脂类消化、吸收和转运

合集下载

生物化学 第08章 脂代谢(共68张PPT)

生物化学 第08章 脂代谢(共68张PPT)

合成一分子软脂酸的总反应式
4、脂肪酸的延伸反应
NADPH
5、脂肪酸的去饱和反应
4. 饱和脂肪酸的从头合成与β-氧化的比较
区别要点
从头合成
β-氧化
细胞内进行部位
胞液
酰基载体
ACP-SH
二碳单位参与或断裂形式 丙二酸单酰ACP
电子供体或受体
NADPH+H+
-羟酰基中间物的立体构型不同
D型
对HCO3-和柠檬酸的需求 所需酶
甘油
R1COOH R2COOH R3COOH
脂肪酸
场所: 细胞质内(主要是脂肪组织) 关键酶:脂肪酶(限速酶) 调控: 激素 功能: 水解产物可进一步氧化分解
二、甘油的氧化分解与转化
CH 2OH ATP ADP CH 2OH NAD + NADH+H +
CHOH
CHOH
甘油激酶
CH 2OH (肝 、 肾 、 肠 ) CH 2O
α–lipoprotein (high density 脂酰-CoA的跨线粒体内膜的转运
第十章
FAD+2ATP+3H20
(2)脂酰CoA转运入线粒体
脂类的脂消类化代、谢吸收、 CH3(CH2)nCOOH
(hormone-sensitive lipase , HSL) 这对于某些生活在干燥缺水环境的生物十分重要,像骆驼已将β-氧化作为获取水的一种特殊手段。
5~10 50~70 10~15 10~15
20~25 10 40~50 5
45~50 20 20~22 30
生理功能
转运外源性 TG
转运内源性 TG 转运 Ch 转运PL、Ch
第二节 第十章

脂类

脂类

5.内分泌作用 瘦素、TNF-α、IL-6、IL-8、雌
激素、IGF等。
食物中脂肪的作用
1.提供能量 2.人体脂肪的合成材料
3.增加饱腹感
脂肪进入十二指肠时,刺激十二指肠产
生肠抑胃素,使胃蠕动受到抑制。
4.改善食物的感观性状
5.提供脂溶性维生素
美观、促进食欲
脂肪不仅是脂溶性维生素来源,
也可促进其吸收。
功效:
(1)辅助脑细胞发育 DHA是大脑细胞膜的重要构成成分,参与脑细胞的形成和发育,对神经细胞轴突的延伸和新突起的 形成有重要作用,可维持神经细胞的正常生理活动,参与大脑思维和记忆形成过程。
母乳中含有长链多不饱和脂肪酸,过去认为婴儿可能通过延伸酶和去不饱和酶将两种必需C18脂肪 酸合成长链多不饱和脂肪酸,但因为婴儿在出生后第一个月相关的酶系统并未发挥作用,无法自身 合成,因此,人工喂养的婴儿错过了脑中长链多不饱和脂肪酸累积的主要阶段,并有研究发现母乳 喂养儿的认知发育分数比人工喂养儿高得多。对无法进行母乳喂养儿添加DHA ,并与未添加组和 母乳喂养组对比考察婴儿体格发育速率的关系,结果表明,添加组体重一直保持第1位,身长从第3 位追至第2位(母乳组第1位),头围升至第1位,DHA的添加提高了婴幼儿对配方奶粉的耐受性。 头围的增长是脑发育的重要前提和容量外环境,也是各项生长发育指标中最难增长的,添加组头围 的增长高于其他两组,表明添加DHA对促进出生后脑容量发育具有重大意义。
DHA
中文名称:二十二碳六烯酸 Docosahexaenoic Acid
DHA,二十二碳六烯酸,俗称脑黄金,是一种对人体非常重要的多不饱和脂肪酸,属于Omega-3
不饱和脂肪酸家族中的重要成员。DHA是神经系统细胞生长及维持的一种主要元素,是大脑和视

脂肪在体内的消化吸收和转运

脂肪在体内的消化吸收和转运
脂肪动员生成的甘油主要转运至肝脏再磷酸化为3-磷酸甘油后进行代谢。磷 酸二羟丙酮是联系甘油代谢和糖代谢的关键物质。
甘油激酶
甘油的转化
磷酸甘油 脱氢酶
磷酸酶
异构酶
(实线为甘油的分解,虚线为甘油的合成)
三、脂 肪 酸 的 分 解 代 谢
1、饱和脂肪酸的氧化分解途径
CH3-(CH2)n - CH2 - CH2 -COOH
一、脂肪动员及脂肪的降解
贮存于脂肪细胞中的甘油三酯在激素敏感脂肪酶 (hormone sensitive tri-glyceride lipase, HSL)的 催化下水解并释放出脂肪酸,供给全身各组织细胞摄取利 用的过程称为脂肪动员。
激素敏感脂肪酶(HSL)是脂肪动员的关键酶。主要 受共价修饰调节。
激 素 对 脂 代 谢 的 调 节
脂肪动员激素 (第一信使)
(肾上腺素、生长激素等)
受体
修饰受体
腺苷酸环化酶 腺苷酸环化酶
(无活性)
(有活性)
ATP
cAMP(第二信使)
蛋白质激酶 (无活性)
蛋白质激酶 (有活性)
激素敏感性脂酶 (无活性)
激素敏感性脂酶 (有活性)
甘油三脂
脂肪酸+甘油
脂肪动员的基本过程
储存在脂肪组织内的三脂酰甘油的转移包含有以下内容: 在激素敏感的三脂酰甘油脂肪酶的作用下,被水解为甘油和游 离脂肪酸.被释放的游离脂肪酸进入血液,并与清蛋白结合.
二、脂类的转运和脂蛋白的作用
脂蛋白的种类
乳麋微粒(CM) 极低密度脂蛋白VLDL 低密度脂蛋白LDL 高密度脂蛋白HDL
第二节 脂肪的分解代谢
2、脂类的吸收
脂肪经消化后的产物脂肪酸和2-单酰甘油由小肠上皮粘膜 细胞吸收后又经粘膜细胞转化为三脂酰甘油,后者和蛋白质一 起包装成乳糜微粒(血尘),释放到血液,又通过淋巴系统运 送到各种组织.

28-29-脂类代谢

28-29-脂类代谢
Beta-hydroxyR Fatty Acyl CoA
O H O S CoA
H2O in
ETS
β
NAD
(dehydrogenase)
Beta-ketoR Fatty Acyl CoA CoA-S
ation 3
NADH + H
O O S CoA
2.5 ATP 3
H out
β
H
thiolysis
Fatty Acyl CoA
R
β
α
O S CoA
Matrix Side
FAD
oxidation 1
(dehydrogenase)
alpha-beta unsat. Fatty Acyl CoA (trans)
R
H out
ETS
FADH2
O S CoA
1.5 ATP 2
H2O
hydration 2
(hydratase)
acetyl CoA
脂肪酸氧化分解时的能量释放: 脂肪酸氧化分解时的能量释放:
由于1分子FADH 可生成1 分子ATP ATP, 分子NADH NADH可生成 由于 1 分子 FADH2 可生成 1.5 分子 ATP ,1 分子 NADH 可生成 分子ATP ATP, 分子乙酰CoA 经彻底氧化分解可生成10 CoA经彻底氧化分解可生成 2.5 分子 ATP , 1 分子乙酰 CoA 经彻底氧化分解可生成 10 分子ATP。 分子ATP。 ATP 16C acid) 为例来计算, 以 16C 的软脂酸 ( palmitic acid ) 为例来计算 , 则生成 ATP的数目为: ATP的数目为: 的数目为 7次β-氧化分解产生4×7= 氧化分解产生4 8分子乙酰CoA可得10×8= 分子乙酰CoA可得10× CoA可得10 减去活化时消耗的 28分子ATP; 28分子ATP; 分子ATP 80分子ATP; 80分子ATP; 分子ATP 2分子ATP 分子ATP

食品营养与安全 第三讲___脂类

食品营养与安全 第三讲___脂类

各国对反式脂肪酸采取措施,我国消费者都不知其 存在,也未见对其的安全性评价等相关研究报道。 哈佛大学公共卫生学院营养学系主任威利特 教授在1991年就指出:氢化油危害健康!
怎样辨别食物中是否含有反式脂肪酸以及如何避免? • 首先,看食品的配料清单,如果含有“人造奶 油” 、“起酥油”、“氢化植物油”、“部 分氢化植物油”等,那么该食品就含有反式脂 肪酸。在购买时应尽量避免。如沙拉酱、大部 分饼干,奶油蛋糕、冰激凌等。 其次,自我控制,养成良好的膳食习惯,避免 大量进食薯条等油炸食品。如快餐、烘焙食物 、薯片、炸薯条等。
3.必需脂肪酸 指人体不可缺少而自身又不能合成,必须通过食物
供给的脂肪酸。
n-6系列中的亚油酸和n-3系列中的α-亚麻酸是人体 必需的两种脂肪酸。
亚油酸号称美容酸,能促进皮肤发育,利于头发健康润泽。 一般食用油,玉米油、芝麻油可满足。 α-亚麻酸只有亚麻籽、紫苏籽、核桃、蚕蛹、深海鱼、豆科植物等 极少数的食物中含有丰富的α-亚麻酸及其衍生物。 α-亚麻酸在体内会转化为EPA或DHA。也可从鱼类摄取,但鱼不要 油炸;所有动物的脑组织中都含有,主要是DHA;坚果类;羊肉和 兔肉中含量较高 ;黄豆 、草莓、樱桃
密度低、颗粒稍大,容易沉 积、附着在动脉血管壁上, 使血中胆固醇含量增加,促 使血管硬化,造成动脉血管 阻塞,诱发心血管病。
食品中的胆固醇并不等于血液中的胆固醇
鸡蛋无罪 1个鸡蛋中的胆固 醇含量为213mg。
• 什么样的食物能够提高体内HDL和控制LDL呢? 哈佛等大学的大量研究发现:恰好是含胆固醇的食物 ,如鱼类、肉类和蛋类。而完全不含胆固醇的食物, 如糖和淀粉,会使人体HDL明显下降和LDL上升。这一 发现彻底粉碎了“吃什么长什么”幼稚的常识性误导 。 • 美国科学家新发现:吃鸡蛋不会增加胆固醇水平 科学家对两组志愿者进行了测试,结果发现吃鸡 蛋和吃麦片粥相比,血管内壁的变化也没有明显区别 。吃鸡蛋并没有增加人体胆固醇的水平,但是麦片粥 的确具有降脂作用。

第九章 脂类代谢

第九章 脂类代谢

本章主要介绍脂类物质(主要是脂肪)在生物体内的分解和合成代谢。

重点掌握脂肪酸在生物体内的氧化分解途径—脂肪酸的β-氧化和从头合成途径,了解脂类物质的其它氧化分解途径和功能。

思考?第九章脂类代谢目录第一节生物体内的脂类第二节脂肪的分解代谢第三节乙醛酸循环第四节脂肪的生物合成第五节磷脂和胆固醇的代谢CR 2O CR 1O CR 3O 脂肪酸形成的酯。

多存在于植物的叶、茎和果实的表皮部分。

动物所产生的蜡有蜂蜡、羊毛脂等。

烃,虽不属于酯类,因其性质与蜡相似,也称为蜡磷脂酸磷脂酰胆碱磷脂酰乙醇胺磷脂酰肌醇磷脂酰丝氨酸磷脂酰甘油脂肪的酶促水解甘油激酶磷酸甘油磷酸酯酶脱氢酶异构酶磷酸酶乙醛酸循环1、乙醛酸循环的生化历程2、乙醛酸循环总反应式及其糖异生的关系3、乙醛酸循环的生理意义植物种子萌发的脂肪转化为糖微生物发酵产物重新氧化的途径4、脂肪代谢和糖代谢的关系草酰乙酸顺乌头酸酶酶CoASH COO-CH2CH2羧化酶变位酶ATP、CO 生物素CoB甲基丙二酸单酰CoA 琥珀酰CoA酮体的代谢•酮体的生成•酮体的分解•生成酮体的意义脂肪酸β-氧化产物乙酰CoA,在肌肉中进入TCA 循环;然而在肝细胞中乙酰CoA可形成乙酰乙酸、β-羟丁酸、丙酮,这三种物质统称为酮体。

乙酰乙酰CoAβ--氧化乙酰乙酸+乙酰CoAβ--羟丁酸脂肪酸的生物合成1、十六碳饱和脂肪酸的从头合成2、线粒体和内质网中脂肪酸碳链的延长3、不饱和脂肪酸的合成(自学)乙酰CoA从线粒体内至胞液的运转脂肪酸合酶系统(fatty acid synthase system,FAS)①②③④⑤⑥外围巯基⑥①②③④⑤ACP乙酰CoA:ACP转移酶④β-酮脂酰-ACP 丙二酸单酰CoA:ACP转移酶⑤β-羟脂酰-ACP SHSHACP •不同生物体中的ACP十分相似:大肠杆菌中的ACP是一个由77个氨基酸残基组成的热稳定蛋白质,在它的第36位丝氨酸残基的侧链上,连有辅基4-磷酸泛酰巯基乙胺。

脂类 碳水化合物.

脂类 碳水化合物.

抗生酮作用
脂 类 乙酰基 碳水化合物 草酰乙酸
三羧酸循环
彻底 氧化
若碳水化合物摄入不足, 脂肪不能彻底氧化分解, 将产生大量酮体
每天至少摄入 50~100g 碳水化合物,可防
止酮血症。
提供能量
是细胞膜构成成分,利于细胞内外物质交换。
乳化剂 脂肪悬浮 促进脂肪吸收、转运、代谢
预防心血管疾病 防止胆固醇沉积血管壁、降低血粘度
食物中磷脂释放胆碱 织功能
乙酰胆碱 促进脑、神经组
磷脂缺乏
脂肪 代谢 紊乱
膜受损
毛细血管脆性 通透性增加
皮肤通 透性增 高
脂肪肝 动脉粥样硬化
皮疹
含磷脂较多的食物:
复习思考题
什么是碳水化合物的节氮作用? 什么是碳水化合物的抗生酮作用?
膳食纤维的概念和功能?
体内碳水化合物的生理功能?
人体在休息时,60%的能量来源于体内脂肪,运动 或长时间饥饿时,体脂供能更多。
体内脂肪细胞贮存和提供能量的特点:
脂肪细胞可不断储存脂肪, 未发现其吸收脂肪的上限。
墨 西 哥 560 公斤
应限制总脂肪、饱和脂肪酸和胆固醇的 摄入。
复习思考题
名词解释:EFA、
简述体内脂肪的生理功能
EFA的生理功能?包含哪两种脂肪酸?
脂类的摄入应遵循哪些原则?
第三节
碳水化合物
碳水化合物的分类、食物来源
碳水化合物的功能
碳水化合物的消化吸收
碳水化合物的供给
一、碳水化合物分类
碳水化合物也称糖类,由碳、氢、氧三种元素 基本单位 组成,包括: D、L型 单糖:果糖、葡萄糖、半乳糖 双糖:蔗糖、乳糖、麦芽糖、海藻糖 寡糖:3~10单糖缩合,棉子糖(3糖)和水苏糖(4糖) 多糖:>10单糖,糖原、淀粉、纤维。

《杨在清》10 第10章 脂类代谢

《杨在清》10 第10章  脂类代谢

第10章脂类代谢一、教学大纲基本要求脂类消化、吸收、转运,脂肪动员,脂肪水解;重点掌握脂肪酸β-氧化,奇数碳脂肪酸氧化,不饱和脂肪酸氧化,酮体代谢,脂肪酸合成,脂肪酸碳链延长,脂肪酸去饱和;了解脂类代谢调控,磷脂合成与降解代谢,胆固醇合成代谢,脂代谢紊乱。

二、本章知识要点(一)脂类的消化、吸收、转运和贮存1.脂肪的消化由于甘油三脂是水不溶性的,而消化作用的酶却是水溶性的,因此甘油三脂的消化是在脂质-水的界面处发生,的消化速度取决于界面的表面积,在小肠蠕动的“剧烈搅拌”下,特别是在胆汁盐的乳化作用下,消化量大幅度增高。

胆汁盐是强有力的、用于消化的“去污剂”,它是在肝脏中合成的,经过胆囊分泌进入小肠。

脂肪的消化和吸收主要在小肠中进行。

另外,肝脏还产生磷脂酰胆碱,它的亲水和疏水基分居分子的两端,也有助于脂肪的乳化。

2.脂肪的吸收脂肪消化后的产物脂肪酸和2-单酰甘油由小肠上皮黏膜细胞吸收,随后又经黏膜细胞转化为甘油三脂,后者和蛋白质一起包装成乳糜微粒,释放到血液,又通过淋巴系统运送到各种组织。

短的和中等长度链的脂肪酸在膳食中含量不多,它们被吸收进入门静脉血液,并以游离酸形式被送人肝脏。

即短链和中长链的脂肪酸绕过了形成脂蛋白的途径,它们的这种特性可用于药物治疗学的开发。

3.脂类的转运和贮存脂肪、磷脂和胆固醇及其它脂类以血浆脂蛋白的形式,由血液运送;而血液中的游离脂肪酸则由血液中的清蛋白运送。

近年来,人们对脂蛋白中的载脂蛋白进行了广泛研究,各种载脂蛋白类型间的组分是不同的,即使在同一类型中,载脂蛋白的组分也是各种蛋白质的混合物。

乳糜微粒是最大的又是密度较小的脂蛋白,它从小肠将膳食摄取的甘油三脂及胆固醇运送到其他组织。

极低密度脂蛋白(VLDL)和低密度脂蛋白(LDL)是一组相关的脂蛋白,它们把体内产生(内源的)的甘油三脂和胆固醇从肝脏转运到各组织。

高密度脂蛋白(HDL)将内源性胆固醇从各组织运到肝脏。

脂类物质绝大多数以甘油三脂的形式贮存在脂肪组织中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

脂类的消化、吸收和转运第一节脂类的消化、吸收和转运一、脂类的消化和吸收1、脂类的消化(主要在十二指肠中)食物中的脂类主要是甘油三酯 80-90%还有少量的磷脂 6-10%胆固醇 2-3%胃的食物糜(酸性)进入十二指肠,刺激肠促胰液肽的分泌,引起胰脏分泌HCO-3 至小肠(碱性)。

脂肪间接刺激胆汁及胰液的分泌。

胆汁酸盐使脂类乳化,分散成小微团,在胰腺分泌的脂类水解酶作用下水解。

胰腺分泌的脂类水解酶:① 三脂酰甘油脂肪酶(水解三酰甘油的C1、C3酯键,生成2-单酰甘油和两个游离的脂肪酸。

胰脏分泌的脂肪酶原要在小肠中激活)②磷脂酶A2(水解磷脂,产生溶血磷酸和脂肪酸)③胆固醇脂酶(水解胆固醇脂,产生胆固醇和脂肪酸)④辅脂酶(Colipase)(它和胆汁共同激活胰脏分泌的脂肪酶原)2、脂类的吸收脂类的消化产物,甘油单脂、脂肪酸、胆固醇、溶血磷脂可与胆汁酸乳化成更小的混合微团(20nm),这种微团极性增大,易于穿过肠粘膜细胞表面的水屏障,被肠粘膜的拄状表面细胞吸收。

被吸收的脂类,在柱状细胞中重新合成甘油三酯,结合上蛋白质、磷酯、胆固醇,形成乳糜微粒(CM),经胞吐排至细胞外,再经淋巴系统进入血液。

小分子脂肪酸水溶性较高,可不经过淋巴系统,直接进入门静脉血液中。

二、脂类转运和脂蛋白的作用甘油三脂和胆固醇脂在体内由脂蛋白转运。

脂蛋白:是由疏水脂类为核心、围绕着极性脂类及载脂蛋白组成的复合体,是脂类物质的转运形式。

载脂蛋白:(已发现18种,主要的有7种)在肝脏及小肠中合成,分泌至胞外,可使疏水脂类增溶,并且具有信号识别、调控及转移功能,能将脂类运至特定的靶细胞中。

脂蛋白的分类及功能:P151表15-1各种脂蛋白的组成、理化性质、生理功能三、贮脂的动用皮下脂肪在脂肪酶作用下分解,产生脂肪酸,经血浆白蛋白运输至各组织细胞中。

血浆白蛋白占血浆蛋白总量的50%,是脂肪酸运输蛋白,血浆白蛋白既可运输脂肪酸,又可解除脂肪酸对红细胞膜的破坏。

贮脂的降解受激素调节。

促进:肾上腺素、胰高血糖素、肾上腺皮质激素抑制:胰岛素植物种子发芽时,脂肪酶活性升高,能利用脂肪的微生物也能产生脂肪酶。

第二节脂肪酸和甘油三酯的分解代谢一、甘油三酯的水解甘油三酯的水解由脂肪酶催化。

组织中有三种脂肪酶,逐步将甘油三酯水解成甘油二酯、甘油单酯、甘油和脂肪酸。

这三种酶是:脂肪酶(激素敏感性甘油三酯脂肪酶,是限速酶)甘油二酯脂肪酶甘油单酯脂肪酶肾上腺素、胰高血糖素、肾上腺皮质激素都可以激活腺苷酸环化酶,使cAMP浓度升高,促使依赖cAMP的蛋白激酶活化,后者使无活性的脂肪酶磷酸化,转变成有活性的脂肪酶,加速脂解作用。

胰岛素、前列腺素E1作用相反,可抗脂解。

油料种子萌发早期,脂肪酶活性急剧增高,脂肪迅速水解。

二、甘油代谢在脂肪细胞中,没有甘油激酶,无法利用脂解产生的甘油。

甘油进入血液,转运至肝脏后才能被甘油激酶磷酸化为3-磷酸甘油,再经磷酸甘油脱氢酶氧化成磷酸二羟丙酮,进入糖酵解途径或糖异生途径。

P152 反应式:三、脂肪酸的氧化(一)饱和偶数碳脂肪酸的β氧化1、β氧化学说早在1904年,Franz 和Knoop就提出了脂肪酸β氧化学说。

用苯基标记含奇数碳原子的脂肪酸,饲喂动物,尿中是苯甲酸衍生物马尿酸。

用苯基标记含隅数碳原子的脂肪酸,饲喂动物,尿中是苯乙酸衍生物苯乙尿酸。

结论:脂肪酸的氧化是从羧基端β-碳原子开始,每次分解出一个二碳片断。

产生的终产物苯甲酸、苯乙酸对动物有毒害,在肝脏中分别与Gly反应,生成马尿酸和苯乙尿酸,排出体外。

β-氧化发生在肝及其它细胞的线粒体内。

2、脂肪酸的β氧化过程脂肪酸进入细胞后,首先被活化成酯酰CoA,然后再入线粒体内氧化。

(1)、脂肪酸的活化(细胞质)RCOO- + ATP + CoA-SH → RCO-S-CoA + AMP + Ppi生成一个高能硫脂键,需消耗两个高能磷酸键,反应平衡常数为1,由于PPi水解,反应不可逆。

细胞中有两种活化脂肪酸的酶:内质网脂酰CoA合成酶,活化12C以上的长链脂肪酸线粒体脂酰CoA合成酶,活化4~10C的中、短链脂肪酸(2)、脂肪酸向线粒体的转运中、短链脂肪酸(4-10C)可直接进入线粒体,并在线粒体内活化生成脂酰CoA。

长链脂肪酸先在胞质中生成脂酰CoA,经肉碱转运至线粒体内。

肉(毒)碱:L-β羟基-r-三甲基铵基丁酸P154.图15-1脂酰CoA以脂酰肉碱形式转运到线粒体内线粒体内膜外侧(胞质侧):肉碱脂酰转移酶Ⅰ催化,脂酰CoA将脂酰基转移给肉碱的β羟基,生成脂酰肉碱。

线粒体内膜:线粒体内膜的移位酶将脂酰肉碱移入线粒体内,并将肉碱移出线粒体。

线粒体内:膜内侧:肉碱脂酰转移酶Ⅱ催化,使脂酰基又转移给CoA,生成脂酰CoA和游离的肉碱。

脂酰CoA进入线粒体后,在基质中进行β氧化作用,包括4个循环的步骤。

(3)、脂酰CoA脱氢生成β-反式烯脂酰CoAP154 反应式:线粒体基质中,已发现三种脂酰CoA脱氢酶,均以FAD为辅基,分别催化链长为C4-C6,C6-C14,C6-C18的脂酰CoA脱氢。

(4)、△2反式烯脂酰CoA水化生成L-β-羟脂酰CoAP155 反应式:β-烯脂酰CoA水化酶(5)、 L-β-羟脂酰CoA脱氢生成β-酮脂酰CoAP155 反应式:L-β羟脂酸CoA脱氢酶(6)、β-酮脂酰CoA硫解生成乙酰CoA和(n-2)脂酰CoAP155 反应式:酮脂酰硫解酶3、脂肪酸β-氧化作用小结结合P154图15-1和P156图15-2,回顾脂肪酸β氧化过程。

(1)脂肪酸β-氧化时仅需活化一次,其代价是消耗1个ATP的两个高能键(2)长链脂肪酸由线粒体外的脂酰CoA合成酶活化,经肉碱运到线粒体内;中、短链脂肪酸直接进入线粒体,由线粒体内的脂酰CoA合成酶活化。

(3)β-氧化包括脱氢、水化、脱氢、硫解4个重复步骤(4)β-氧化的产物是乙酰CoA,可以进入TCA4、脂肪酸β-氧化产生的能量以硬脂酸为例,18碳饱和脂肪酸胞质中:⑴活化:消耗2ATP,生成硬脂酰CoA线粒体内:⑵脂酰CoA脱氢:FADH2 ,产生2ATP⑶β-羟脂酰CoA脱氢:NADH,产生3ATP⑷β-酮脂酰CoA硫解:乙酰CoA → TCA,12ATP(n-2)脂酰CoA → 第二轮β氧化活化消耗: -2ATPβ氧化产生:8×(2+3)ATP = 409个乙酰CoA:9×12 ATP = 108净生成: 146ATP饱和脂酸完全氧化净生成ATP的数量:(8.5n-7)ATP (n 为偶数) 硬脂酸燃烧热值:–2651 kcalβ-氧化释放:146ATP×(-7.3Kcal)=-1065.8Kcal转换热效率5、β-氧化的调节⑴脂酰基进入线粒体的速度是限速步骤,长链脂酸生物合成的第一个前体丙二酸单酰CoA的浓度增加,可抑制肉碱脂酰转移酶Ⅰ,限制脂肪氧化。

⑵[NADH]/[NAD+]比率高时,β—羟脂酰CoA脱氢酶便受抑制。

⑶乙酰CoA浓度高时;可抑制硫解酶,抑制氧化(脂酰CoA有两条去路:①氧化。

②合成甘油三酯)(二)不饱和脂酸的β氧化1、单不饱和脂肪酸的氧化P157 油酸的β氧化△3顺—△2反烯脂酰CoA异构酶(改变双键位置和顺反构型)(146-2)ATP2、多不饱和脂酸的氧化P158 亚油酸的β氧化△3顺—△2反烯脂酰CoA异构酶(改变双键位置和顺反构型)β-羟脂酰CoA差向酶(改变β-羟基构型:D→L型)(146—2—2)ATP(三)奇数碳脂肪酸的β氧化奇数碳脂肪酸经反复的β氧化,最后可得到丙酰CoA,丙酰CoA有两条代谢途径:1、丙酰CoA转化成琥珀酰CoA,进入TCA。

详细过程 P158动物体内存在这条途径,因此,在动物肝脏中奇数碳脂肪酸最终能够异生为糖。

反刍动物瘤胃中,糖异生作用十分旺盛,碳水化合物经细菌发酵可产生大量丙酸,进入宿主细胞,在硫激酶作用下产丙酰CoA,转化成琥珀酰CoA,参加糖异生作用。

2、丙酰CoA转化成乙酰CoA,进入TCAP159这条途径在植物、微生物中较普遍。

有些植物、酵母和海洋生物,体内含有奇数碳脂肪酸,经β氧化后,最后产生丙酰CoA。

(四)脂酸的其它氧化途径1、α—氧化(不需活化,直接氧化游离脂酸)植物种子、叶子、动物的脑、肝细胞,每次氧化从脂酸羧基端失去一个C原子。

RCH2COOH→RCOOH+CO2α—氧化对于降解支链脂肪酸、奇数碳脂肪酸、过分长链脂肪酸(如脑中C22、C24)有重要作用2、ω—氧化(ω端的甲基羟基化,氧化成醛,再氧化成酸)动物体内多数是12C以上的羧酸,它们进行β氧化,但少数的12C以下的脂酸可通过ω—氧化途径,产生二羧酸,如11C 脂酸可产生11C、9C、和7C的二羧酸(在生物体内并不重要)。

ω—氧化涉及末端甲基的羟基化,生成一级醇,并继而氧化成醛,再转化成羧酸。

ω—氧化在脂肪烃的生物降解中有重要作用。

泄漏的石油,可被细菌ω氧化,把烃转变成脂肪酸,然后经β氧化降解。

四、酮体的代谢脂肪酸β-氧化产生的乙酰CoA,在肌肉和肝外组织中直接进入TCA,然而在肝、肾脏细胞中还有另外一条去路:生成乙酰乙酸、D-β-羟丁酸、丙酮,这三种物质统称酮体。

酮体在肝中生成后,再运到肝外组织中利用。

1、酮体的生成酮体的合成发生在肝、肾细胞的线粒体内。

形成酮体的目的是将肝中大量的乙酰CoA转移出去,乙酰乙酸占30%,β—羟丁酸70%,少量丙酮。

(丙酮主要由肺呼出体外)肝脏线粒体中的乙酰CoA走哪一条途径,主要取决于草酰乙酸的可利用性。

饥饿状态下,草酰乙酸离开TCA,用于异生合成Glc。

当草酰乙酸浓度很低时,只有少量乙酰CoA进入TCA,大多数乙酰CoA用于合成酮体。

当乙酰CoA不能再进入TCA时,肝脏合成酮体送至肝外组织利用,肝脏仍可继续氧化脂肪酸。

酮体的生成途径:P164 图15-5酮体的生成过程肝中酮体生成的酶类很活泼,但没有能利用酮体的酶类。

因此,肝脏线粒体合成的酮体,迅速透过线粒体并进入血液循环,送至全身。

2、酮体的利用肝外许多组织具有活性很强的利用酮体的酶。

(1)、乙酰乙酸被琥珀酰CoA转硫酶(β-酮脂酰CoA转移酶)活化成乙酰乙酰CoA心、肾、脑、骨骼肌等的线粒体中有较高的酶活性,可活化乙酰乙酸。

乙酰乙酸+琥珀酰CoA→乙酰乙酰CoA+琥珀酸然后,乙酰乙酰CoA被β氧化酶系中的硫解酶硫解,生成2分子乙酰CoA,进入TCA。

(2)、β—羟基丁酸由β—羟基丁酸脱氢酶催化,生成乙酰乙酸,然后进入上述途径。

(3)、丙酮可在一系列酶作用下转变成丙酮酸或乳酸,进入TCA或异生成糖。

肝脏氧化脂肪时可产生酮体,但不能利用它(缺少β—酮脂酰CoA转移酶),而肝外组织在脂肪氧化时不产生酮体,但能利用肝中输出的酮体。

相关文档
最新文档