鸡兔同笼基础练习题

合集下载

小学数学鸡兔同笼问题典型例题

小学数学鸡兔同笼问题典型例题

小学数学鸡兔同笼问题典型例题例1 (古典题)鸡兔同笼,头共46,足共128,鸡兔各几只?分析如果46只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。

解:①鸡有多少只?(4×6-128)÷(4-2)=(184-128)÷2=56÷2=28(只)②免有多少只?46-28=18(只)答:鸡有28只,免有18只。

我们来总结一下这道题的解题思路:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:鸡数=(每只兔脚数×兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数当然,也可以先假设全是鸡。

例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?分析这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。

鸡兔同笼基础题目及其解法

鸡兔同笼基础题目及其解法

鸡兔同笼基础题目及其解法鸡兔同笼问题是中国古代著名的数学趣题之一,也是小学数学中常见的题型。

它不仅能锻炼我们的逻辑思维能力,还能帮助我们掌握一些基本的数学方法。

接下来,让我们一起来看看鸡兔同笼的基础题目以及相应的解法。

一、鸡兔同笼问题的常见表述鸡兔同笼,通常会给出笼子里鸡和兔的总数,以及它们脚的总数,然后要求我们求出鸡和兔分别有多少只。

例如:一个笼子里有若干只鸡和兔,从上面数,有 8 个头;从下面数,有 26 只脚。

问鸡和兔各有几只?二、解法一:假设法假设法是解决鸡兔同笼问题最常用的方法之一。

我们先假设笼子里全部都是鸡。

因为每只鸡有 2 只脚,那么 8 只鸡就应该有 8×2 = 16 只脚。

但题目中说总共有 26 只脚,这比我们假设的 16 只脚多了 26 16 = 10 只脚。

这是因为我们把兔也当成鸡来算了,每只兔有 4 只脚,当成鸡就少算了 4 2 = 2 只脚。

所以多出来的 10 只脚就是因为把兔当成鸡少算的,那么兔的数量就是 10÷2 = 5 只。

鸡的数量就是总数量减去兔的数量,即 8 5 = 3 只。

我们再假设笼子里全部都是兔。

那么 8 只兔就应该有 8×4 = 32 只脚,这比题目中的 26 只脚多了 32 26 = 6 只脚。

因为每把一只鸡当成兔就多算了 2 只脚,所以多出来的 6 只脚就是因为把鸡当成兔多算的,那么鸡的数量就是 6÷2 = 3 只。

兔的数量就是 8 3 = 5 只。

三、解法二:方程法方程法是解决数学问题的一种通用方法,对于鸡兔同笼问题也同样适用。

设鸡的数量为 x 只,因为鸡和兔一共有 8 只,所以兔的数量就是 8 x 只。

每只鸡有 2 只脚,每只兔有 4 只脚,根据脚的总数可以列出方程:2x + 4×(8 x) = 26解这个方程:2x + 32 4x = 2632 2x = 262x = 32 262x = 6x = 3所以鸡有 3 只,兔有 8 3 = 5 只。

五年级解方程式鸡兔同笼练习题

五年级解方程式鸡兔同笼练习题

五年级解方程式鸡兔同笼练习题在五年级学习解方程式时,鸡兔同笼练习题是一种经典的训练工具。

通过解决这些问题,学生们能够巩固对方程式的理解,并锻炼他们的数学思维和逻辑推理能力。

本文将为大家介绍一些常见的鸡兔同笼练习题,并提供详细的解答过程。

1. 一个农场有鸡和兔子共计35只,总腿数为94只。

问鸡和兔子各有多少只?解答:假设鸡有x只,兔子有35-x只。

由于鸡有2只腿,而兔子有4只腿,所以可以得到以下方程式:2x + 4(35-x) = 94化简方程式,得到:2x + 140 - 4x = 94继续化简,得到:-2x + 140 = 94将常数项移到方程式的另一边,得到:-2x = 94 - 140-2x = -46两边同时除以-2,得到:x = -46 / -2x = 23所以,鸡有23只,兔子有35-23=12只。

2. 一个农场有鸡和兔子共计40只,总腿数为112只。

问鸡和兔子各有多少只?解答:同样假设鸡有x只,兔子有40-x只。

由于鸡有2只腿,而兔子有4只腿,可以得到以下方程式:2x + 4(40-x) = 112化简方程式,得到:2x + 160 - 4x = 112继续化简,得到:-2x + 160 = 112将常数项移到方程式的另一边,得到:-2x = 112 - 160-2x = -48两边同时除以-2,得到:x = -48 / -2x = 24所以,鸡有24只,兔子有40-24=16只。

通过以上两个例子的解答过程,我们可以看到解决鸡兔同笼问题的一般步骤:设立变量,列出方程式,化简方程式,解方程得出结果。

这是解方程式的基本思路,也是解决其他复杂数学问题的基础。

除了以上的两个练习题外,我们还可以推广鸡兔同笼问题的解法。

例如,我们可以设立更多的变量,解决更多未知数的问题。

同时,我们可以借助解方程式的思路解决其他实际生活中的问题,例如购物、出行等。

总结起来,五年级的解方程式鸡兔同笼练习题是培养学生数学思维和逻辑推理能力的重要工具。

鸡兔同笼的练习题及答案

鸡兔同笼的练习题及答案

鸡兔同笼问题的练习题及答案一、基础题1. 有一个笼子里有鸡和兔,共有头30个,脚90只,请问笼子里各有几只鸡和兔?2. 鸡和兔共40只,脚共有112只,求鸡和兔各有多少只?3. 笼子里有鸡和兔共35只,脚共有94只,鸡和兔各有多少只?4. 笼子里有鸡和兔共18只,脚共有52只,求鸡和兔的数量。

5. 有一个笼子里鸡和兔共有26只,脚共有70只,问鸡和兔各有多少只?二、提高题6. 有两个笼子,第一个笼子里有鸡和兔共20只,脚共有60只;第二个笼子里有鸡和兔共25只,脚共有70只。

请问两个笼子中鸡和兔各有多少只?7. 有三个笼子,分别装有鸡和兔,第一个笼子共15只,第二个笼子共20只,第三个笼子共25只,三个笼子的脚总数为96只。

求每个笼子中鸡和兔的数量。

8. 笼子里有鸡和兔共30只,如果增加5只鸡,脚的总数将增加20只,求原来笼子里鸡和兔各有多少只?9. 笼子里有鸡和兔共50只,脚共有140只,如果将鸡换成兔,兔换成鸡,那么笼子里的脚总数将增加40只。

求原来鸡和兔各有多少只?10. 有两个笼子,第一个笼子里鸡和兔共15只,第二个笼子里鸡和兔共25只,两个笼子的脚总数为100只。

求两个笼子中鸡和兔各有多少只?三、拓展题11. 有三个笼子,分别装有鸡和兔,第一个笼子共10只,第二个笼子共15只,第三个笼子共20只,三个笼子的脚总数为68只。

求每个笼子中鸡和兔的数量。

12. 笼子里有鸡和兔共40只,脚共有110只。

如果将鸡换成兔,兔换成鸡,那么笼子里的脚总数将减少30只。

求原来鸡和兔各有多少只?13. 有四个笼子,分别装有鸡和兔,第一个笼子共8只,第二个笼子共12只,第三个笼子共16只,第四个笼子共20只,四个笼子的脚总数为只。

求每个笼子中鸡和兔的数量。

14. 笼子里有鸡和兔共60只,脚共有160只。

如果将鸡换成兔,兔换成鸡,那么笼子里的脚总数将增加40只。

求原来鸡和兔各有多少只?15. 有五个笼子,分别装有鸡和兔,每个笼子的鸡和兔总数分别为10、15、20、25、30只,五个笼子的脚总数为140只。

鸡兔同笼问题多样化练习

鸡兔同笼问题多样化练习

鸡兔同笼问题多样化练习鸡兔同笼问题是中国古代著名的数学趣题之一,也是小学数学中的常见题型。

它不仅能锻炼我们的逻辑思维能力,还能让我们学会运用不同的方法来解决问题。

今天,咱们就来一起深入探讨一下鸡兔同笼问题的多样化练习。

先来说说鸡兔同笼问题的经典表述:笼子里有若干只鸡和兔,从上面数,有若干个头;从下面数,有若干只脚。

问鸡和兔各有几只?咱们先从最基础的方法——假设法开始。

假设笼子里全是鸡,那么脚的总数就会比实际的少。

因为每只鸡有 2 只脚,每只兔有 4 只脚,所以少的脚的数量除以每只兔比鸡多的脚的数量,就是兔的数量。

举个例子,笼子里有 35 个头,94 只脚。

假设全是鸡,那么脚的总数就是 35×2 = 70 只。

但实际有 94 只脚,少了 94 70 = 24 只脚。

每只兔比鸡多 4 2 = 2 只脚,所以兔的数量就是 24÷2 = 12 只。

鸡的数量就是 35 12 = 23 只。

除了假设法,方程法也是解决鸡兔同笼问题的常用手段。

咱们可以设鸡的数量为 x 只,兔的数量就是总头数减去 x 只。

根据脚的总数列出方程,就能求解出鸡和兔的数量。

比如说还是刚才那个例子,设鸡有 x 只,兔就有 35 x 只。

鸡脚的数量是 2x 只,兔脚的数量是 4×(35 x)只,两者相加等于 94 只脚,即2x + 4×(35 x) = 94,解方程可得 x = 23,所以鸡有 23 只,兔有 12 只。

再来看看列表法。

咱们可以列出一个表格,依次假设鸡和兔的数量,然后计算脚的总数,直到找到符合条件的答案。

这种方法虽然比较繁琐,但对于理解问题很有帮助。

比如还是上面的例子,我们可以从鸡 0 只、兔 35 只开始,逐渐增加鸡的数量,减少兔的数量,计算脚的总数,最终也能得出鸡 23 只,兔 12 只的答案。

下面咱们来做几道练习题巩固一下。

练习题 1:一个笼子里有鸡和兔共 25 只,共有 70 条腿。

二元一次方程组的应用第1课时“鸡兔同笼”问题(同步练习)七年级下册

二元一次方程组的应用第1课时“鸡兔同笼”问题(同步练习)七年级下册

第七章二元一次方程组3 二元一次方程组的应用第1课时“鸡兔同笼”问题夯基础1.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是 ( )A{y−x=4.5,2x−y=1B{x−y=4.5,2x−y=1C.{x−y=4.5,y2−x=1D.{y−x=4.5, x−y2=12.小慧去花店购买鲜花,若买5枝玫瑰和3枝百合,则她所带的钱还剩下10元;若买3枝玫瑰和5枝百合,则她所带的钱还缺4元,若只买8枝玫瑰,则她所带的钱还剩下 ( )A.31元B.30元C.25元D.19元3.五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人,则1艘大船与1艘小船一次共可以满载游客的人数为 ( )A.30B.26C.24D.224. 2022年北京冬奥会吉祥物冰墩墩和冬残奥会吉祥物雪容融深受大家喜爱.已知购买1个冰墩墩毛绒玩具和2个雪容融毛绒玩具用了400元,购买3个冰墩墩毛绒玩具和4个雪容融毛绒玩具用了1000元.这两种毛绒玩具的单价各是多少元?练能力1.中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有x个,甜果有y个,则可列方程组为 ( )A.{x+y=1000,47x+119y=999B.{x+y=1000,74x+911y=999C.{x+y=1000,7x+9y=999D.{x+y=1000,4x+11y=9992.为培养青少年的创新意识、动手实践能力、现场应变能力和团队精神,湘潭市举办了第10届青少年机器人竞赛.组委会为每个比赛场地准备了四条腿的桌子和三条腿的凳子共12个,若桌子腿数与凳子腿数的和为40条,则每个比赛场地有几张桌子和几条凳子?设有x张桌子,有y条凳子,根据题意所列方程组正确的是( )A.{x+y=40,4x+3y=12B.{x+y=12,4x+3y=40C.{x+y=40,3x+4y=12D.{x+y=12,3x+4y=403.某停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为8元/辆.现在停车场内停有30辆中、小型汽车,这些车共缴纳停车费324元,求中、小型汽车各有多少辆,据题意可求得中型汽车有辆,小型汽车有辆.4.我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两.银子共有两.5.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价值是多少?该问题中物品的价值是钱.6.[2022·泰安泰安某茶叶店经销泰山女儿茶,第一次购进了A种茶30盒,B种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A 种茶20盒,B种茶15盒,共花费5100元.求第一次购进的A,B两种茶每盒的价格.7. “绿水青山就是金山银山”,科学研究表明:树叶在光合作用后产生的分泌物能够吸附空气中的悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4mg,若一片国槐树叶与一片银杏树叶一年的平均滞尘总量为62mg.(1)请分别求出一片国槐树叶和一片银杏树叶一年的平均滞尘量;(2)娄底市双峰县九峰山森林公园某处有始于唐代的三棵银杏树,据估计三棵银杏树共有约50000片树叶.问这三棵银杏树一年的平均滞尘总量约多少千克?参考答案夯基础1.D2.A3.B4.解:设冰墩墩毛绒玩具的单价为x元,雪容融毛绒玩具的单价为y元,依题意,得{x+2y=400,3x+4y=1000,解得{x=200,y=100.答:冰墩墩毛绒玩具的单价为200元,雪容融毛绒玩具的单价为100元. 练能力1.A2.B3.12 184.465.536.解:设第一次购进A种茶每盒x元,B种茶每盒y元,根据题意,得{30x+20y=6000,1.2x×20+1.2y×15=5100.解得{x=100,y=150.答:A种茶每盒100元,B种茶每盒150元.7.解:(1)设一片银杏树叶一年的平均滞尘量为x mg,一片国槐树叶一年的平均滞尘量为y mg.由题意,得{x+y=62,x=2y−4,解得{x=40,y=22.答:一片银杏树叶一年的平均滞尘量为40 mg,一片国槐树叶一年的平均滞尘量为22mg;(2)50000×40=2000 000(mg)=2kg,答:这三棵银杏树一年的平均滞尘总量约2千克.。

鸡兔同笼典型例题10道

鸡兔同笼典型例题10道

鸡兔同笼典型例题10道一、基础型例题1. 鸡和兔在一个笼子里,从上面数,有8个头,从下面数,有26只脚。

问鸡和兔各有几只?- 逻辑:我们先假设笼子里全是鸡,那么8个头就应该有8×2 = 16只脚。

但实际有26只脚,多出来的脚就是兔子比鸡多的脚。

每只兔子比鸡多2只脚,多出来的26 - 16 = 10只脚,10÷2 = 5只就是兔子的数量,鸡就是8 - 5 = 3只。

2. 一个笼子里有鸡和兔共12只,它们一共有34只脚。

求鸡和兔各多少只?- 逻辑:假设全是鸡,12只鸡就有12×2 = 24只脚。

实际34只脚,多了34 - 24 = 10只脚。

因为每只兔比鸡多2只脚,所以兔有10÷2 = 5只,鸡就是12 - 5 = 7只。

3. 鸡兔同笼,头共10个,脚共30只。

鸡兔各几只?- 逻辑:要是全是鸡,10只鸡就有20只脚。

30 - 20 = 10只脚是多出来的,这是兔子的脚多出来的部分。

每只兔比鸡多2只脚,所以兔有10÷2 = 5只,鸡就是10 - 5 = 5只。

二、数字变化型例题4. 鸡兔同笼,共有15个头,46只脚。

问鸡和兔各有多少只?- 逻辑:先当全是鸡,15只鸡有15×2 = 30只脚。

46 - 30 = 16只脚是多的,每只兔比鸡多2只脚,兔就有16÷2 = 8只,鸡就是15 - 8 = 7只。

5. 笼子里有鸡和兔,一共20个头,56只脚。

鸡和兔分别有多少?- 逻辑:假设都是鸡,20只鸡有20×2 = 40只脚。

56 - 40 = 16只脚多出来了,这是兔子的。

每只兔比鸡多2只脚,兔有16÷2 = 8只,鸡有20 - 8 = 12只。

三、特殊条件型例题6. 鸡兔同笼,鸡比兔多2只,共有脚28只。

鸡兔各多少只?- 逻辑:设兔有x只,那鸡就有x + 2只。

兔脚有4x只,鸡脚有2(x + 2)只。

可列方程4x+2(x + 2)=28,4x+2x + 4 = 28,6x = 24,x = 4。

六年级奥数——鸡兔同笼(从基础到培优)

六年级奥数——鸡兔同笼(从基础到培优)

3.新思维家教数学竞赛,共有20道题,做对一题得8分,做错 一题倒扣4分,维维做完所有题目后最终得112分,他做对多 少题目?
4.狗蛋去工地搬运花瓶,共有100个,搬一个花瓶可得运费3 角,但打碎一个花瓶要赔5角,搬运完后,狗蛋共得搬运费 260元。问狗蛋打碎多少个花瓶?
5.狗蛋去灯泡厂上班,工资计件,生产一个合格的灯泡得4元, 如果灯泡不合格要扣除15元。狗蛋生产了1000只灯泡,共得 3525元,狗蛋生产了多少个灯泡不合格?
6.一队猎手一队狗,两队并着一起走。数头一共一百六, 数脚一共三百九。则有多少猎手多少狗?
三、分组法(腿和)
1.鸡和兔一样多,共有30条腿,那么鸡兔各有几只?
2.鸡和兔一样多,共有48条腿,鸡兔各有几只?
3.鸡兔一样多,共有120条腿,鸡兔各有几只?
分组法(头倍腿和)
4.鸡的数量是兔的2倍,共有80条腿,鸡兔各有多少只?
分组法(头倍‘多或少’腿和)
10.锦鸡是梅花鹿的3倍多2只,数腿共有74条,锦鸡和梅花 鹿各有多少只?
11.鸡比兔的2倍多3只,数腿共有78条,鸡兔各有多少只?
12.兔比鸡的2倍多1只,数腿共有94条,鸡兔各有多少只?
分组法(头和腿同)
13.鸡腿和兔腿一样多,鸡和兔共有30只,鸡兔各多少只?
14.鸡腿和兔腿一样多,鸡和兔有24只。鸡兔各有多少只?
15.鸡腿和兔腿一样多,鸡兔共有21只,那么兔有多少只?
分组法(腿倍头和)
16.兔腿是鸡腿的2倍,鸡和兔有40只,鸡兔各有多少只?
17.兔腿是鸡腿的2倍,鸡和兔共有20个头,鸡兔各有多少只?
18.兔腿是鸡腿的4倍,鸡和兔共有30个头,鸡兔各有多少只?
新思维家教
小学奥数--鸡兔同笼
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鸡兔同笼练习题(基础)
1、鸡兔同笼,头共20个,足共62只,求鸡与兔各有多少只?
2、在一个停车场上,停了汽车和摩托车一共32辆。

其中汽车有4个轮子,摩托车有3个轮子,这些车一共有108个轮子。

求汽车和摩托车各有多少辆?
3、小华买了2元和5元纪念邮票一共34张,用去98元钱。

求小华买了2元和5元的纪念邮票各多少张?
4、全班46人去划船,共乘12只船,其中大船每只坐5人,小船每只坐3人,求大船和小船各有多少只?
5、张大妈养鸡兔共200只,鸡兔足数共560只,求鸡兔各有多少只?
6、小刚买回8角邮票和4角邮票共100张,共付出68元,问,小刚买回这两种邮票个多少张?各付出多少元?
7、幼儿园买来20张小桌和30张小凳共用去1860元,已知每张小桌比小凳贵8元,问小桌、小凳的价格各多少?
8 自行车越野赛全程220千米,全程被分为20个路段,其中一部分路段长14千米,其余的长9千米.问:长9千米的路段有多少个?
9、赵传伦把一张50元和一张5元的人民币,兑换成了两元和5角的人民币共50张.他兑换了两种面额的人民币各多少张?
10、幼儿园买来20张小桌和30张小凳共用去1860元,已知每张小桌比小凳贵8元,问小桌、小凳的价格各多少?
11、东风小学有3名同学去参加数学竞赛,一份试卷共10道题,答对一题得10分,答错一道不但不得分,还要扣去3分,这3名同学都回答了所有的题目,小明得74分,小华得22分,小红得87分,他们三人共答对多少题
12、某运输队为超市运送暖瓶500箱,每箱装有6个暖瓶。

已知每10个暖瓶的运费为5元,损坏一个的话不但不给运费还要陪成本10元,运后结算时,运输队共得1350元的运费。

问、共损坏了多少只暖瓶?。

相关文档
最新文档