鸡兔同笼问题解法及例题透析

合集下载

鸡兔同笼问题题型解析

鸡兔同笼问题题型解析

鸡兔同笼问题题型解析题型一:鸡兔同笼,头共46,足共128,鸡兔各几只?分析如果46只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚. 那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。

解:①鸡有多少只?(4×6-128)÷(4-2)=(184-128)÷2=56÷2=28(只)②免有多少只?46-28=18(只)答:鸡有28只,免有18只。

我们来总结一下这道题的解题思路:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:鸡数=(每只兔脚数×兔总数-实际脚数)÷(每只兔子脚数每只鸡的脚数 ) 兔数=鸡兔总数-鸡数当然,也可以先假设全是鸡。

题型二:鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?分析这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80 (只)。

鸡兔同笼题型总结与分析

鸡兔同笼题型总结与分析

鸡兔同笼题型总结与分析鸡兔同笼问题是小学数学中一个非常经典的题型,也是让很多同学感到头疼的问题。

但其实,只要掌握了正确的方法和思路,鸡兔同笼问题并没有那么难。

接下来,我们就来对鸡兔同笼题型进行一个全面的总结与分析。

一、鸡兔同笼问题的基本概念鸡兔同笼问题是指在一个笼子里,有鸡和兔若干只,从上面数有头若干个,从下面数有脚若干只,求鸡和兔各有多少只的问题。

例如:一个笼子里有若干只鸡和兔,从上面数有 35 个头,从下面数有 94 只脚,鸡和兔各有多少只?二、常见的解题方法1、假设法假设法是解决鸡兔同笼问题最常用的方法之一。

我们可以先假设笼子里全部都是鸡或者全部都是兔,然后根据实际的脚的数量与假设情况下脚的数量的差异,来求出鸡和兔的数量。

假设全部都是鸡,那么脚的数量应该是 2×头的数量。

而实际脚的数量比假设情况下多,多出来的部分就是因为把兔当成鸡来计算了。

每把一只兔当成一只鸡,脚的数量就会少 4 2 = 2 只。

所以用多出来的脚的数量除以 2,就可以得到兔的数量,再用头的总数减去兔的数量,就可以得到鸡的数量。

假设全部都是兔,那么脚的数量应该是 4×头的数量。

而实际脚的数量比假设情况下少,少的部分就是因为把鸡当成兔来计算了。

每把一只鸡当成一只兔,脚的数量就会多 4 2 = 2 只。

所以用少的脚的数量除以 2,就可以得到鸡的数量,再用头的总数减去鸡的数量,就可以得到兔的数量。

以开头的例子为例,假设全部都是鸡,脚的数量应该是 2×35 = 70 只,实际有 94 只脚,多了 94 70 = 24 只脚。

每把一只兔当成一只鸡,脚就少 2 只,所以兔的数量是 24÷2 = 12 只,鸡的数量就是 35 12 =23 只。

假设全部都是兔,脚的数量应该是 4×35 = 140 只,实际有 94 只脚,少了 140 94 = 46 只脚。

每把一只鸡当成一只兔,脚就多 2 只,所以鸡的数量是 46÷2 = 23 只,兔的数量就是 35 23 = 12 只。

鸡兔同笼问题讲解及鸡兔同笼问题练习题

鸡兔同笼问题讲解及鸡兔同笼问题练习题

鸡兔同笼问题一、通用法解题思路(一)思路讲解鸡兔同笼问题本质是假设问题,其解题方法有两种,一种是在未学习方程式之前常用得假设方法。

一种是一元一次方程解法。

其实一元一次方程得方法更为简单,直至本质。

小学常用的方法反而更考校孩子得思维能力。

在小学常用解法中,有四个量:鸡兔的总数、鸡兔脚得总数、每只鸡的脚数、每只兔得脚数。

找到这四个量后。

就能解决鸡兔同笼问题。

(之所以把每只兔子、鸡的脚数作为需要寻找的量是因为在有些问题中,是需要判断的。

后面举例说明。

)假设都是兔子:那么因为兔子的脚是4只,鸡的脚是2只,在假设后,每只鸡也变成了4只脚,那么假设后总的脚数比实际的要多,多出来的是每只鸡多算的。

如此,可以得到计算方法:鸡的总数=(鸡兔的总数×每只兔子脚的个数-鸡兔脚得总数)÷(每只兔子脚的个数-每只鸡脚的个数)同理,如果假设都是鸡,那么可以得到兔子数量的计算方法:兔子的总数=(鸡兔脚得总数-鸡兔的总数×每只鸡脚的个数)÷(每只兔子脚的个数-每只鸡脚的个数)(二)例题讲解例题一:鸡兔同笼,共有头30只,脚88只,求鸡和兔子各多少只?在这个题目中,我们寻找四个量:鸡兔的总数:30鸡兔脚的总数88每只鸡的脚数2每只兔子的脚数4公式:鸡的总数=(鸡兔的总数×每只兔子脚的个数-鸡兔脚得总数)÷(每只兔子脚的个数-每只鸡脚的个数)带入公式:鸡的总数:(30×4-88)÷(4-2)=16(只)兔子的总数:30-16=14(只)例题二:一次数学竞赛共有20道题目。

做对一题得5分,做错一题倒扣3分,小明考了52分,问小明作对了几道题目?在这个题目中,我们寻找四个量,作对的题目看做兔子,做错的题目看成鸡:鸡兔的总数:题目的总数20鸡兔脚的总数;总分数20×5=100每只鸡的脚数:做错一题所得分数-3每只兔子的脚数:作对一题所得分数5分带入公式:兔子的总数=(鸡兔脚得总数-鸡兔的总数×每只鸡脚的个数)÷(每只兔子脚的个数-每只鸡脚的个数)作对题目的总数=(实际总分数-题目总数×做错题目得分)÷(作对题目得分-做错题目得分)作对题目的总数:(52+20×3)÷(5+3)=14(题)做错题目的总数:20-14=6(题)二、鸡兔同笼问题其他解法思路(一)解法思路一在只是计算鸡、兔的题目中,因为鸡的腿数是2只,兔子的腿数是4只,都是偶数,因此我们可以想象让鸡把腿都收起来,这个时候站着的都是兔子了,每只兔子有2只腿站着,因此把剩下的腿除以2,就是兔子的数量。

小学奥数“鸡兔同笼”问题的五种常见解题思路

小学奥数“鸡兔同笼”问题的五种常见解题思路
兔有多少只?
50×4=200 因为所有的动物地上都只站着4只脚
200-120=80 80÷2=40 因为每只鸡补了两只脚 50-40=10
谢谢聆听!
每只兔都抬两只脚起来
地上还站着多少只脚?
兔一共抬了多少只脚? 兔有多少只?
鸡有多少只?
50×2=100 因为所有的动物地上都只站着两只脚
120-100=20 20÷2=10 因为每只兔抬了两只脚 50-10=40
七、方法五:补脚法
假设每只鸡都补上两只脚
地上站着多少只脚?
鸡一共抬了多少只脚? 鸡有多少只?
50×4=200 200-120=80 4-2=2 80÷2=40 50-40=10
六、方法四:抬脚法1
每只鸡和兔都抬起两只脚
一共抬起了多少只脚?
50×2=100
地上还站着多少只脚?
120-100=20
地上站着的脚都是谁的? 兔的,因为鸡只有两只,全都爬在地上了。
兔有多少只?
20÷2=10
为什么是除以2而不是除以4呢? 因为每只免只有两只脚站在地上。
小学奥数
目录 一、例题 二、题目解析 三、画图法 四、试算法
五、假设法 六、抬脚法 七、补脚法
一、例 题
鸡兔同笼,共50只,120只脚, 鸡、免各有多少只?
二、题目解析
一、已知的数量关系: 1. 鸡和免共有50只; 2. 脚一共有120只。
…… + …… +
二、隐含的数量关系: 一只鸡有2只脚,一只兔有4脚。
三、要解决的问题:ห้องสมุดไป่ตู้、兔各有的只数
…… =50 …… =120
三、方法一:画图法
1.先画出50个圆圈代表50只动物 2.然后,每个圆圈划2只脚,总共

鸡兔同笼典型例题及详细讲解

鸡兔同笼典型例题及详细讲解

鸡兔同笼问题与假设法鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题;许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算;例1 小梅数她家的鸡与兔,数头有16个,数脚有44只;问:小梅家的鸡与兔各有多少只分析:假设16只都是鸡,那么就应该有2×16=32只脚,但实际上有44只脚,比假设的情况多了44-32=12只脚,出现这种情况的原因是把兔当作鸡了;如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只;因此只要算出12里面有几个2,就可以求出兔的只数;解:有兔44-2×16÷4-2=6只,有鸡16-6=10只;答:有6只兔,10只鸡;当然,我们也可以假设16只都是兔子,那么就应该有4×16=64只脚,但实际上有44只脚,比假设的情况少了64-44=20只脚,这是因为把鸡当作兔了;我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2只;因此只要算出20里面有几个2,就可以求出鸡的只数;有鸡4×16-44÷4-2=10只,有兔16—10=6只;由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔;因此这类问题也叫置换问题;例2 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍;问:大、小和尚各有多少人分析与解:本题由中国古算名题“百僧分馍问题”演变而得;如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解;假设100人全是大和尚,那么共需馍300个,比实际多300-140=160个;现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3—1=2个,因为160÷2=80,故小和尚有80人,大和尚有100-80=20人;答:大和尚有20人,小和尚有80人;同样,也可以假设100人都是小和尚,大家不妨自己试试;在下面的例题中,我们只给出一种假设方法;例3 彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元;问:两种文化用品各买了多少套分析与解:我们设想有一只“怪鸡”有1个头11只脚,一种“怪兔”有1个头19只脚,它们共有16个头,280只脚;这样,就将买文化用品问题转换成鸡兔同笼问题了;假设买了16套彩色文化用品,则共需19×16=304元,比实际多304—280=24元,现在用普通文化用品去换彩色文化用品,每换一套少用19—11=8元,所以买普通文化用品 24÷8=3套,买彩色文化用品 16-3=13套;答:买普通文化用品3套,买彩色文化用品13套;例4 鸡、兔共100只,鸡脚比兔脚多20只;问:鸡、兔各多少只分析:假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零;这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多200—20=180只;现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6只,而180÷6=30,因此有兔子30只,鸡100——30=70只;解:有兔2×100—20÷2+4=30只,有鸡100—30=70只;答:有鸡70只,兔30只;例5 现有大、小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大瓶比小瓶共多装20千克;问:大、小瓶各有多少个分析:本题与例4非常类似,仿照例4的解法即可;解:小瓶有4×50-20÷4+2=30个,大瓶有50-30=20个;答:有大瓶20个,小瓶30个;例6 一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆;已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨分析:要算出这批钢材有多少吨,需要知道每辆大卡车或小卡车能装多少吨;利用假设法,假设只用36辆小卡车来装载这批钢材,因为每辆大卡车比每辆小卡车多装4吨,所以要剩下4×36=144吨;根据条件,要装完这144吨钢材还需要45-36=9辆小卡车;这样每辆小卡车能装144÷9=16吨;由此可求出这批钢材有多少吨;解:4×36÷45-36×45=720吨;答:这批钢材有720吨;例7 乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿元,结果搬运站共得运费元;问:搬运过程中共打破了几只花瓶分析:假设500只花瓶在搬运过程中一只也没有打破,那么应得运费×500=120元;实际上只得到元,少得=元;搬运站每打破一只花瓶要损失+=元;因此共打破花瓶÷=3只;解:×500-÷+=3只;答:共打破3只花瓶;例8 小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下;已知小喜比小乐每分钟多跳12下,那么小喜比小乐共多跳了多少下分析与解:利用假设法,假设小喜的跳绳速度减少到与小乐一样,那么两人跳的总数减少了12×2+3=60下;可求出小乐每分钟跳780——60÷2+3+3=90下,小乐一共跳了90×3=270下,因此小喜比小乐共多跳780——270×2=240下;答:小喜比小乐共多跳了240下;。

鸡兔同笼典型例题及详细讲解

鸡兔同笼典型例题及详细讲解

鸡兔同笼问题与假设法鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的;它是一类有名的中国古算题..许多小学算术应用题;都可以转化为鸡兔同笼问题来加以计算..例1小梅数她家的鸡与兔;数头有16个;数脚有44只..问:小梅家的鸡与兔各有多少只分析:假设16只都是鸡;那么就应该有2×16=32只脚;但实际上有44只脚;比假设的情况多了44-32=12只脚;出现这种情况的原因是把兔当作鸡了..如果我们以同样数量的兔去换同样数量的鸡;那么每换一只;头的数目不变;脚数增加了2只..因此只要算出12里面有几个2;就可以求出兔的只数..解:有兔44-2×16÷4-2=6只;有鸡16-6=10只..答:有6只兔;10只鸡..当然;我们也可以假设16只都是兔子;那么就应该有4×16=64只脚;但实际上有44只脚;比假设的情况少了64-44=20只脚;这是因为把鸡当作兔了..我们以鸡去换兔;每换一只;头的数目不变;脚数减少了4-2=2只..因此只要算出20里面有几个2;就可以求出鸡的只数..有鸡4×16-44÷4-2=10只;有兔16—10=6只..由例1看出;解答鸡兔同笼问题通常采用假设法;可以先假设都是鸡;然后以兔换鸡;也可以先假设都是兔;然后以鸡换兔..因此这类问题也叫置换问题..例2100个和尚140个馍;大和尚1人分3个馍;小和尚1人分1个馍..问:大、小和尚各有多少人分析与解:本题由中国古算名题“百僧分馍问题”演变而得..如果将大和尚、小和尚分别看作鸡和兔;馍看作腿;那么就成了鸡兔同笼问题;可以用假设法来解..假设100人全是大和尚;那么共需馍300个;比实际多300-140=160个..现在以小和尚去换大和尚;每换一个总人数不变;而馍就要减少3—1=2个;因为160÷2=80;故小和尚有80人;大和尚有100-80=20人..答:大和尚有20人;小和尚有80人..同样;也可以假设100人都是小和尚;大家不妨自己试试..在下面的例题中;我们只给出一种假设方法..例3彩色文化用品每套19元;普通文化用品每套11元;这两种文化用品共买了16套;用钱280元..问:两种文化用品各买了多少套分析与解:我们设想有一只“怪鸡”有1个头11只脚;一种“怪兔”有1个头19只脚;它们共有16个头;280只脚..这样;就将买文化用品问题转换成鸡兔同笼问题了..假设买了16套彩色文化用品;则共需19×16=304元;比实际多304—280=24元;现在用普通文化用品去换彩色文化用品;每换一套少用19—11=8元;所以买普通文化用品24÷8=3套;买彩色文化用品16-3=13套..答:买普通文化用品3套;买彩色文化用品13套..例4鸡、兔共100只;鸡脚比兔脚多20只..问:鸡、兔各多少只分析:假设100只都是鸡;没有兔;那么就有鸡脚200只;而兔的脚数为零..这样鸡脚比兔脚多200只;而实际上只多20只;这说明假设的鸡脚比兔脚多的数比实际上多200—20=180只..现在以兔换鸡;每换一只;鸡脚减少2只;兔脚增加4只;即鸡脚比兔脚多的脚数中就会减少4+2=6只;而180÷6=30;因此有兔子30只;鸡100——30=70只..解:有兔2×100—20÷2+4=30只;有鸡100—30=70只..答:有鸡70只;兔30只..例5现有大、小油瓶共50个;每个大瓶可装油4千克;每个小瓶可装油2千克;大瓶比小瓶共多装20千克..问:大、小瓶各有多少个分析:本题与例4非常类似;仿照例4的解法即可..解:小瓶有4×50-20÷4+2=30个;大瓶有50-30=20个..答:有大瓶20个;小瓶30个..例6一批钢材;用小卡车装载要45辆;用大卡车装载只要36辆..已知每辆大卡车比每辆小卡车多装4吨;那么这批钢材有多少吨分析:要算出这批钢材有多少吨;需要知道每辆大卡车或小卡车能装多少吨..利用假设法;假设只用36辆小卡车来装载这批钢材;因为每辆大卡车比每辆小卡车多装4吨;所以要剩下4×36=144吨..根据条件;要装完这144吨钢材还需要45-36=9辆小卡车..这样每辆小卡车能装144÷9=16吨..由此可求出这批钢材有多少吨..解:4×36÷45-36×45=720吨..答:这批钢材有720吨..例7乐乐百货商店委托搬运站运送500只花瓶;双方商定每只运费0.24元;但如果发生损坏;那么每打破一只不仅不给运费;而且还要赔偿1.26元;结果搬运站共得运费115.5元..问:搬运过程中共打破了几只花瓶分析:假设500只花瓶在搬运过程中一只也没有打破;那么应得运费0.24×500=120元..实际上只得到115.5元;少得120-115.5=4.5元..搬运站每打破一只花瓶要损失0.24+1.26=1.5元..因此共打破花瓶4.5÷1.5=3只..解:0.24×500-115.5÷0.24+1.26=3只..答:共打破3只花瓶..例8小乐与小喜一起跳绳;小喜先跳了2分钟;然后两人各跳了3分钟;一共跳了780下..已知小喜比小乐每分钟多跳12下;那么小喜比小乐共多跳了多少下分析与解:利用假设法;假设小喜的跳绳速度减少到与小乐一样;那么两人跳的总数减少了12×2+3=60下..可求出小乐每分钟跳780——60÷2+3+3=90下;小乐一共跳了90×3=270下;因此小喜比小乐共多跳780——270×2=240下..答:小喜比小乐共多跳了240下..。

鸡兔同笼问题五种基本公式和例题讲解。

鸡兔同笼问题五种基本公式和例题讲解。

鸡兔同笼问题五种基本公式和例题讲解。

鸡兔同笼问题五种基本公式和例题讲解鸡兔问题是一种经典的数学问题,下面介绍五种基本公式及例题讲解。

公式1:已知总头数和总脚数,求鸡、兔各多少:兔数 = (总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)鸡数 = 总头数 - 兔数或者是鸡数 = (每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)兔数 = 总头数 - 鸡数例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”XXX:(100-2×36)÷(4-2)=14(只)兔,36-14=22(只)鸡。

解二:(4×36-100)÷(4-2)=22(只)鸡,36-22=14(只)兔。

公式2:已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式兔数 = (每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)鸡数 = 总头数 - 兔数或者是鸡数 = (每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)兔数 = 总头数 - 鸡数公式3:已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

兔数 = (每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)鸡数 = 总头数 - 兔数或者是鸡数 = (每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)兔数 = 总头数 - 鸡数公式4:得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:不合格品数= (1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)或者是不合格品数 = 总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。

鸡兔同笼问题解法及例题透析

鸡兔同笼问题解法及例题透析

鸡兔同笼问题解法及例题透析【含义】这是古典的算术问题。

已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。

已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。

【数量关系】第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)【解题思路和方法】解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。

如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。

这类问题也叫置换问题。

通过先假设,再置换,使问题得到解决。

例1长毛兔子芦花鸡,鸡兔圈在一笼里。

数数头有三十五,脚数共有九十四。

请你仔细算一算,多少兔子多少鸡?解假设35只全为兔,则鸡数=(4×35-94)÷(4-2)=23(只)兔数=35-23=12(只)也可以先假设35只全为鸡,则兔数=(94-2×35)÷(4-2)=12(只)鸡数=35-12=23(只)答:有鸡23只,有兔12只。

例22亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?解此题实际上是改头换面的“鸡兔同笼”问题。

“每亩菠菜施肥(1÷2)千克”与“每只鸡有两个脚”相对应,“每亩白菜施肥(3÷5)千克”与“每只兔有4只脚”相对应,“16亩”与“鸡兔总数”相对应,“9千克”与“鸡兔总脚数”相对应。

假设16亩全都是菠菜,则有白菜亩数=(9-1÷2×16)÷(3÷5-1÷2)=10(亩)答:白菜地有10亩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鸡兔同笼问题解法及例题透析
【含义】这是古典的算术问题。

已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。

已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。

【数量关系】第一鸡兔同笼问题:
假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)
假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)
第二鸡兔同笼问题:
假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)
假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)
【解题思路和方法】解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。

如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。

这类问题也叫置换问题。

通过先假设,再置换,使问题得到解决。

例1长毛兔子芦花鸡,鸡兔圈在一笼里。

数数头有三十五,脚数共有九十四。

请你仔细算一算,多少兔子多少鸡?
解假设35只全为兔,则鸡数=(4×35-94)÷(4-2)=23(只)
兔数=35-23=12(只)
也可以先假设35只全为鸡,则兔数=(94-2×35)÷(4-2)=12(只)
鸡数=35-12=23(只)答:有鸡23只,有兔12只。

例22亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?
解此题实际上是改头换面的“鸡兔同笼”问题。

“每亩菠菜施肥(1÷2)千克”与“每只鸡有两个脚”相对应,“每亩白菜施肥(3÷5)千克”与“每只兔有4只脚”相对应,“16亩”与“鸡兔总数”相对应,“9千克”与“鸡兔总脚数”相对应。

假设16亩全都是菠菜,则有
白菜亩数=(9-1÷2×16)÷(3÷5-1÷2)=10(亩)答:白菜地有10亩。

例3李老师用69元给学校买作业本和日记本共45本,作业本每本3.20元,日记本每本0.70元。

问作业本和日记本各买了多少本?
解此题可以变通为“鸡兔同笼”问题。

假设45本全都是日记本,则有
作业本数=(69-0.70×45)÷(3.20-0.70)=15(本)
日记本数=45-15=30(本)
例4(第二鸡兔同笼问题)鸡兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?
解假设100只全都是鸡,则有
兔数=(2×100-80)÷(4+2)=20(只)
鸡数=100-20=80(只)
答:有鸡80只,有兔20只。

例5有100个馍100个和尚吃,大和尚一人吃3个馍,小和尚3人吃1个馍,问大小和尚各多少人?
解假设全为大和尚,则共吃馍(3×100)个,比实际多吃(3×100-100)个,这是因为把小和尚也算成了大和尚,因此我们在保证和尚总数100不变的情况下,以“小”换“大”,一个小和尚换掉一个大和尚可减少馍(3-1/3)个。

因此,共有小和尚(3×100-100)÷(3-1/3)=75(人)
共有大和尚100-75=25(人)
答:共有大和尚25人,有小和尚75人。

鸡兔同笼问题例题透析1
1、有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?
解:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,·也就是244÷2=122(只).
在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数122-88=34,
有34只兔子.当然鸡就有54只. 答:有兔子34只,鸡54只.
上面的计算,可以归结为下面算式:总脚数÷2-总头数=兔子数.
上面的解法是《孙子算经》中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,“脚数”就不一定是4和2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法.
还说此题. 如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了88×4-244=108(只).
每只鸡比兔子少(4-2)只脚,所以共有鸡(88×4-244)÷(4-2)= 54(只).
说明我们设想的88只“兔子”中,有54只不是兔子.而是鸡.因此可以列出公式
鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).
当然,我们也可以设想88只都是“鸡”,那么共有脚2×88=176(只),比244只脚少了244-176=68(只).
每只鸡比每只兔子少(4-2)只脚,68÷2=34(只).
说明设想中的“鸡”,有34只是兔子,也可以列出公式
兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数).
上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数.
假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为“假设法”.
鸡兔同笼问题例题透析2
红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红、蓝铅笔各买几支?
解:以“分”作为钱的单位.我们设想,一种“鸡”有11只脚,一种“兔子”有19只脚,它们共有16个头,280只脚.
现在已经把买铅笔问题,转化成“鸡兔同笼”问题了.利用上面算兔数公式,就有
蓝笔数=(19×16-280)÷(19-11)
=24÷8
=3(支).
红笔数=16-3=13(支).
答:买了13支红铅笔和3支蓝铅笔.
对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的“脚数”19与11之和是30.我们也可以设想16只中,8只是“兔子”,8只是“鸡”,根据这一设想,脚数是
8×(11+19)=240.
比280少40.
40÷(19-11)=5.
就知道设想中的8只“鸡”应少5只,也就是“鸡”(蓝铅笔)数是3.
30×8比19×16或11×16要容易计算些.利用已知数的特殊性,靠心算来完成计算.
实际上,可以任意设想一个方便的兔数或鸡数.例如,设想16只中,“兔数”为10,“鸡数”为6,就有脚数
19×10+11×6=256.
比280少24.
24÷(19-11)=3,
就知道设想6只“鸡”,要少3只.
要使设想的数,能给计算带来方便,常常取决于你的心算本领.
鸡兔同笼问题例题透析3
一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?
解:我们把这份稿件平均分成30份(30是6和10的最小公倍数),甲每小时打30÷6=5(份),乙每小时打30÷10=3(份).
现在把甲打字的时间看成“兔”头数,乙打字的时间看成“鸡”头数,总头数是7.“兔”的脚数是5,“鸡”的脚数是3,总脚数是30,就把问题转化成“鸡兔同笼”问题了.
根据前面的公式“兔”数=(30-3×7)÷(5-3)=4.5,
“鸡”数=7-4.5 =2.5,
也就是甲打字用了4.5小时,乙打字用了2.5小时. 答:甲打字用了4小时30分.
小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣2分,又知道他做错的题和没做的一样多.问小毛做对几道题?>>
分析:解答鸡兔同笼问题,一般采用假设法,这道题用两次假设.①假设做错的和没做的一样多,就假定这两种情况都倒扣(1分);②假设20道题全做对,与题中给出得64分相比较,看差多少,对错每道差(5+1)分,将所差的分数除以(5+1),就可求没做或做错的数.
解答:解:因为做错的和没做的一样多,就假定这两种情况都倒扣(1分).
所以没做或做错的有:
(5×20-64)÷(5+1)
=(100-64)÷6
=36÷6
=6(道)
做对的有:
20-6=14(道).
故答案为:14
点评:正确处理好总差和一道的差.。

相关文档
最新文档