用于瞬态分析的五种激励信号
电工学 第三章 电路的瞬态分析

+
_
2 U 8V
iC
R2 4
iL + uL _
R3 4
2
+
_
U 8V
i1
R1
iC
u+ C 4 _
R2 4 C
iL + uL _
R3 4 L
i1
4
+ uC _
t = 0 -等效电路
化简得到t = 0-等效电路,可得:
R1 U 4 U i L (0 ) 1A R1 R3 R R1 R3 4 4 2 4 4 44 R1 R3
A U0 U
微分方程的解: uC (U 0
t U ) e RC U
27
3.3.1 RC电路的响应
(3) 电容电压 uC 的变化规律
0 t 0
R +
+
uC U (U 0
t U ) e RC
t
U0
1 + U -
uR–
-
U (U 0 U ) e
求解
稳态值 (三要素)
时间常数
25
3.3.1 RC电路的响应
换路前电路已处稳态,电 容处于开路已储能状态。
0 t 0
R +
+
U0 -
1 + U -
uR–
t =0时开关 S: 0 1
1. 电容电压 uC 的变化规律(t 0) (1) 列 KVL方程
duC C C uR R dt duC 代入上式得 RC uC U dt
学习要求
第三章
电路的瞬态分析
用于瞬态分析的五种激励信号

用于瞬态分析的五种激励信号Pspice软件为瞬态分析提供了五种激励信号波形(称为瞬态源)供用户选用。
下面介绍这五种瞬态源的波形特点和描述该信号波形时涉及到的参数。
其中电平参数针对的是独立电压源。
对独立电流源,只需将字母V改为I,其单位由伏特变为安培。
(1).脉冲电源(VPulse):P247习题脉冲信号是在瞬态分析中用得较频繁的一种激励信号。
描述脉冲信号波形涉及到7个参数。
表1列出了这些参数的含义、单位及内定值。
表2给出了不同时刻脉冲信号值与这些参数之间的关系。
下图为一具体实例。
图中给出了该波形对应的参数。
脉冲信号波形(例)表1描述脉冲信号波形的参数注:表中TSTOP是瞬态分析中参数Final Time的设置值;TSTEP是参数Print Step的设置值。
表2脉冲信号电平值与参数的关系(2).分段线性电源(VPWL: Piece-Wise Linear):5.2节分段线性信号波形由几条线段组成。
因此,为了描述这种信号,只需给出线段转折点的坐标数据即可。
下图是一个分段线性信号波形实例。
图中同时给出了描述该波形的数据。
分段线性信号波形(例)(3).调幅正弦电源(VSIN: Sinusoidal Waveform):5.1节描述调幅正弦信号涉及6个参数。
表3列出了这些参数的含义、单位和内定值。
表4给出了调幅正弦信号波形的变化与这6个参数的关系。
下图为一具体实例,图中同时给出了该信号波形对应的参数。
调幅正弦信号波形(例)注:表中TSTOP为瞬态分析中参数Final Time的设置值。
表4 调幅信号波形与参数的关系说明:此处描述的调幅正弦信号只用于瞬态分析。
若阻尼因子与偏置值均为0,则调幅信号成为标准的正弦信号,但是在进行3-6节介绍的AC分析时,本信号并不起作用。
(4).调频电源(VSFFM: Single-FrequencyFrequency-Modulated)描述调频信号需要5个参数,表5列出了这些参数的含义、单位和内定值。
模拟集成电路设计原理实验指导书

非理想对称差动放大器的设计与仿真 实验目的:(1)熟悉PSPICE 软件的使用方法;(2)运用PSPICE 软件对非理想差动放大器进行设计与仿真;实验内容:1 电路参数设置已知参数指标: K R C 51=,K R C 5.52=,,1001=F β,1102=F βA S 151105-⨯=I ,A S 152105.5-⨯=I , 3Q ,4Q 的100=F β, I A S 15105-⨯=。
晶体管的选择:根据分析,选用元件库中的晶体管Q2N2222和Q2N3904。
输入电压的选择:根据分析,选用元件库中的VDC ,VSIN ,VSRC ,VSTIM 。
输入电阻的选择:根据分析,选用元件库中的Rbreak ,R 。
2 电路的直流分析的部分输出图1 设计电路图如上图1,差动放大电路中输入交流电压为1V ,-1V .在差动晶体管中由于配对晶体管参数失配和集电极负载电阻C R 失配使差动放大电路的性能变差,主要表现为:当输入加差模信号时输出会产生共模分量,当输入加共模信号时会产生差模分量.如果下一级也是差动放大电路,这种差模输入-共模输出或共模输入-差模输出的转换对整个放大电路的性能将产生十分不利的影响。
以下通过电路来分析讨论这一问题。
图2 差分放大电路直流工作点各个晶体管直流工作点见附录2,其上半部分为三极管的直流偏置情况。
IC 行列出了四个晶体管的工作电流分别为10.405CQ I MA =,20.444CQ I MA =, 30.861CQ I MA =,40.983CQ I MA =。
而IB,VBE,VBCVCE 为三极管的其他直流工作点参数。
图3 直流传输特性图3是当输入信号V1由0.125+变化时,输出电压V01和V02的变--0.125化曲线。
利用直流扫描分析可以清楚地看到直流传输特性,为分析电路直流工作状态提供方便。
3 交流小信号分析图4 差模输出曲线如上图为输入差模信号时输出电压曲线。
第2章 电路的瞬态分析(1)综述

U
1 2 We = CU C 2
单位:焦 [耳] (J)
uC 不能突变
d We 也可解释为 p d t 所以电容电压 u 不能发生突变,否则外部需要 向C 供给无穷大功率。
4、电容的串并联 电容串联
C2 u1 u C1 C 2
电容并联
u
u1 u2
uC
U
旧稳态
过渡过程
新稳态
t
换路后,u、i 都处于暂时的不稳定状态,所以电路 从一种稳态变化到另一种稳态的过渡过程又称为电
路的瞬态过程。
瞬态:过渡过程所处的状态
产生过渡过程的原因:物体所具有的能量不能跃变而造成
1.电路内部含有储能元件L、C -- 内因 w p t 能量的储存和释放都需要一定的时间来完成
2.电路结构、状态发生变化 -- 外因 电源的接通与断开、支路接入或断开、参数变化
研究过渡过程的意义 换路
过渡过程是一种自然现象,过渡过程的存在有利有弊。 有利的方面,如电子技术中常用它来产生各种波形;不利的 方面,如在瞬态过程发生的瞬间,可能出现过压或过流,致 使设备损坏,必须采取防范措施。
二、激励和响应 激励:电路从电源或信号源输入的信号,又称输入 响应:在激励或内部储能作用下产生的电压和电流, 又称输出 1、零状态响应(外部激励引起) ——只由电源激励作用产生的响应 2、零输入响应(内部储能引起) ——只由储能元件作用产生的响应 3、全响应( 内部激励+外部激励引起) ——零状态响应+零输入响应 ( 在线性电路中 )
uC ( 0)
iL (0 ) iL (0 ) 1A
u( u( 0 C 0) C 0)
Protel DXP试卷

一、选择题(5分)1、下列不属于Protel DXP新特性的是()A、全新的集成设计平台;B、集成的设计输入系统;C、对系统配置要求更高;D、更强的项目管理功能;2、如果要将当前元件库载入当前系统,应单击状态栏中的()面板A、【Libraries】;B、【Files】;C、【Projects】;D、【Messages】3、集成元件封装中DIP的意思是()A、表面粘帖式元件封装;B、双排直插式元件封装;C、小型表面粘帖式元件封装;D、方形表面粘帖式元件封装4、在印刷电路板设计完成之后对电路进行DRC的作用是()A、让电路板更美观;B、给PCB传递信息;C、生成网络格;D、确保所设计的印刷电路板符合规则;5、在仿真分析里面设置网络标号的作用是()A、让电路板更美观;B、给PCB传递信息;C、生成网络格;D、获取该节点的波形;注:1、答案C。
Protel DXP的新特点有:1)支持自由的非线性设计流程即双向同步设计;2)支持VHDL设计和混合模式设计。
3)增强了电路原理图与电路板之间的双向同步设计功能;4)集成式元件与元件库。
5)支持多重组态设计,对于同一个文件,可以指定使用或不使用其中的某些元件,然后形成元件表或插置文件等。
6)可接受设计者自定义的元件与参数;7)强化设计检验;8)强大的尺寸性工具。
2、答案A;3、答案B;4、答案D;5、答案D二、填空题(25分)1、下图是Protel DXP的原理图绘图放置工具图标,其中序号1、3、5、7、9的工具栏图标分别表示、、、、。
注:分别代表绘制导线、绘制总线、绘制总线分支线、放置网络标号、放置电源及接地符号、放置元件、放置方块电路盘、放置方块电路盘输入/输出端口、防止电路输入/输出端口、放置电路接点、放置忽略ERC(电路法则测试)、放置PCB布线规则。
2、在Protel DXP元器件库中,下列名称代表的是什么电子元器件?Cap 电容,Bridge 电桥,Tran 变压器。
orcad 电路仿真

OrCAD/PSpice9的电路仿真方法1、概 述1.1 PSpice 软件P S p i c e是一个电路通用分析程序,是E D A中的重要组成部分,它的主要任务是对电路进行模拟和仿真。
该软件的前身是S P I C E(S i m u l a t i o n P r o g r a m w i t h I n t e g r a t e d C i r c u i t E m p h a s i s),由美国加州大学伯克莱分校于1972年研制。
1975年推出正式实用化版本S P I C E2G,1988年被定为美国国家标准。
1984年M i c r o s i m公司推出了基于S P I C E的微机版本P S p i c e (P e r s o n a l-S P I C E),此后各种版本的S P I C E不断问世,功能也越来越强。
进入20世纪90年代,随着计算机软件的飞速发展,特别是W i n d o w s操作系统的广泛流行,P S p i c e又出现了可在W i n d o w s环境下运行的5.1、6.1、6.2、8.0等版本,也称为窗口版,采用图形输入方式,操作界面更加直观,分析功能更强,元器件参数库及宏模型库也更加丰富。
1998年1月,著名的E D A公司O r C A D公司与开发P S p i c e软件的M i c r o s i m公司实现了强强联合,于1998年11月推出了最新版本O r C A D/P S p i c e9。
为了迅速推广普及O r C A D/P S p i c e9软件,O r C A D公司提供了一张试用光盘O r C A D/P S p i c e 9D e m o, 它与商业版是完全一致的,不同之处只是在元器件上受到一定的限制,因此又被称为普及版。
本章将以普及版为例简要介绍O r C A D/P S p i c e9的功能及使用方法。
本书中所有的虚拟实验都是用O r C A D/P S p i c e9D e m o完成的,所引用的屏幕画面也都是出自于O r C A D/P S p i c e 9D e m o软件。
4-电路的瞬态分析解析

i (0+)
+ 10V
10k
iC(0+) +
8V
iC
(0
)
10 10
8
0.2mA
iC (0 ) iC (0 ) 0
例2. 10V
1 4 iL
+
S
uL L
–
t = 0时闭合开关S. 求uL(0+).
解: iL(0+)= iL(0)=2A
0+等效电路:
1 4
+
10V
uL (0+) iL(0+) uL (0 ) 2 4 8V
–
uL(0+)= uC(0+)= RIS
iC(0+)=iL(0+) uC(0+)/R
=ISIS =0
结论
有储能元件(L、C)的电路在电路状态发生
变化时(如:电路接入电源、从电源断开、电路 参数改变等)存在过渡过程;
没有储能作用的电阻(R)电路,不存在过渡
过程。
电路中的 u、i在过渡过程期间,从“旧稳态”进 入“新稳态”,此时u、i 都处于暂时的不稳定状态, 所以过渡过程又称为电路的暂态过程。
1.电感电流 i L 不能跃变
iL (0+) = iL (0) 依据:换路时,电感元件中储存的磁场能量WL=1/2LiL2
不能突变。
2.电容电压u C不能跃变
uC (0+) = uC (0)
依据:换路时,电容元件中储存的电场能量WC=1/2CuC 2
不能突变。
注:电阻R为非储能元件,其i R、u R均可突变; 另外,iC、uL均可突变。
Pspice仿真类型及不同电源参数

VSFFM属性设置框中各项参数的含义及单位见表1-3。
表1-3 VSFFM的属性参数
参数
含义
单位
VOFF
直流偏移电压
伏特
VAMPL
振幅
伏特
FC
载波频率
赫兹
FM
调制频率
赫兹
MOD
调制因子
无
按图1-15设置参数的VSFFM波形如图1-16所示。
图1-9 VSFFM波形
e)指数信号(VEXP、IEXP)
设置完毕,点击确定按钮。
图1-10 Simulation Settings
3.进行电路仿真
(1)执行菜单命令PSpice/Run,或点击工具按钮,调用PSpice A/D软件对该电路图进行仿真模拟。
(2)依次点击工具按钮、、,则电路图上相应位置依次显示节点电压、支路电流及各元器件上的功率损耗。如图1-29所示。
以上各项填完之后,按确定按钮,即可完成仿真分析类型及分析参数的设置。
另外,如果要修改电路的分析类型或分析参数,可执行菜单命令PSpice/Edit Simulation Profile,或点击工具按钮,在弹出的对话框中作相应修改。
(3)电路的模拟仿真
a)PSpice A/D视窗的启动
执行菜单命令PSpice/Run,或点击工具按钮,即可启动PSpice A/D视窗执行电路的仿真模拟,并且系统可自动调用Probe模块,对模拟结果进行后处理,屏幕显示如图1-5所示。
图1-11 VEXP波形
l瞬态分析的应用
现在通过举例,来说明瞬态分析的应用方法。
例:图1-19所示电路的电压源为分段线性源,其波形如图1-20所示。试对该电路进行瞬态分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用于瞬态分析的五种激励信号
Pspice软件为瞬态分析提供了五种激励信号波形(称为瞬态源)供用户选用。
下面介绍这五种瞬态源的波形特点和描述该信号波形时涉及到的参数。
其中电平参数针对的是独立电压源。
对独立电流源,只需将字母V改为I,其单位由伏特变为安培。
(1).脉冲电源(VPulse):P247习题
脉冲信号是在瞬态分析中用得较频繁的一种激励信号。
描述脉冲信号波形涉及到7个参数。
表1列出了这些参数的含义、单位及内定值。
表2给出了不同时刻脉冲信号值与这些参数之间的关系。
下图为一具体实例。
图中给出了该波形对应的参数。
脉冲信号波形(例)
表1描述脉冲信号波形的参数
注:表中TSTOP是瞬态分析中参数Final Time的设置值;TSTEP是参数Print Step的设置值。
表2脉冲信号电平值与参数的关系
(2).分段线性电源(VPWL: Piece-Wise Linear):5.2节
分段线性信号波形由几条线段组成。
因此,为了描述这种信号,只需给出线段转折点的坐标数据即可。
下图是一个分段线性信号波形实例。
图中同时给出了描述该波形的数据。
分段线性信号波形(例)
(3).调幅正弦电源(VSIN: Sinusoidal Waveform):5.1节
描述调幅正弦信号涉及6个参数。
表3列出了这些参数的含义、单位和内定值。
表4给出了调幅正弦信号波形的变化与这6个参数的关系。
下图为一具体实例,图中同时给出了该信号波形对应的参数。
调幅正弦信号波形(例)
注:表中TSTOP为瞬态分析中参数Final Time的设置值。
表4 调幅信号波形与参数的关系
说明:此处描述的调幅正弦信号只用于瞬态分析。
若阻尼因子与偏置值均为0,则调幅信号成为标准的正弦信号,但是在进行3-6节介绍的AC分析时,本信号并不起作用。
(4).调频电源(VSFFM: Single-Frequency
Frequency-Modulated)
描述调频信号需要5个参数,表5列出了这些参数的含义、单位和内定值。
调频信号与这些参数之间的关系为:voff+vampl*sin(2π*fc*TIME+mod*sin(2π*fm*TIME))
下图为一个调频信号波形实例。
图中同时给出了描述该波形的参数数据。
表5 描述调频信号的参数
注:表中的设置值。
调频信号(例)
5.指数电源(VEXP: Exponential Waveform)
下图给出了一个指数信号波形实例。
描述该信号要有6个参数,如表6所示。
表7列出了不同时刻指数信号电平值与这6个参数的关系。
图中所示波形对应的参数如图中所示。
由图可见,在时间0-td1这段时间内,信号电平为v1,接着以tc1为时常数,从v1指数变化至v2,直到时刻td2为止。
然后又以tc2为时常数,按指数规律变化至v1。
注:
另:通用信号源(VSRC):5.1,5.3节。