数学建模——最优控制
数模算法之最优控制模型(结合例子讲解,经典讲义)

六、最优控制模型:(动态优化模型, DP ――Dynamical programming )Ⅰ. 最速升降问题(或登月飞船软着陆问题)问题:① 设有一个物体M (例如:直升飞机、升降机、电梯)作垂直升降运动(设物体M 的质量为m );② M 内部装有一个控制器,产生一个控制作用力 )t (u (时间的函数),用以控制M 的上下运动,由 于作用力)t (u 大小有限,故满足一个约束不等式: xconst k k )t (u =≤问题:是要寻找一个合适的作用力)t (u 的变化规律,使得S M =最快的速度达到地点,而且:已知elevation 的初始状态在0t t =时,M 离开地面的高度为M ,)t (x 0的垂直运动速度为)t (x0 。
解:物体M 应满足的运动规律(即与时间变量t 有关的动态过程),因此,为描述物体运动的状态,令:)t (x )t (x 1=:为物体M 离开地面的高度(t 时刻)dt)t (dx )t (x 12=:为物体M 在t 时刻的速度 于是物体在t 时的运动状态可描述成为:状态方程: f )t (u m f (t)a a m f g )t (u dt )t (dx )t (x dt )t (dx 221⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛==∴⋅=-==为控制函数)( 同时应满足初始状态:⎩⎨⎧==初始速度 初始高度0x )t (x 0x )t (x 202101路径条件(终值状态):⎩⎨⎧==终端速度 终端高度0)t (x 0)t (x f2f 1 控制约束: const)(k k )t (u =≤目标函数:寻找一个U )t (u ∈(闭的函数类),使你所用的总时间0f t t -最短,即使 ()0f t t t t dt )t (u J Jf 0-===⎰取最小值本文由无忧数模网QQ1105758397提供或:寻求一个 U )t (*u ∈,使得:()())t (u J )t (*u J ≤或:寻求一个U )t (*u ∈,使得:()())t (u J min )t (*u J U)t (u ∈≤或者说:在容许控制的函数类U 中,找一个控制函数U )t (*u ∈,使状态⎪⎪⎭⎫ ⎝⎛=)t (x )t (x )t (x 21从初始状态⎪⎪⎭⎫ ⎝⎛=)t (x )t (x )t (x 02010转移到终端状态(目标集:{}0)x (h ,0)x (g ,R )t (x )t (x S i i n =≤∈= ) ⎪⎪⎭⎫ ⎝⎛=)t (x )t (x )t (x f 2f 1f (此问题中⎪⎪⎭⎫ ⎝⎛=00)t (x f), 而且使所用的时间最短,即:()⎰-===∈ft t 0f Uu )t t min(dt min)u (J min *u J ,如果满足上述条件的U )t (*u ∈是存在的,则说)t (*u 是该系统的最优控制(或极值控制),而把对应的状态)t (*u 叫做该系统的最优轨线(或极值轨线()t (*u ,)t (*x )叫最优对,*)u (J 叫最优性能指标。
最优控制笔记

最优控制又叫动态优化工程技术领域里的过程(物理过程或化学过程),通常都是可以控制的过程控制:使过程的发展变化按人们的需要进行动态优化问题的四个要素:1.建立过程的动态模型(动态系统的状态方程)2.指定所需的初始状态和结束状态(状态方程的边界条件)3.确立在可行控制策略4.性能指标动态系统的变化,可以看成对应状态的变化,其中每一个状态对应着n维状态空间中的一个点,系统的运动将在状态空间中画出一条状态曲线动态系统的状态方程:1.是对研究对象的动态数学建模2.体现了系统运动时应遵循的规律,反映了系统的动态特征3.一般是微分方程组描述状态方程f[x(t),u(t),t]的数学性质:1.f[x(t),u(t),t]是向量函数,维数与状态变量维数相同2.f[x(t),u(t),t]是关于x(t)/u(t)/t的连续函数3.f[x(t),u(t),t]是关于x(t)/t的连续可微函数4.u(t)是关于t的分段连续函数,只有有限个第一类间断点系统的初始时刻t0和初始状态x0一般都是已知的系统的结束时刻tf:固定或者不固定系统的结束状态xf:全部固定/全部不固定/部分固定性能指标:1.要根据实际任务确定,例如过程持续的时间最少/过程消耗的能量最少/成本最小/利益最大等等2.种类:终值型/积分型/复合型,它们都是关于x(t)/t的连续可微函数最优控制一定是容许控制,即最优控制策略(最优控制函数)在控制函数空间中的一个子集中选择当最优控制轨迹确定后,通过系统的状态方程,可以确立对应的最优状态轨迹现代控制理论相对于经典控制理论的优点:1.从时不变系统延伸到时变系统2.从单输入单输出系统延伸到多输入多输出系统3.从频域回到时域,采用能够揭示系统内部各状态变化规律的状态空间描述法最优控制理论属于现代控制理论的分支从数学角度来看,最优控制问题本质上是求泛函极值的变分学问题变分法分为古典变分法和现代变分法(最大值原理/动态规划)古典变分法只能解决容许控制集为开集的最优控制问题实际最优控制问题的容许控制集都是闭集,可以用现代变分法解决函数分为两类:普通函数和泛函普通函数随自变量t变化有确定值对应泛函随普通函数(称为泛函的宗量函数)的形式变化有确定值对应,t已确定或不产生影响复合函数也是普通函数,随自变量t变化有确定值对应具有某些相同特征的所有函数组成一个函数类,或称函数空间在函数空间内,每一个函数(形式不同的)成为函数空间的一个点,例如sin(x)和sin(2x)是正弦函数空间的两个点泛函宗量的变分:1.同一函数空间中的两个函数的差(t已确定或不产生影响)2.宗量的变分仍然是一个普通函数3.这里“变分”的意思是改变量宗量的维数为m时,则宗量的变分在m维函数空间中进行,其中每一维函数空间各自是具有某些相同特征的函数类两个普通函数k阶相近的定义,从几何上来看就是曲线的相似程度两个普通函数间的k阶距离定义,从几何上来看就是曲线的差异程度m维函数空间中,与点[x0(t),x1(t),...xm(t)]距离相同的点构成m维空间中的一个球面泛函k阶连续的定义(利用两个普通函数间的k阶距离来定义)线性泛函的定义:满足齐次性与可加性泛函的变分:1.是泛函增量的关于宗量变分的线性主部2.是关于宗量变分的线性连续泛函3.仍然是一个泛函4.泛函的变分是唯一的5.这里变分的意思相当于普通函数的微分泛函变分的计算公式,是关于宗量变分的泛函,也是关于alpha的普通函数,从普通函数极值条件出发推导得到泛函极值条件求普通函数的极值,必要条件是:极值在稳定点获得,稳定点即普通函数导数为0的点求泛函的极值,必要条件是:极值在泛函变分为0的点取得Lagrange/Mayer/Bolza形式指标的相互转换欧拉--拉格朗日方程的推导过程欧拉--拉格朗日方程是一个二阶微分方程欧拉--拉格朗日方程成立的前提:1.宗量函数对自变量的二阶导数存在2.积分函数二阶连续可微欧拉--拉格朗日方程的能积分出最优解的特殊情况含有多个宗量函数的欧拉--拉格朗日方程组形式等式约束条件下的泛函极值问题采用拉格朗日乘子思想等式约束下的多变量普通函数极值问题,拉格朗日乘子是m维常向量等式约束下的泛函极值问题,拉格朗日乘子是m维普通函数,称为协态变量拉格朗日乘子法的步骤:原问题-->辅助泛函-->解等式约束+欧拉方程-->用边界条件确定未知系数-->判断极大/极小/鞍点等式约束下的泛函极值问题中,拉格朗日乘子(本质上是普通函数)的欧拉方程就是原问题的等式约束条件对于最优控制问题,控制函数u(t)和状态函数x(t)都看成是泛函的宗量,系统的动态方程作为等式约束条件Hamilton函数是泛函,其t的范围由x(t)/u(t)中的t范围确定,可以看成是mayer型泛函Hamilton函数的作用:积分型泛函J对u(t)的等式约束条件极值问题,转换成H对u(t)的无约束条件机制问题Hamilton函数方法解决最优控制问题,是基于必要条件,而不是充分条件Hamilton函数沿着最优空之轨迹和最优状态轨迹,对时间t的全导数等于偏导数当Hamilton函数不显含t时,H是不依赖于t的常数基础数理化:数学是理路,物理和化学是实践;工程中的物理和化学变化过程都是可控的;过程:与时间有关,随着时间推荐的变化,又叫动态过程;动态过程的数学模型又称状态方程,为OEDs或者DAEs形式对一个过程实施控制往往可以选择的策略不唯一,为了使得任务完成得最好,需要选择最优控制策略;最优的意义:根据任务确定的技术或者经济指标,可以是时间上最快、能量上最省、成本最低、利润最大等;状态微分方程f[x(t),u(t),t]是关于u(t),x(t),t的连续函数,是关于x(t),t的连续可微函数,u(t)只有有限个第一类间断点;状态、状态空间、动态系统的变化过程对应于状态空间中的点运动轨迹、点运动轨迹的起始点和结束点就是状态方程的边界条件;系统的初始时间t0和初始状态x0通常是给定的;系统的结束状态根据结束时间tf是否固定和结束状态是否固定可分为6种情况;性能指标的类型:终值型(Mayer型)、积分型(Lagrange型)、复合型(Bolza型;)终值型(Mayer型)是x(t),t的连续可微函数;积分型(Lagrange型)是u(t),x(t),t的连续函数,是x(t),t的连续可微函数,u(t)只有有限个第一类间断点;注意终值型(Mayer型)指标中不含u(t);最优控制轨迹往往在m维控制函数空间的一个子集omiga中选择;经典控制论的特点:针对SISO、线性、时不变(定常)、集中参数系统,以laplace变换作为分析工具,频域内;现代控制论的特点:针对MIMO、非线性、时变、分布参数系统,以状态空间分析方法为分析工具,时域内分析;对系统的状态空间描述,最大好处在于能够反映系统内部各状态变量之间的关系;最优控制理论属于现代控制理论的一部分;最优控制问题在数学上来说属于求泛函极值的变分学领域;古典变分法的局限性:只能处理u(t)无约束或者为开集的泛函极值问题;现代变分学的两个代表:最大值原理(苏联,Pontryagin提出)和动态规划(美国,Bellman 提出);现代计算机的发展推动了控制理论和优化理论的发展与应用,增加了基于计算的科研活动方式;函数分为一般函数和泛函两类;一般函数:自变量形式唯一,当自变量确定为某一值时,函数值也随之确定;泛函:自变量形式和取值(范围)已经确定,当宗量函数形式确定时,泛函值也随之确定;复合函数属于一般函数;终值型泛函中,tf能被确定,所以泛函值取决于终值型泛函的宗量形式;积分型泛函中,被积函数往往是u(t),x(t),dx(t)/dt,t的函数,u(t),x(t)都属于积分型泛函的宗量;积分型泛函中,由于宗量的维数大于1:宗量为u(t),x(t),且各自维数也可能大于1,所以积分型泛函属于多维泛函(宗量为多维,在多维函数空间内取值);Hamiltonian属于多维泛函,自变量取值范围为t0~tf,宗量包括控制函数u(t),状态函数x(t),协态函数y(t);函数空间:具有相同性质的函数类(按函数不同形式区分函数类中的单个函数),构成了一维函数空间(一根轴),每个属于该函数类的具体形式函数都是该一维函数空间(轴)上的一个点;宗量函数的变分deltax(t):是同一函数类中两个一般函数的差,或者说是某一维函数空间中两个点之间的距离,本质上仍然是一个一般函数;一般函数相近的几何意义:曲线形态相似;泛函连续性的定义及与宗量函数相近(宗量函数的变分趋于0)的关系;线性泛函的定义:满足针对宗量函数的齐次性和可加性(将宗量看成一般函数的自变量);泛函变分detalJ[x(t)]:是泛函增量关于“宗量函数变分”的线性主部,是关于“宗量函数变分”的线性连续泛函,本质是泛函;泛函的变分具有唯一形式;求一个泛函的变分不直接使用定义,而用偏导数方法获得,这与一般函数的微积分知识相似;泛函达到极值的必要条件:泛函在宗量函数x*(t)处的变分为0,有三种情况:非极值,极大值,极小值;古典变分法中的欧拉方程由积分型泛函变分为0的必要条件推出,所以欧拉方程也是泛函达到极值的必要条件;欧拉方程本质上是一个二阶偏微分方程;欧拉方程成立的前提是:L[x(t),dx(t)/dt,t]对宗量函数x(t)、宗量函数的导数dx(t)/dt、自变量t存在二阶偏导数;注意L[x(t),dx(t)/dt,t]本身不能称为泛函(自变量的值没有给定),也不能称为宗量函数(宗量函数是x(t));欧拉方程可以求解的条件:L[x(t),dx(t)/dt,t]中不显含x(t)、dx(t)/dt、t三者其一或其二;宗量函数为向量函数时,欧拉方程也成为向量二阶偏微分方程(二阶偏微分方程组);phi(tf)这条终端曲线实际靠测试获得,并作为已知曲线;横街条件反应的是:极值曲线终端斜率与给定曲线斜率之间的关系横街条件成立的前提:L[x(t),dx(t)/dt,t]对宗量函数x(t)、宗量函数的导数dx(t)/dt、自变量t存在二阶偏导数;phi(t)对自变量t存在一阶偏导数;终端点可变情况下,泛函极值的必要条件共有两个:欧拉方程、横街条件;Lagrange型泛函的一阶变分和二阶变分的表达式;泛函极值属性的判断需要借助二阶变分表达式,它是一个对称函数矩阵;涉及到最优控制问题时,最优状态轨迹不仅要使目标函数最优,更重要的是满足系统的状态方程;系统的状态方程(等式)可以看成是求泛函极值问题时的微分等式约束;带等式约束的泛函极值问题,处理思想和一般函数的等式约束极值问题思路一样,采用拉格朗日乘子法思想;带等式约束的泛函极值问题,拉格朗日乘子是一般函数(一般函数的等式约束极值问题中,拉格朗日乘子是常数);带等式约束的泛函极值问题,与一般函数的等式约束极值问题相比,梯度为0的必要条件进化成为变分为0(欧拉方程的满足);带等式约束的泛函极值问题,原等式约束可以视为F[x(t),dx(t)/dt,lamda(t),t]对宗量函数lamda(t)的欧拉方程;利用古典变分法求解最优控制问题,是将控制函数u(t)和拉格朗日乘子函数lamda(t)都作为泛函的宗量函数;Hamiltonian的作用是将dx(t)/dt从F[u(t),x(t),dx(t)/dt,lamda(t),t]中分离出去,它们的关系是:H[u(t),x(t),lamda(t),t]=F[u(t),x(t),dx(t)/dt,lamda(t),t]-lamda(t)dx(t)/dt正则方程组的推导既可以从F[u(t),x(t),dx(t)/dt,t]的欧拉方程推导,也可以直接从变分=0的必要条件推导(欧拉方程从变分=0的必要条件中推导出来);推导tf固定、tf自由时的最优控制问题必要条件时,辅助函数的做法:终态约束等式约束放在积分号外面,状态方程等式约束放在积分号里面;tf固定时的三种情况:x(tf)固定(仅需要欧拉方程无需横截条件)属于x(tf)自由的特殊情况,x(tf)自由又属于x(tf)受约束的情况;tf自由时的三种情况:x(tf)固定(仅需要欧拉方程无需横截条件)属于x(tf)自由的特殊情况,x(tf)自由又属于x(tf)受约束的情况;tf固定又属于tf自由时的特殊情况,仅缺少关于最优时间的方程,所以6种情况最终都可以归类为tf自由、x(tf)受约束的情况处理;Hamiltonian沿着最优控制轨迹和最优状态轨迹(即H[u(t),x(t),lamda(t),t]中的u(t),x(t),lamda(t)都在最优轨迹上取值)时,对时间的偏导数等于对时间的全导数;以上性质说明:沿着最优控制轨迹和最优状态轨迹时,若Hamiltonian不显含t,则Hamiltonian为常数;不等式约束泛函极值问题?古典变分法要求u(t)属于一个全函数空间或者一个函数空间中的开集;现代变分法从实际出发,u(t)可以属于一个函数空间中的闭集;现代变分法中的代表:极小值原理(苏联,Pontryagin)和动态规划(美国,Bellman)极小值原理比古典变分法的进步:u(t)可以属于一个函数空间内的闭集,不要求Hamiltonian对u(t)可微;当u(t)属于一个函数空间内的闭集时,H对u(t)的偏导数可能不为0(在闭函数空间内取不到极点)、deltau(t)可以为0,两方面原因造成古典变分法不再适用;与古典变分法对应的是,极小值原理也有6种情况,最普遍的是tf可变、x(tf)受约束的情况;对于tf可变的情况,需要增加一个确定tf的方程(属于横截条件的一部分);Hamiltonian达到极小值的定义?极小值原理仅是最优控制问题的必要条件;如果x(tf)有终端约束,那么两点边值问题的求解难度会增加很多,常用方法为打靶法(扫描法);协态变量就是等式约束泛函极值问题的拉格朗日乘子函数;状态变量终态的自由与固定,对应协态变量终态的固定与自由;状态变量微分方程求解联合协态变量微分方程求解体现了原问题--对偶问题的共同求解思想?目标泛函对u(t)求偏导,实际是泛函对宗量函数求偏导;从理论分析可以得到,目标泛函对u(t)的梯度(偏导数)在最优控制问题中与Hamiltonian 对u(t)的梯度(偏导数)等价;最优控制(动态优化)问题转换成静态优化问题的理论:通过对u(t)的离散化,将函数空间变为向量空间?从而可以直接使用静态优化算法;处理x(tf)受约束的方法除了惩罚函数法还有其他方法没?[文档可能无法思考全面,请浏览后下载,另外祝您生活愉快,工作顺利,万事如意!]。
数学建模论文_最优控制设计

2011高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):西安理工大学参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2011年 7 月 26日赛区评阅编号(由赛区组委会评阅前进行编号):2011高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):最优控制设计摘要本文主要关于在计算机控制,对计算机指令控制计算机部件的问题作了具体的分析,对于使得所有部件得到控制的最少指令集合和所有部件得到控制的总长度最小的指令集合,我们建立了如下的模型。
模型一主要利用整数线性规划模型,列出所求优化问题式子,并列出约束条件,确保一个部件至少有1条指令控制,同时利用Lingo算出所有部件得到控制的最少指令的集合为13和所有部件得到控制的总长度最小长度为360。
模型二主要利用图论的思想,采用二分覆盖,指令为一个顶点集(n),部件为一个顶点集(m:在n选取最少的顶点使m通过边的关系全部被选中,第二问则转化为:当将n的点全部赋权后,在n中找出权数总和最小的顶点集,使m全部被选中。
利用这种思想,采用c编程可以很容易的求出结果,所求结果与模型一相同。
最优控制问题的鲁棒性分析

最优控制问题的鲁棒性分析最优控制问题一直以来都是控制理论研究中的重要方向。
在实际应用中,由于存在各种不确定性因素,控制系统的鲁棒性分析变得尤为关键。
本文将就最优控制问题的鲁棒性进行分析,探讨常见的鲁棒控制设计方法,并探讨其优劣势。
1. 引言最优控制问题旨在找到满足给定性能指标的最优控制器,使得系统在约束条件下达到最佳性能。
然而,在实际应用中,控制系统通常受到各种不确定性的干扰,如参数变化、外部扰动等,这些因素可能导致控制系统性能下降甚至失效。
因此,研究最优控制问题的鲁棒性,即控制器对系统的鲁棒性能,对于实际应用具有重要意义。
2. 最优控制问题的建模最优控制问题通常可以通过数学建模进行求解。
常见的建模方法包括最小二乘法、动态规划、线性二次型控制等。
在建模过程中,需要准确地描述系统的动态特性和性能指标,以便得到准确的最优控制器设计。
3. 鲁棒控制设计方法为了提高控制系统的鲁棒性,研究人员提出了许多鲁棒控制设计方法。
常见的方法包括H∞控制、μ合成控制、鲁棒最小二乘法等。
这些方法各有特点,旨在通过优化控制器的设计,使系统对于各种不确定性因素具有较好的适应性。
3.1 H∞控制H∞控制是一种基于无穷范数的优化方法,主要用于线性系统的鲁棒性设计。
它通过优化系统的输出反馈控制器,使系统对于所有可能的不确定性因素都具有较好的鲁棒性。
H∞控制方法在理论上具有较好的性能保证,但在实际应用中往往需要较高的计算复杂度。
3.2 μ合成控制μ合成控制是一种基于复杂变量的优化方法,可以用于非线性系统的鲁棒性设计。
它通过优化控制器的频域响应特性,使系统对于不确定性因素具有较好的鲁棒性。
μ合成控制方法在非线性系统的鲁棒性设计上具有较好的适用性,但在实际应用中需要较为复杂的数学运算。
3.3 鲁棒最小二乘法鲁棒最小二乘法是一种基于统计学的优化方法,主要用于控制系统中存在参数不确定性的情况。
它通过优化系统的参数估计方法,使系统对于参数变化具有较好的鲁棒性。
最优控制总结

/系统的数学模型,物理约束条件及性能指标。
数学描述:设被控对象的状态方程及初始条件为()[(),(),],(0)0x t f x t u t t x t x ==;其中,()x t X Rn ∈⊂为状态向量,X 为状态向量的可容许集;()u t Rm ∈Ω⊂为控制向量,Ω为控制向量的可容许集。
试确定容许的最优控制*()u t 和最优状态轨迹*()x t ,使得系统实现从初始状态(0)x t 到目标集[(),]0x tf tf ψ=的转移,同时使得性能指标0[(),][(),(),]tft J x tf tf L x t u t t dt ϕ=+⎰达到极值。
系统状态方程形式(连续,离散)(2)最优控制形式(开环,闭环) (3)实际应用(时间,燃料,能量,终端) (4)终端条件(固定,自由) (5)被控对象形目标函数及约束条件组成的静态优化问题可以描述为:在满足一系列约束条件的可行域中,确定一组优化变量,(极大值或极小值)。
数学描述:min (),,:n nf x x R f R R ∈→,..()0,:;()0,:n m n l s tg x g R R h x h R R =→≥→静态最优化问题,也称为参数最优化问题,它的三个基本要素是优化变量、目标函数和约束条件,其本质是解决函数,也称为最优控制问题,它的三个基本要素是被控对象数学模型、物理约束条件和性能指标,其本质是解 多变量目标函数沿着初始搜索点的负梯度方向搜索,函数值下降最快,又称最速下降法;(2)多变量无约束。
根据具体的最优换问题构造合适的惩罚函数,将多变量有约束最优化问题转换为一系列多变量无约束最优化问题,从而采用合适;(2)多变量有约束(外点法:等式约,不等式约束;内点法:不等式约束)。
通过构造拉格朗日函数,将原多变量有约束最优化问题转化为一个多变量无约束最优化问题,从而采用合适的无约束方法继(等式约束,不等式约束)。
梯度定义12()()()()f x x f x f x f x xx ∂⎡⎤⎢⎥∂∂⎢⎥=∇=⎢⎥∂∂⎢⎥∂⎣⎦,Hessian 矩阵22221212222212()()f f x x x f x H x x f f x x x ⎡⎤∂∂⎢⎥∂∂∂∂⎢⎥==⎢⎥∂∂∂⎢⎥∂∂∂⎢⎥⎣⎦,最优梯度法(无约束):迭代(1)()()()()k k k k x x f x α+=-∇,()()()()()()()()()()()k T k k k T k k f x f x f x H x f x α∇∇=∇∇,终止误差()()()k p k f x ε=-∇≤ 例:(),(0),()f x f x H x ∇∇;(0)[(0)(0)]f x T f x α=∇•∇/[(0)(0)]T f x H f x ∇••∇;(1)(0)(0)(0)x x f x α=-•∇;()f xk ε∇<,()x k 是极()0,()0x x =≥g h (1) 等式约束:(,)()()T H x f x x λ=+λg ,利用1210,0,0,0,0n mH H H H Hx x xλλ∂∂∂∂∂=====∂∂∂∂∂解出极大值点或极小值点。
最优控制问题的预测模型方法

最优控制问题的预测模型方法最优控制是一种重要的数学理论和方法,广泛应用于控制工程、经济管理、物流规划等领域。
预测模型方法作为最优控制中的一种重要手段,被用来描述和优化系统的动态行为。
本文将介绍最优控制问题的预测模型方法,并讨论其应用和发展前景。
一、最优控制问题概述最优控制问题是指在给定约束条件下,通过选择最佳控制策略,使得控制系统的性能指标达到最优。
最优控制问题通常可以用微分方程的形式来描述,其中包括系统状态方程、控制方程和性能指标。
求解最优控制问题的关键在于建立合适的模型和求解方法。
二、预测模型方法简介预测模型方法是一种常用的最优控制求解方法,它通过建立系统的预测模型,利用模型预测系统未来状态,并据此制定最优控制策略。
预测模型方法可以分为离散时间和连续时间两种形式,常用的包括动态规划、模型预测控制、神经网络等方法。
1. 动态规划动态规划是一种基于最优化原理的最优控制方法,它将最优控制问题转化为递归的最优化问题。
通过构建递推关系和边界条件,可以求解出系统在每个时刻的最优控制策略。
动态规划方法在离散时间问题中应用广泛,但在连续时间问题中计算复杂度较高。
2. 模型预测控制模型预测控制是一种基于模型预测的最优控制方法,它通过优化一个有限时间内的性能指标,求解出未来一段时间内的最优控制策略。
模型预测控制方法可以灵活地处理约束条件和非线性系统,并且在实践中具有较好的应用效果。
3. 神经网络方法神经网络方法是一种基于人工神经网络的最优控制方法,它通过学习系统的输入和输出数据,建立系统的映射关系,并利用神经网络进行最优控制。
神经网络方法具有较强的逼近能力和自适应性,但需要大量的训练数据和计算资源。
三、应用和发展前景预测模型方法在最优控制问题中具有广泛的应用和发展前景。
目前,预测模型方法已经应用于许多领域,包括工业自动化、交通运输、金融风控等。
随着计算机技术和人工智能的发展,预测模型方法在实时性、精确性和效率方面都有了较大的提升。
最优控制问题的基本数学模型

最优控制问题的基本数学模型
最优控制问题的基本数学模型是一个优化问题,目标是找到一个控制策略,使得给定系统在满足约束条件的情况下,能够最大化或最小化一个指标。
通常,最优控制问题的数学模型可以表示为如下形式的动态优化问题:
$$\max_{u(t)} J(y(t), u(t))$$
$$\text{subject to} \quad \frac{dy(t)}{dt} = f(y(t), u(t)), \quad y(0) = y_0$$
$$\text{and} \quad u(t) \in U, \quad t \in [0,T]$$
其中,$J(y(t), u(t))$是一个目标函数,用于度量系统输出
$y(t)$和控制输入$u(t)$的性能。
$f(y(t), u(t))$是系统的动态方程,描述系统随时间的演化。
$y(t)$和$u(t)$分别表示系统的状态和控制输入,$y_0$是系统的初始状态。
$U$是可行控制集,即控制输入的取值范围。
$T$是系统的运行时间。
在这个模型中,目标是找到最优控制策略$u^*(t)$,使得目标
函数$J(y(t), u(t))$在约束条件下达到最大值。
最优控制问题的
解即为最优控制策略$u^*(t)$,以及对应的系统状态轨迹
$y^*(t)$。
第6章 最优控制

J (u ) [ x(t f ), t f ]
(0 6)
J (u) [ x(t f ), t f ] L[ x(t ), u(t ), t ]dt
t0
tf
(0 7)
第6章 线性二次型的最优控制
2. 最优控制问题的数学模型 用以下4个方程来描述 (1)给定系统的状态方程 (2)状态方程的边界条件
1956~1958年,庞特里亚金创立“最大值原理”。 它是最优控制理论的主要组成部分和该理论发展史上的一个里程碑。对 于“最大值原理”,由于放宽了有关条件的使得许多古典变分法和动态 规划方法无法解决的工程技术问题得到解决,所以它是解决最优控制问 题的一种最普遍的有效的方法。同时,庞特里亚金在《最优过程的数学 理论》著作中已经把最优控制理论初步形成了一个完整的体系。
6.3 输出调节器
6.4 跟踪器
1 tf T J (u ) ( x Qx u T Ru)dt 2 t0
线性二次型问题的特点
(0 14)
(1)最优解可写成统一的解析表达式,实现求解过程规范化 (2)可以兼顾系统的性能指标(快速性、准确性、稳定性、灵敏度)
第6章 线性二次型的最优控制
线性二次型问题的本质:
用不大的控制,来保持较小的误差,以达到能量和误差综合最优的目的。 线性二次型问题的三种重要情形:
x(t ) A(t ) x(t ) B(t )u(t ) y(t ) C (t ) x(t )
e(t ) yr (t ) y(t ) 1) 2) 3) C (t ) I yr (t ) 0 yr (t ) 0 yr (t ) 0 y(t ) e(t ) (5 2)
性能指标的物理含义:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复合型性能 指标
按末端条 件分
末端固定 末端受约束
既有对控制过程的要求,也强调对末态的要求,在古典变分法中, 这类问题称为波尔扎(Bolza)问题
末值状态为指定的一个点
末值状态限制在某个范围
续表:
按末端 状态分
按函数 类型分
末端自由 末端时间固定 末端时间自由 定常问题
时变问题 线性系统问题 非线性系统问题
1. 末态自由问题 最优控制问题为:
已知 状态方程和初始状态
x f (x, u , t)
x(t0 ) x0 目标集 S Rn
控制域 U 性能指标
T
J K (x(T ),T ) t0L(x, u, t)dt
求 容许控制 u * (t)使J为最小。
定理1 (末态自由问题)
设 u * (t是) 最优控制, x * (t是) 最优轨线,则必存在
)
v
,
其中 g1(x(T))* 0,
g2
(x(T
)) *
0
vi 0,
vi g2i (x(T )) 0,
*
i 1,l2
30 H对最优控制取极小值.
H x*(t), u *(t), *(t), t min H (x*(t), u(t), *(t), t)
u(t )U ,tt0 ,T
(k>0 为常数)
.v h
o
图2
(5)
要求飞船从初始状态
h(0) h0 v(0) v0 m(0) M F
实现软着陆
(7)
h(T ) 0 v(T ) 0
发动机的最大推力为 a ,故 0 u(t ) a
(8)
(9)
要求燃料消耗最少,即是要求着陆时飞船质量为最大。
J ( u )= m ( T )
dt t *
*(T )
0
2. 末态受约束问题 最优控制问题为:
已知 状态方程和初始状态
x f (x, u , t)
x(t0 ) x0 目标集 S {x | g1(x(T ),T ) 0, g2 (x(T ),T ) 0}
其中g1, g2分别为 l1, l2维向量函数l1 ,n.
4 最优控制问题的解法
1.变分法
变分法是求泛函极值的古典方法。它要求的条件很强 ,故适应范围较
窄。但对一些问题使用起来较方便。 2.极大值原理
它是苏联学者庞特里亚金等人在五十年代提出的一种方法。它克服了 变分法的缺点,是变分法的重大发展。它是当前求解最优控制问题的主要 方法之一。
3.动态规划法
它是美国学者贝尔曼在五十年代提出的一种方法。它利用最优化原理 ,把多级求最优策略问题转化为多步的一级求最优策略问题。它是当今求 解最优控制问题的另一主要方法。
(4) 性能指标
T
J (u) K ( x(T ), T ) L( x(t ), u(t ), t )dt t0
最优控制的问题一般提法
已知 状态方程与初态
dx(t) f (x(t),u(t),t) dt
x(t0 ) x0
x(t) Rn ,u(t) Rr,
目标集
S {x | g1(x(T ),T ) 0, g2 (x(T ),T ) 0}
X (T )
30 H对最优控制取极小值.
H x * (t), u * (t), * (t), t min H (x * (t), u(t), * (t), t) u(t )U ,tt0 ,T
40 在最优轨线上:
T H
H *(t) H *
当T自由时还有:
(T
)
t
H
按应用领 域分
跟踪问题 时间最优控制
要求系统的状态尽可能地接近希望的状态变化过程,并且要 使消耗的能量最少
要求在最短时间内使系统丛初状态转移到末态
燃料最优控制 要求用最少的燃料消耗使系统从初态转移到末态
能量最优控制 要求用最少的能量消耗使系统从初态转移到末态
按控制方 法分
开环最优控制 闭环最优控制
控制量由参考输入和状态的初值所决定 控制量由参考输入和系统的实时状态所确定
最优控制
一. 最优控制概论
• 最优控制是现代控制理论的重要组成部分. • 最优控制在空间技术、系统工程、经济管理与决策、人口控
制等许多领域得到了广泛的应用。 • 最优控制研究的中心问题是:如何选择控制规律才能使受控
系统的性能和品质在某种意义下为最优。 与最优化相比,最优控制又称为无穷维最优化或动态最优化。 其实质是一种泛函的极值问题。
F(x) ------鱼的自然增长率
u(t) ------ t 时刻的生产速率,
则鱼的数量x(t)的变化规律为:
dx(t) F(x) u(t) t [t0 ,T ] dt
x(t0 ) x0
( 11 ) ( 12 )
捕鱼率u(t)依赖捕鱼努力量E(t)和鱼的数量x(t),
有如下关系:
u(t) rx(t)E(t)
不破坏鱼资源:x1 x(T) x2
捕鱼能力: 0 u(t) umax
捕鱼利润:
利润 = 收入- 成本 鱼价:p
( 13 ) ( 14 )
单位努力量成本: q
T时刻的利润为:
g(t) pu(t) qE(t) [ p q ]u(t) x(t )
所以,[t0 ,T ]中的总利润为:
其中 g1, g2分别为 l1, l2维向量函数l1 ,n.
容许控制: u(t ) U R r ,u(t) 是分段连续函数。
性能指标:
T
J (u) K ( x(T ), T ) L( x(t), u(t), t)dt
t0
求一容许控制
u(t) U,使系统由初始状态
X
出发,在某
0
时刻T t0 达到目标集 S ,并使性能指标 J ( u ) 达到最小值。
( 2 ) 目标集
R n 的某个点集
S {x(T ) | g1(x(T ),T ) 0, g2 (x(T ),T ) 0}
其中 g1, g2分别为 l1, l2维向量函数l1 ,n.
( 3 ) 容许控制 控制变量都受到约束,所受约束可表示为:
(u(t )) 0 (是P维向量函数)
调节器问题
末值状态可以任意 到达末态的时刻 T固定 到达末态的时刻 T 不固定 状态方程,性能指标和末态约束中的函数均不显含时间 t
状态方程,性能指标和末态约束中的函数有显含时间 t 状的态方程中的函数关于 x(t), u(t)均是线性的 状态方程中的函数关于x(t),u(t)是非线性的
控制系统使其回到平衡状态,且消耗能量最少
如图1所示,宇宙飞船靠发动机产生的与月
球重力相反的推力,控制飞船实现软着陆(落到
月球表面时速度为零)。问如何选择发动机推力
的变化规律,使燃料消耗最少?
.
图1
记:
飞船质量:
m(t)
飞行高度 : h ( t )
垂直速度: v ( t )
月球重力加速度:g
坐标系选取如图。
则飞船的运动规律为:
dh v dt dv u g dt m dm ku dt
控制域 U 性能指标
T
J K (x(T ),T ) t0L(x, u, t)dt
求 容许控制 u * (t)使J为最小。
定理2 (末态受约束问题)
设 u * (t) 是最优控制,x * (t) 是最优轨线,则必存在
一向量函数 * (,t) 使得:
10 x *(t), *(t) 满足规范方程
1 最优控制问题实例
最优控制问题是从大量的实际问题中提炼出来 的。下面通过几个典型例子说明什么是最优控制。
例1 生产计划问题
某工厂制定从t0到T时间间隔的生产计划,即要 选择适当的生产速率,使得在时间[t0 , T]内,在保 证供应的前提下,花费的成本最低。
设 x(t) -----表示t时刻产品库存量, r(t) -----表示t时刻产品需求率, u(t) -----表示t时刻表示生产率, 则库存量满足方程
A
B
u
x
x0
O
2. 最优控制的问题一般提法
前述例子是不同的实际问题,但它们有许多共同之处。归纳起来它们 都具有如下四个要素: ( 1 ) 受控对象的数学模型----状态方程
dx(t) f (x(t),u(t),t) x(t) Rn ,u(t) Rr,(1 r n), dt
x(t0 ) x0
g1 h(T ) 0, g2 v(T ) 0 g g1, g2 )
(2)
0 u(t ) a
括分类。
最优控制问题分类表
分类特征 按状态 方程分
按性能 指标
问题
说
明
连续控制系统 控制系统状态方程是一阶微分方程组
离散控制系统 控制系统状态方程是一阶差分方程组
末值型性能 指标
积分型性能 指标
强调对末态的要求。在古典变分法中这类问题称为梅伊尔(mayes) 问题
反映对整个控制过程的要求。在古典变分法中这类问题称为拉格朗 日(Lagrange)问题
4.数值解法
由于最优控制问题大多是很复杂的,上述求解析解的方法往往不能解 决问题。因此,与计算机相结合的数值方法就迅速发展起来,并得到普遍 应用。
二 极大值原理
前苏联学者庞特里亚金等人经过研究提出了 极大值原理,克服了变分法的缺限,成功地解决了 控制变量受约束情况下的最优控制问题。这个方法 现已得到广泛应用,成为解决最优控制问题的有效 工具。
单位时间单位产品的库存费用为b, 则t时刻单位时间的成本为: