48 只鸡共有脚 48×2 = 96 只。

实际 132 只脚,多出的是兔子的,兔子数量为(132 96)÷ 2 = 18 只。

鸡的数量为 48 18 = 30 只。

题目五:笼子里鸡兔的数量相同,它们的脚一共有 90 只,鸡兔各有几只?解答:因为鸡兔数量相同,设鸡兔各有 x 只。

鸡兔同笼问题

鸡兔同笼问题

假设法解题
1、实验小学买了1个篮球和6个足球,正好用去270元,足球的单价是篮球的3
1,足球和篮球的单价各是多少元?
2、李老师买回50张公园门票,一部分是4元一张的儿童票,一部分是6元一张的成人票,总价260元。

两种票各买了多少张?
3、松鼠妈妈采松果,晴天每天可采18个,雨天每天可采10个,它连续几天共采了112个松果,平均每天采14个。

这些天中有几天下雨?
4、张阿姨拿一些钱去购物,如果单买拖鞋可以买20双;如果单买袜子可以买60双。

现在把一双拖鞋和一双袜子看作一套,这笔钱可以买多少套鞋袜?
5、比赛:答对一道题加10分,答错一道题扣6分。

(1)1号选手共抢答10道题,最后得到36分。

答错几道题?
(2)2号选手共抢答8道题,最后得到64分。

她答对了几道题?
1、22个人住旅馆,租了两个大间和四个小间,已知每个大间比每个小间多住2人。

每个大间和每个小间各住多少人?
2、明光小学买了1个篮球和8个皮球,正好用去360元。

皮球单价和篮球单价的比1:4,皮球和篮球的价格是多少元?
3、(1)动物园有18只小熊和5只大熊共重1650千克。

已知每只大熊的质量是小熊的3倍。

求每只大熊和每只小熊各有多少千克?
(2)动物园有18只小熊和5只大熊共重1650千克。

已知每只大熊比每只小熊
重100千克。

求每只大熊和每只小熊各有多少千克?。

鸡兔同笼问题

鸡兔同笼问题

鸡兔同笼问题例1 :鸡兔同笼,有20个头,54条腿,鸡、兔各有几只?[列表法]法1:一个一个地试,把结果列成表格,最后得出7只鸡、3只兔。

法2:5个5个地试。

法3:按鸡兔各一半来算。

[画图凑数法]①先画10个头。

②每个头下画上两条腿。

数一数,共有40条腿,比题中给出的腿数少54-20=14条腿。

③给一些鸡添上两条腿,叫它变成兔.边添腿边数,凑够54条腿。

每把一只鸡添上两条腿,它就变成了兔,显然添14条腿就变出来7只兔.这样就得出答案,笼中有7只兔和13只鸡。

【假设法】法1:假设20只都是鸡,那么兔有:(54-20×2)÷(4-2)=7(只),鸡有20-7=13(只)。

总结:兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数)法2:假设20只都是兔,那么鸡有:(4×20-54)÷(4-2)=13(只),兔有20-13=7(只)。

总结:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).【列方程】根据关系式:“一种动物腿的条数+另一种动物腿的条数=腿的总条数”解:设鸡有X只,那么兔有(20-X)只。

2X+4(20-X)=54X=1320-13=7(只)即鸡有13只,兔有7只。

练习题:1、鸡兔同笼,有17个头,42条腿,鸡、兔各有几只?2、鸡兔同笼,头共20个头,要求笼中必有两种动物,请回答下列问题:(1)最少会有多少条腿?最多会有多少条腿?(2)腿的条数可能是57吗?3、动物园里有一群鸵鸟和大象,它们共有36只眼睛和52只脚,问鸵鸟和大象各有多少?4、螃蟹和青蛙共11只,共有56条腿,螃蟹和青蛙各有多少只?5、小红的储钱罐里有面值2元和5元的人民币共65张,总钱数为205元,两种面值的人民币各多少张?例2:红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红,蓝铅笔各买几支解:以"分"作为钱的单位.我们设想,一种"鸡"有11只脚,一种"兔子"有19只脚,它们共有16个头,280只脚. 现在已经把买铅笔问题,转化成"鸡兔同笼"问题了.利用上面算兔数公式,就有蓝笔数=(19×16-280)÷(19-11) =24÷8 =3(支).红笔数=16-3=13(支). 答:买了13支红铅笔和3支蓝铅笔.练习题:1、有20张5元和10元的人民币,一共是175元,5元和10的人民币各有多少张?2、30枚硬币,由2分和5分组成,共值9角9分,两种硬币各多少枚3、小明的储蓄罐里有1角和5角的硬币共29枚,价值7.3元,1角和5角的硬币各有多少枚?4、学校有象棋、跳棋共20副,2人下一副象棋,6人下一副跳棋,恰好可供60个学生进行活动。

鸡兔同笼问题练习一至六

鸡兔同笼问题练习一至六

1.鸡和兔放在一只笼子里,上面有29个头,下面有92只脚。

问:笼中有鸡兔各多少只?2.某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分。

小华参加了这次竞赛,得了64分。

问:小华做对几道题?3.某电视机厂每天生产电视500台,在质量评比中,每生产一台合格电视机记5分,每生产一台不合格电视机扣18分。

如果四天得了9931分。

问:这四天生产了多少台合格电视机?4.莎莎这学期的21次测验成绩全在4分以上,总共加起来是100分。

问:她得了多少次5分?5.2分和5分的硬币共36枚,共值99分。

问:两种硬币各多少枚?6.某人徒步旅行,平路每天走38千米,山路每天走23千米,他15天共走了450千米。

问:这期间他走了多少千米山路?7.1分、2分和5分的硬币共100枚,价值2元,如果其中2分硬币的价值比1分硬币的价值多13分,问:三种硬币各多少枚?1、鸡兔同笼共80头,208只脚,鸡和兔各有几只?2.1元钱买4分一张和8分一张的邮票共20张,应买4分邮票多少张?3.小明给班里买了甲、乙两种电影票共50张,甲票每张0.5元,乙票每张0.35元,共花了19.6元,问:买甲票花的钱是买乙票花的钱的几分之几?4.一辆公共汽车共载客50人,其中一部分人在中途下车,每张票价0.6元,另一部分到终点下车,每张票价0.9元。

售票员共收票款36.9元。

问:中途下了多少人?5.暑假学校组织优秀少先队员乘汽车到两个不同的地方参加夏令营活动,到甲地的车票1.2元,到乙地的车票1.5元,共买了75张票,花了99元钱。

问:到甲、乙两地去的人数相差多少?6.5元1千克的茶叶和8元1千克的茶叶共10千克,用去71元。

问:两种茶叶各有多少千克?7. 某运输队为商店运输暖瓶500箱,每箱6个暖瓶。

已知每10个暖瓶的运费为5.5元,如果损坏一个暖瓶,要赔偿成本11.5元(这只暖瓶的运费当然得不到),结果运输队共得到1553.6元。

鸡兔同笼问题讲解及鸡兔同笼问题练习题

鸡兔同笼问题讲解及鸡兔同笼问题练习题

鸡兔同笼问题一、通用法解题思路(一)思路讲解鸡兔同笼问题本质是假设问题,其解题方法有两种,一种是在未学习方程式之前常用得假设方法。

一种是一元一次方程解法。

其实一元一次方程得方法更为简单,直至本质。

小学常用的方法反而更考校孩子得思维能力。

在小学常用解法中,有四个量:鸡兔的总数、鸡兔脚得总数、每只鸡的脚数、每只兔得脚数。

找到这四个量后。

就能解决鸡兔同笼问题。

(之所以把每只兔子、鸡的脚数作为需要寻找的量是因为在有些问题中,是需要判断的。

后面举例说明。

)假设都是兔子:那么因为兔子的脚是4只,鸡的脚是2只,在假设后,每只鸡也变成了4只脚,那么假设后总的脚数比实际的要多,多出来的是每只鸡多算的。

如此,可以得到计算方法:鸡的总数=(鸡兔的总数×每只兔子脚的个数-鸡兔脚得总数)÷(每只兔子脚的个数-每只鸡脚的个数)同理,如果假设都是鸡,那么可以得到兔子数量的计算方法:兔子的总数=(鸡兔脚得总数-鸡兔的总数×每只鸡脚的个数)÷(每只兔子脚的个数-每只鸡脚的个数)(二)例题讲解例题一:鸡兔同笼,共有头30只,脚88只,求鸡和兔子各多少只?在这个题目中,我们寻找四个量:鸡兔的总数:30鸡兔脚的总数88每只鸡的脚数2每只兔子的脚数4公式:鸡的总数=(鸡兔的总数×每只兔子脚的个数-鸡兔脚得总数)÷(每只兔子脚的个数-每只鸡脚的个数)带入公式:鸡的总数:(30×4-88)÷(4-2)=16(只)兔子的总数:30-16=14(只)例题二:一次数学竞赛共有20道题目。

做对一题得5分,做错一题倒扣3分,小明考了52分,问小明作对了几道题目?在这个题目中,我们寻找四个量,作对的题目看做兔子,做错的题目看成鸡:鸡兔的总数:题目的总数20鸡兔脚的总数;总分数20×5=100每只鸡的脚数:做错一题所得分数-3每只兔子的脚数:作对一题所得分数5分带入公式:兔子的总数=(鸡兔脚得总数-鸡兔的总数×每只鸡脚的个数)÷(每只兔子脚的个数-每只鸡脚的个数)作对题目的总数=(实际总分数-题目总数×做错题目得分)÷(作对题目得分-做错题目得分)作对题目的总数:(52+20×3)÷(5+3)=14(题)做错题目的总数:20-14=6(题)二、鸡兔同笼问题其他解法思路(一)解法思路一在只是计算鸡、兔的题目中,因为鸡的腿数是2只,兔子的腿数是4只,都是偶数,因此我们可以想象让鸡把腿都收起来,这个时候站着的都是兔子了,每只兔子有2只腿站着,因此把剩下的腿除以2,就是兔子的数量。

五年级鸡兔同笼问题

五年级鸡兔同笼问题

五年级鸡兔同笼问题1、冬冬的钱包里有5元和2元的人民币共18张,价值60元,问5元和2元的人民币各有多少张?XXX的钱包里共有18张纸币,设5元纸币x张,2元纸币y张。

因为18=x+y,60=5x+2y,解得x=6,y=12.所以,XXX有6张5元纸币和12张2元纸币。

2、蜘蛛有8条腿,蝉有6条腿,两种小虫共有10只,共有72条腿,每种小虫各几只?设蜘蛛有x只,蝉有y只。

因为x+y=10,8x+6y=72,解得x=4,y=6.所以,蜘蛛有4只,蝉有6只。

3、松鼠采松果,晴天时,每天可以采20个,雨天时,每天只能采12个,这几天他一共采了112个松果,平均每天采14个,这几天中有几天是雨天?设晴天采松果的天数为x天,雨天采松果的天数为y天。

因为x+y=。

20x+12y=112,14(x+y)=。

解得x=4,y=2.所以,这几天中有2天是雨天。

4、100和尚吃100个馒头,大和尚每人吃4个,小和尚每4人吃一个,大和尚与小和尚各有多少个?设大和尚有x个,小和尚有y个。

因为x+y=100,4x+(y/4)=100,解得x=80,y=20.所以,大和尚有80个,小和尚有20个。

5、XXX参加数学竞赛,共做了25道题,如果每做对一道题得4分,做错或不做一道题扣2分,XXX共得了58分。

XXX做对了几道题?设小红做对的题数为x,做错或不做的题数为y。

因为x+y=25,4x-2y=58,解得x=11,y=14.所以,XXX做对了11道题。

6、从A城运茶杯1500个到B城,每运一个给运费6分钱,若打碎一个,不但不给运费,还要赔偿3角1分,现在某人共得运费73.35元,在运输过程中他打碎了几个茶杯?设没有打碎的茶杯数为x个,打碎的茶杯数为y个。

因为x+y=1500,0.06x-0.31y=73.35,解得x=1295,y=205.所以,这个人打碎了205个茶杯。

7、鸡兔同笼,数腿有110只,数头有40个,鸡、兔各有多少只?设鸡有x只,兔有y只。

鸡兔同笼问题

鸡兔同笼问题

鸡兔同笼问题1、笼中共有30只鸡和兔,数一数足正好是100只。

鸡兔各有多少只?2、有5元和10元的人民币共12张,共100元。

5元和10元的币各多少张?3、停车场共停24辆车,其中有4个轮子的汽车和3个轮子的摩托车。

这些车共有86个轮子。

求汽车和摩托车各有多少辆?4、松鼠妈妈采松果,晴天每天可采20个,雨天每天只能采12个。

它一共采了112个松果,平均每天采14个。

问这几天中有几天下雨?5、兔妈妈采蘑菇,晴天每天可采16次,雨天每天只能采11次,它一共采了195次,平均每天采13次。

问这几天中有几天晴天?6、某工厂中男工人每人每天制造20个零件,女工人每人每天制造16个零件。

某天工人们共制造零件680个,平均每人制造17个。

男工人有几人?7、某次数学竞赛共有12道题,每道题做对得10分,每道题做错或不做都扣8分。

王亮最后得了66分,他做对了几道题?8、丽丽参加抢答题比赛,共10道题,答对一题得15分,答错一题倒扣10分(不答按错题计算)。

丽丽回答了所有的问题,结果得了100分。

问答对了几道题?9、李华参加射击比赛,共打20发。

约定每中一发记10分,脱靶一发则倒扣6分,结果得了168分。

他一共打中了多少发?10、有面值分别为10元、5元、2元的人民币34张,共值178元。

10元的张数和5元的张数同样多。

10元、5元和2元的人民币各有多少张?11、有1元、2元和5元的人民币共50张,总面值为140元,已知2元和5元的张数相等,这三种面值的人民币各有多少张?12、买3元、5元、7元的游览票40张,共用去192元,其中7元和5元的游览票张数相等,求每种票的张数?13、某农民养鸡兔若干只。

已知鸡比兔多13只,鸡脚比兔脚多16只。

鸡和兔各有多少只?14、鸡、兔同笼,鸡比兔少2只,鸡的脚比兔的脚少20只。

鸡、兔各有多少只?15、龟比鹤多12只,龟的脚比鹤多64只。

龟、鹤各有多少只?16、某伴40个同学参加植树,男生平均每人种3棵,女生平均每人种2棵。

鸡兔同笼问题一五种基本公式和例题讲解

鸡兔同笼问题一五种基本公式和例题讲解

(奥数)鸡兔同笼问题(一)令狐采学五种基本公式和例题讲解(一)已知总头数和总脚数,求鸡、兔各几多(假设法):假设全是鸡:口诀:假“鸡”得“兔”(第一次算得的数)(总脚数每只鸡的脚数×总头数)÷(每只兔的脚数每只鸡的脚数)=兔数;总头数兔数=鸡数。

或者假设全是兔:口诀:假“兔”得“鸡”(第一次算得的数)(每只兔脚数×总头数总脚数)÷(每只兔脚数每只鸡脚数)=鸡数;总头数鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是几多只?”解一(1002×36)÷(42)=14(只)………兔;3614=22(只)……………………………鸡。

解二(4×36100)÷(42)=22(只)………鸡;3622=14(只)…………………………兔。

答:略(二)已知总头数和鸡、兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式※仍属假“鸡”得“兔”类型(每只鸡脚数×总头数脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数兔数=鸡数※仍属假“兔”得“鸡”类型或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数鸡数=兔数。

(例如:鸡和兔总共107只,鸡比兔多58只脚,鸡和兔各几只?(1)假设全是鸡:(2×10758)÷(2+4)=26(只兔);10726=8 1(只鸡)※↓因为鸡脚比兔脚多58,所以应减去58(2)假设全是兔: (4×107+58)÷(2+4)=81(只鸡); 10 781=26(只兔)※↓因兔脚比鸡脚少58,所以应加上58(三)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

※仍属假“鸡”得“兔”类型(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数兔数=鸡数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鸡兔同笼问题一
鸡与兔共有100只,鸡的脚比兔的脚多80只,鸡与兔各有多少只?
(思路:用“鸡的脚比兔的脚多80只”来列方程式,设兔为X只,即少的为X)。

解法一:设兔为X只,那么鸡有:100-X只。

鸡的脚:2(100-X)只,兔的脚:4X只。

→: 2(100-X)-4X=80
200-2X-4X=80
200-80=2X+4X
X=20
鸡:100-20=80只
答:鸡有80只,兔有20只。

解法二:(思路:用“鸡的脚比兔的脚多80只”来列方程式,反过来设鸡为X只)。

若设鸡为X只,那么兔有100-X只
鸡的脚:2X,兔的脚:4(100-X)只。

→: 2X-4(100-X)=80
2X—400+4X=80【––得+】
6X=400+80
X=80
兔有:100-80=20只。

答:鸡有80只,兔有20只。

解法三:
假设100只全是鸡,那么脚的总数是:100×2=200(只),这时兔的总脚是0只,那么推论出鸡比兔的脚多出200只;而实际上题目中鸡比兔的脚多出80只,因此,假设的差数比实际多了200-80=120只,这是因为每把一只兔换成一只鸡,差数就增加4+2=6(只),→120÷6=20(只),鸡:100-20=80(只)。

练习:
某人养有鸡和兔,已知一共有脚84只,且鸡比兔多15只。

求鸡、兔各多少只?。

相关文档
最新文档