微生物的代谢和发酵2,
生物发酵原理

生物发酵原理
生物发酵是一种利用微生物、酵母或细胞等生物体对有机物进行分解或合成的
生物化学过程。
在这个过程中,微生物或酵母通过代谢活动产生酶,利用酶来分解底物或合成产物。
生物发酵在食品加工、药物生产、酿酒酿酱等领域有着重要的应用价值。
首先,生物发酵的原理是基于微生物的代谢活动。
微生物在合适的温度、pH
值和营养条件下,可以进行呼吸作用和发酵作用。
在呼吸作用中,微生物利用底物(如葡萄糖)和氧气产生能量和二氧化碳;在发酵作用中,微生物在缺氧或氧气供应不足的情况下,利用底物产生能量和有机产物。
这些有机产物可以是酒精、乳酸、醋酸等。
其次,生物发酵的原理还涉及酶的作用。
酶是生物体内的一种生物催化剂,可
以加速化学反应的进行。
在生物发酵过程中,微生物通过代谢活动产生特定的酶,这些酶可以选择性地催化特定的化学反应,从而实现底物的分解或合成。
例如,酵母在酿酒过程中产生酒精酶,可以将葡萄糖分解成酒精和二氧化碳。
此外,生物发酵的原理还受到微生物生长的影响。
微生物的生长受到温度、pH 值、营养物质等因素的影响。
在生物发酵过程中,需要控制好这些因素,以提供良好的生长环境,从而保证微生物的代谢活动和酶的产生。
总的来说,生物发酵原理是基于微生物的代谢活动、酶的作用和微生物生长的
影响。
通过合理控制这些因素,可以实现底物的高效分解或合成,从而得到所需的有机产物。
生物发酵在食品工业、医药工业和生物能源领域有着广泛的应用前景,对于推动可持续发展和资源利用具有重要意义。
微生物代谢途径及其应用

微生物代谢途径及其应用微生物代谢是指微生物在生命活动中所经过的化学反应过程。
微生物代谢途径可以分为两类:有氧代谢和厌氧代谢。
有氧代谢是指微生物在有氧条件下进行的代谢过程,需要氧气参与其中。
而厌氧代谢是指微生物在缺氧或者不需要氧气的条件下进行代谢过程,不需要氧气参与其中。
1.有氧代谢途径(1)糖酵解糖酵解是一种普遍的有氧代谢途径。
糖酵解可以将葡萄糖等简单碳水化合物分解成乳酸、丙酮酸和二氧化碳等产物。
这个过程中,有酶参与其中,其中最重要的是磷酸戊糖激酶和辅酶A。
糖酵解产生的能量可以被细胞利用来维持其生命活动。
(2)三羧酸循环三羧酸循环也是一种重要的有氧代谢途径。
该代谢途径起始物质为乙酰辅酶A,最终产物为二氧化碳、水和ATP。
三羧酸循环在细胞中扮演重要的调节功能,不仅能产生能量,而且能够通过代谢产生许多物质,如酮体、胆固醇和氨基酸等。
(3)氧化磷酸化氧化磷酸化是细胞中产生ATP的最主要途径。
氧化磷酸化的产生需要氧气的参与,它的产生能量丰富,可以被微生物细胞广泛利用。
氧化磷酸化的特点是产生ATP时电子被氧气接受,氧气变成水。
2.厌氧代谢途径(1)乳酸发酵乳酸发酵是微生物在缺氧条件下产生能量的重要途径之一。
乳酸发酵是指葡萄糖经过糖酵解后而产生的乳酸。
乳酸在细胞中可以作为能量来源,也可以被利用于生产酸奶、牛奶和奶酪等食品中。
(2)乙醇发酵乙醇发酵是一种常见的厌氧代谢途径。
在乙醇发酵过程中,微生物将葡萄糖和其他碳水化合物转化为乙醇和CO2。
乙醇发酵可用于生产酒精和燃料等。
(3)丙酮酸发酵丙酮酸发酵是微生物在缺氧条件下的另一种常见代谢途径。
丙酮酸可以由草酸或其他有机物分解代谢而来,也可以由糖酵解初步分解得到。
丙酮酸的产生和利用不仅有助于微生物的生命活动,而且可以被利用于食品工业和药品生产等领域。
微生物代谢途径的应用微生物代谢途径可用于多个领域。
以下列举一些常见应用:1.医药领域微生物代谢制备药物是一种重要的手段。
微生物发酵原理

微生物发酵原理
微生物发酵是指利用微生物代谢产物对有机物进行分解和转化的过程。
其原理主要包括以下几个方面:
1. 微生物选择性代谢:不同类型的微生物在不同的环境条件下能够选择性地利用特定的有机物作为能源和营养来源。
通过合理选择和控制发酵条件,可以促使特定微生物参与产物生成。
2. 底物转化:微生物可以利用底物分解酶将底物(如蔗糖、淀粉等)转化为更简单的有机物(如葡萄糖、乳酸等),同时释放出能量。
3. 代谢产物:微生物的代谢过程可以产生多种有机物,如有机酸、醇类、气体等。
这些代谢产物具有一定的经济价值,可以被利用于食品、饮料、制药等领域。
4. 发酵条件调控:发酵过程中,pH值、温度、氧气含量和营
养物质等因素对微生物生长和代谢活性有重要影响。
合理调控这些条件可以提高发酵效率和产物利用率。
5. 发酵设备:发酵过程通常在发酵罐或装置中进行,提供适宜的温度、氧气和营养物质,以维持微生物的生长和代谢活性。
综上所述,微生物发酵是利用微生物代谢产物对有机物进行分解和转化的过程,其原理涉及微生物的选择性代谢、底物转化、代谢产物、发酵条件调控和发酵设备等方面。
这一过程在食品、饮料、医药等领域具有广泛应用前景。
第十五单元——第五章微生物代谢(二)

微生物的代谢
二、糖的合成代谢 1. 糖合成的能量来源
包括:化能异养型、化能自养和光能营养微生物的生 物氧化和产能
(1)化能异养型微生物的生物氧化和产能 糖的分解代谢所产生的能量都可以用于糖的生物合 成,本节第一部分已经介绍过。 此外,某些化能异养微生 物(如Closterdium sporogenes 生孢梭菌)能利用一些氨基 酸同时当作碳源、氮源和能源。
嗜盐菌紫膜的光合作用特点:
无O2条件下进行;
不产O2; 最简单的光合磷酸化反应; 无叶绿素和细菌叶绿素,光合色素是紫膜上的 视紫红质。
生物合成三要素(简单小分子, ATP,NADPH) 如何获得?
氧化磷酸化:好氧菌,兼性厌氧菌 底物水平磷酸化:厌氧菌,兼性厌氧菌 光合磷酸化:光合微生物 HMP:化能异养型 耗ATP逆电子链传递:化能自养型, 紫色和绿色光合细菌 光合作用(非循环光合磷酸化):蓝细菌 异养型:从环境中吸取 自养型:同化CO2
红色部分(红膜)
嗜盐菌 细胞膜 主要含细胞色素和黄素蛋白等用于氧化磷酸化的呼吸链载体
紫色部分(紫膜) 在膜上呈斑片状(直径约0.5 mm)独立分布,其总面积约占 细胞膜的一半,主要由细菌视紫红质组成。
实验发现,在波长为550-600 nm的光照下,嗜盐菌ATP的合成速率 最高,而这一波长范围恰好与细菌视紫红质的吸收光谱相一致。
(1)自养微生物的CO2固定
1)Calvin循环(Calvin cycle)
循环中特有酶:磷酸核酮糖激酶和核酮糖羧化酶。循环分三个阶段 : ①羧化反应 (核酮糖-1,5-二磷酸通过核酮糖羧化酶将CO2固定,转变为 2个甘油酸-3-磷酸,重复3次,产生6个C3化合物 ) ②还原反应(甘油酸-3-磷酸被还原成甘油醛-3-磷酸 ) ③CO2受体的再生 (1个甘油醛-3-磷酸逆EMP途径生成葡萄糖,其余5 个再生出3个核酮糖-1,5-二磷酸分子,以便重新接受CO2分子 )。
5.2.2微生物的代谢

结论:体积越小,相对表面积越大
微生物代谢的特点
资料2
大肠杆菌每小时分解的糖是自身重量的 2000倍。 乳酸杆菌每小时产生的乳酸是自身重量 的1000-10000倍。
产朊假丝酵母合成蛋白质的能力比大豆 强100倍,比食用牛强10万倍。
结论: 微生物的代谢异常旺盛
一、微生物的代谢产物
初级代谢产物
中间产物Ⅱ
甲硫氨酸
苏氨酸
赖氨酸
思考:
1、 赖氨酸是必需氨基酸吗?有什么用途? 2.黄色短杆菌合成赖氨酸的代谢调节属于哪种调节 方式? 天冬氨酸 3. 天冬氨酸激酶的活性在什么条 天冬氨酸激酶 件下才会被抑制?怎样解除? 中间产物Ⅰ 4、合成苏氨酸需要什么条件? 中间产物Ⅱ 5、怎样才能抑制苏氨 高丝氨酸 酸的合成? 脱氢酶 高丝氨酸 6、改变微生物的遗传 特性可采用哪些方法? 甲硫氨酸 苏氨酸、赖氨酸
人工控制黄色短杆菌的代谢过程生产赖氨酸
天冬氨酸
人工诱变的 菌种不能产生 高丝氨酸 脱氢酶
天冬氨酸激酶
中间产物Ⅰ
高丝氨酸
中间产物Ⅱ
不能合成
甲硫氨酸 苏氨酸
可以大 量积累
赖氨酸
人工控制谷氨酸棒状杆菌生产谷氨酸
葡萄糖
中间产物
α-酮戊二酸
谷氨酸脱氢酶 抑制 NH4+ 谷氨酸
在谷氨酸的生 产过程中,可采用 一定的手段改变谷 氨酸棒状杆菌 细胞膜 __ 的透性 ______,使谷氨酸 能迅速排放到细胞 外面,从而解除了 谷氨酸 谷氨酸对 ________ 脱氢酶 _______的抑制作用, 提高谷氨酸的产量。
结束!
控制措施
具体方式
改变微生物遗传特性 诱变处理,选择符合生产要求的菌种 溶解氧 控 制 发 酵 条 件 PH值
细菌的代谢途径和生物矿化

细菌的代谢途径和生物矿化细菌是一类微生物生物体,能够根据不同环境中的养分进行代谢。
细菌的代谢途径分为三类:有氧呼吸、厌氧呼吸和发酵。
细菌代谢途径的不同会产生不同的代谢产物,这些代谢产物在工业、医疗、农业等领域中都有着广泛的应用价值。
一、有氧呼吸有氧呼吸是指在氧气存在的条件下,细菌将有机物氧化成二氧化碳和水,同时释放出能量。
细菌中常见的有氧呼吸细菌有泛菌属、病原菌属等。
有氧呼吸是一种高效的代谢方式,能够充分利用有机物内的能量,生成大量ATP(三磷酸腺苷)。
二、厌氧呼吸与有氧呼吸相反,厌氧呼吸是在缺氧条件下进行的代谢过程。
在厌氧呼吸中,细菌将有机物氧化成二氧化碳、硫化氢、亚硝酸(NO2-)等代谢产物,同时释放出能量。
细菌中常见的厌氧呼吸细菌有古菌属、艰难菌属等。
厌氧呼吸相比有氧呼吸效率较低,但是可以在缺氧环境中生存,对于一些极端环境下的细菌来说是一种重要的代谢途径。
三、发酵发酵是指在没有外界氧气的条件下,细菌通过代谢有机物产生能量和代谢产物的过程。
发酵对于很多微生物和生物的生存和繁殖都有着重要的意义。
细菌的发酵方式主要分为乳酸发酵、酒精发酵、丙酮酸发酵等。
乳酸发酵是细菌将糖转化成乳酸的过程,酒精发酵是细菌将糖转化成酒精的过程,而丙酮酸发酵是将有机物转化成丙酮酸和二氧化碳的过程。
除了代谢途径之外,细菌在生理和生态学上还有一个特殊的能力:生物矿化。
生物矿化是指生物体在化学、物理、生物学等方面的相互作用下,使用在环境中存在的小分子形成矿物质的过程。
在细菌中生物矿化的主要机制包括异养作用和自养作用。
异养作用是指一些化合物(如铁、镁、钛等)在细菌体内被转化成一些矿物质(如磷酸钙、碳酸钙等)。
这种过程主要是通过细菌体表的特殊分泌物将这些化合物转化成固态物质。
自养作用则是指细菌体内的无机盐被转化成矿物质的过程,与异养作用相比,自养要少见。
但这种机制在一些极端环境、浅层地层和深海生物地球化学中却发挥着重要的作用。
细菌的代谢途径和生物矿化是细菌生存中不可或缺的过程。
微生物的代谢

感谢观看
代谢产物
初级代谢产物是指微生物通过代谢活动所产生的、自身生长和繁殖所必需的物质,如氨基酸、核苷酸、多糖。 脂类、维生素等。在不同种类的微生物细胞中,初级代谢产物的种类基本相同。此外,初级代谢产物的合成在不 停地进行着,任何一种产物的合成发生障碍都会影响微生物正常的生命活动,甚至导致死亡。
次级代谢产物是指微生物生长到一定阶段才产生的化学结构十分复杂、对该微生物无明显生理功能,或并非 是微生物生长和繁殖所必需的物质,如抗生素。毒素、激素、色素等。不同种类的微生物所产生的次级代谢产物 不相同,它们可能积累在细胞内,也可能排到外环境中。其中,抗生素是一类具有特异性抑菌和杀菌作用的有机 化合物,种类很多,常用的有链霉素、青霉素、红霉素和四环素等。
在生产实际中,人们将通过微生物的培养,大量生产各种代谢产物的过程叫做发酵。发酵的种类很多。根据 培养基的物理状态,可分为固体发酵和液体发酵;根据所生成的产物,可分为抗生素发酵、维生素发酵和氨基酸 发酵等;根据发酵过程对氧的需求情况,可分为厌氧发酵(如酒精发酵、乳酸发酵)和需氧发酵(如抗生素发酵、 氨基酸发酵)。
人工控制
人工控制微生物代谢的措施包括改变微生物遗传特性、控制生产过程中的各种条件(即发酵条件)等。例如, 黄色短杆菌能够利用天冬氨酸合成赖氨酸、苏氨酸和甲硫氨酸。其中,赖氨酸是一种人和高等动物的必需氨基酸, 在食品、医药和畜牧业上的需要量很大。在黄色短杆菌的代谢过程中,当赖氨酸和苏氨酸都累计过量时,就会抑 制天冬氨酸激酶的活性,使细胞内难以积累赖氨酸;而赖氨酸单独过量就不会出现这种现象。例如,在谷氨酸的 生产过程中,可以采取一定的手段改变细胞膜的透性,是谷氨酸能迅速排放到细胞外面,从而解除谷氨酸对谷氨 酸脱氢酶的抑制作用,提高谷氨酸的产量。
发酵工程—5.微生物的代谢和调节工程

发 酵 工 程 - 微生物的代谢和调节工程
二、酶合成的调节(酶量)
1 、 微
酶合成的调节是一种通过调节酶的合成量进 而调节微生物的代谢速率。
生 物
这是一种在基因水平上(在原核生物中主
的 要在转录水平上)的代谢调节。
代 谢
有诱导调节和阻遏调节。
类
型
和
自
我
调
节
发 酵 工 程 - 微生物的代谢和调节工程
个同功酶发生抑制作用。
物 的 代
如:大肠杆菌天冬氨族氨基酸合成途径 中,有三个同工酶天冬氨酸激酶ⅠⅡ Ⅲ分
谢 类
别受赖氨酸、苏氨酸、硫氨酸反馈调节
型
和
自
我
调
节
发 酵 工 程 - 微生物的代谢和调节工程
1 、 微 生 物 的 代 谢 类 型 和 自 我 调 节
发 酵 工 程 - 微生物的代谢和调节工程
型 和
顺序诱导:先合成能分解底物的酶,再依次合
自 成分解各中间代谢物的酶,以达到对较复杂
我 调
代谢途径的分段调节。
节
发 酵 工 程 - 微生物的代谢和调节工程
2.阻遏
1
在微生物的代谢过程中,当代谢途径中
、 微
某末端产物过量时,除用反馈抑制的方式
生 来抑制该途径中关键酶的活性以减少末端
物 的
产物的生成外,还通过阻遏作用来阻碍代
生 物 代
素等。 特征:
谢
不同的微生物初级代谢产物基本相同;
初级代谢产物合成过程是连续不断的,
与菌体的生长呈平行关系。
发 酵 工 程 - 微生物的代谢和调节工程
次级代谢产物
定义:微生物生长到一定阶段才产生的化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3)产能效率即P/O比一般低于化能异养微生物。
P/O比:每消耗1mol的氧原子产生ATP的mol数。
教学ppt
10
以亚硝化细菌为例:
亚硝化细菌
硝化细菌 硝化细菌
1)亚硝化细菌(氨氧
化细菌):可将NH3
氧化成
NO
2
N3 H O 2 2 H 2 e 氨 单 加 N 氧 2 O H 酶 H H 2 O N2 O H H H 2 O 羟 氨 教学p p氧 t H 化还 N 3 4 原 O H 酶 4 11 e
循环,又回到菌绿素,其间产生ATP;
② 产ATP;
③ 不产生氧。
教学ppt
21
教学ppt
22
光合细菌主要通过环式光合磷酸化作用产生ATP
电子传递的过程中造成了质子的跨膜 移动,为ATP的合成提供了能量。
通过电子的逆向传递产生还原力;
教学ppt
23
教学ppt
24
(2)非循环式光合磷酸化:高等植物和蓝细菌与光合细 菌不同,他们可以裂解水,以提供细胞合成的还原力。
一些异型乳酸发酵杆菌如肠膜明串珠菌,乳脂 明串珠菌等,因缺乏EMP途径中的若干重要酶— —醛缩酶和异构酶,其葡萄糖的降解完全依赖 HMP途径。
教学ppt
2
教学ppt
3
教学ppt
4
同型乳酸发酵反应试:
C6H12O6+2ADP+2Pi 2CH3CHOHCOOH+2ATP
异型乳酸发酵反应试:
C6H12O6+ADP+Pi CH3CHOHCOOH+C2H5OH+CO2+ATP
(3)通过ED途径进行的发酵
通过EMP途径的酵母酒精发酵
酒精发酵三个类型 通过HMP途径的细菌酒精发酵(异型
乳酸发酵)
通过ED途径的细菌酒精发酵
教学ppt
5
①酵母的“同型酒精发酵”:酿酒酵母(EMP途径)
C6H12O6+2ADP+2Pi 2C2H5OH+2CO2+2ATP
②细菌的“同型酒精发酵”:运动发酵单胞菌(ED途径)
教学ppt
25
教学ppt
26
教学ppt
27
(3)嗜盐菌紫膜的光合作用 只有嗜盐菌才有的无叶绿素或菌绿素参与的独特光合作用。
代表菌有盐生盐杆菌(Halobacterium Halobium)和 红皮盐杆菌(H.cutirbrum)。
教学ppt
28
教学ppt
29
第二节 微生物的耗能代谢
一、自养微生物的CO2固定 自养微生物在生物氧化所取得的能量主要用于的CO2的固定。 Calvin循环
1.化能自养型
化能自养菌为还原CO2而需要的ATP和还原力[H]是通过氧化无 机底物(NH4+、NO2-、H2S、S0、H2和Fe2+等)实现。 其产能的途径借助于经过呼吸链的氧化磷酸化反应得到。
绝大多数化能自养菌为好氧菌。
教学ppt
8
教学ppt
9
化能自养微生物的能量代谢特点:
1)无机底物的氧化直接与呼吸链发生联系,即由脱氢酶 或氧化还原酶催化的无机底物脱氢或脱电子后,可直接 进入呼吸链传递。
光能营养型微生物
原核生物:蓝细菌
不产氧(仅原核生物有):光合细菌(红螺菌目)
定义:指光能转变为化学能的过程。
1)循环式光合磷酸化:光合细菌主要通过环式光合磷酸化作用产 生ATP,这类细菌包括紫色硫细菌、绿色硫细菌、紫色非硫细菌、 绿色非硫细菌。
特点:
① 在光能驱动下,电子从菌绿素分子上逐出后,通过类似呼吸链的
键的化合物,这些化合物可直接偶联ATP或GTP的合
成,这种产生ATP等高能分子的方式称为底物水平磷酸
化。
教学ppt
14
教学ppt
15
教学ppt
16
2.氧化磷酸化 定义:物质在生 物氧化过程中形 成的NADH和 FADH2可通过 位于线粒体内膜 或细胞质膜上的 电子传递给氧或 其他氧化型物 质,在这个过程 中偶联着ATP的 合成,这种产生 ATP的方式称氧 化磷酸化。
体),另一个氨基酸作为氢受体。
教学ppt
6
教学ppt
7
二、自养微生物的生物氧化、产能
化能无机营养型微生物:所需能量ATP通过还原态无
机物经过生物氧化产生,还原力[H]通过消耗ATP
自养微生物
和无机氢(H++e)的逆呼吸传递而产生。
光能自养型微生物:ATP和[H]通过循环光合磷酸化、
非循环光合磷酸化或通过紫膜的光合磷酸化来获得
教学ppt
12
2)硝化细菌(亚
硝酸氧化细菌)
可将
NO
2
氧化为
NO
3
教学ppt
13
(三)ATP的产生
底物水平磷酸化:发酵作用取得能量的唯一
方式
ATP的产生 氧化磷酸化 :好氧呼吸和厌氧呼吸的微生物
光合磷酸化:光合细菌、藻类、绿色植物、
蓝细菌等
1.底物水平磷酸化:
定义:物质在生物氧化过程中。常生成一些含有高能
V-P(Vogos Prouskauer test)反应:区分大肠杆 菌与产气杆菌
教学ppt
1
(2)通过HMP途径的发酵——异型乳酸发酵 异型乳酸发酵(heterolactic fermentation): 凡葡萄糖发酵后产生乳酸、乙醇(或乙酸)和CO2 等多种产物的发酵。 同型乳酸发酵(homolactic fermentation): 只产生2分子乳酸的发酵。
C6H12O6+ADP+Pi
2C2H5OH+2CO2+ATP
③细菌的“异型酒精发酵”:肠膜明串珠菌(HMP途径)
C6H12O6+ADP+Pi CH3CHOHCOOH+C2H5OH+CO2+ATP
(4)氨基酸发酵产能—Stickland反应
Stickland反应:少数梭菌能在厌氧条件下,进行
氨基酸对的发酵。即一个氨基酸作为底物脱氢(即氢供
特点: ① 电子的传递途径属非循环式; ② 在有氧条件下进行; ③ 两个光合系统,其中色素系统Ⅰ(含叶绿素a)可利用 红光,色素系统Ⅱ(含叶绿素b)可利用蓝光; ④ 反应同时有ATP(产自系统Ⅱ)、还原力[H](产自 系统Ⅰ)和O2; ⑤ 还原力NADPH2中的[H]来自H2O分子光解后的H+ 和e-。
教学pptLeabharlann 17教学ppt18
ATP的产生:
化学渗透偶联假说:电子传递过程中,导致膜内外出现质子浓度差, 从而将能量蕴藏在质子势中,质子势推动质子由膜外进入胞质,在 这个过程中通过存在于膜上的F1-F0ATPase偶联ATP的形成。
教学ppt
19
分子马达
教学ppt
20
3.光合磷酸化
产氧 真核生物:藻类及其他绿色植物