正弦信号激励下系统的稳态响应_例3
3 测试系统的基本特性 (动态识别、不失真)

ξ
ζ = ζ = ζ = ζ = ζ = ζ =
0 .0 5 0 .1 0 0 .1 5 0 .2 5 0 .5 0 1 .0 0
3
η = ω /ω
n
位移共 振频率
ω r = ω n 1 − 2ζ
2
精确求法:
A(ω r ) 1 = 2 A(0) 2ζ 1 − 2ζ
ωn ζ
测 试 系 统 动 态 特 性 的 识 别
利用半功率法求
ζ
ω 2-ω1 ζ= 2ω n
适合阻尼比较小。
测 (二)阶跃响应法 试 系 统 阶跃响应法是以阶跃信号作为测试 动 态 系统的输入,通过对系统输出响应的测 特 试,从中计算出系统的动态特性参数。 性 的 这种方法实质上是一种瞬态响应法。即 识 别 通过研究瞬态阶段输出与输入之间的关
系找到系统的动态特性参数。
u (t )
t
y u (t ) = 1 − e
动 态 传 递 特 性 的 时 域 描 述
结论:一阶系统在单位阶跃激励下稳态输出 的理论误差为零,并且,进入稳态的时间
t→∞。但是,当t =4τ时,y(4τ)=0.982;误
差小于2%;当t =5τ时,y(5τ)=0.993,误差小 于1%。所以对于一阶系统来说,时间常数τ越小 越好。
3.3.3 测试系统动态特性参数的识别
频率响应法是以一组频率可调的标准正弦信号作为 系统的输入,通过对系统输出幅值和相位的测试,获得 系统的动态特性参数。
测 试 系 统 动 态 特 性 的 识 别
系统特性识别试验原理框图
测 试 系 统 动 态 特 性 的 识 别
一阶系统
A(ω ) =
A( ϖ) 1.0 0.8 0.6 0.4 0.2 0 0.707
信号与系统第3章 信号通过LTI系统的频域分析

这里需要指出的是,上面的等式对信号 的间断点不成立。
从数学上说,周期信号能进行傅里 叶级数展开的条件是信号须满足狄里赫 利(Dirichlet)条件:
(1)在一个周期内,如果有间断点存在, 则间断点的数目应是有限个;
(2)在一个周期内,极大值和极小值的 数目应是有限个; (3)在一个周期内,信号是绝对可积的, T f (t )dt 等于有限值。 即 0
式(3-8)的意义与三角函数形式的傅 里叶级数一样,表明函数f(t)可以分解为无 限个复正弦谐波信号 e jn0t 的线性组合。
必须注意的是,这里出现了n为负 的频率,但这个负频率只是“视在”的 ,是数学表达上的存在。
傅里叶级数的复指数形式在高等数学 课程中并未出现,而且表达式中出现了n为 负的频率,初学者可能会感到困惑。
Im[ H ( j )]
∞
∞
h(t )sin(t )dt
因此,ReH(j)是的偶函数,而ImH(j) 是的奇函数。同时,由于
H ( j )
Re H ( j Im H ( j)
2
2
Re[ H ( j )] ( ) arctan Im[ H ( j )]
工程中广泛使用了频域分析的概念 与方法,其依据是:实际应用中遇到的 信号通常都可以分解为正弦信号的线性 组合。
因此,如果了解了正弦信号通过LTI系 统的响应情况,那么根据LTI系统的线性 与时不变性,就可以得到任意信号通过 LTI系统的响应。
建立在这一基础上的分析方法称为 频域分析,也就是著名的傅里叶分析。 为了进行频域分析,首先必须解决 的两个问题是: ①频域中的信号分解; ②正弦信号通过LTI系统后的响应。
一阶系统中,RC称为系统的时间常 数,可用来表征系统的惯性,并据此对输 出波形与输入波形之间的关系做出定量的 解释,但对系统中存在两个以上储能元件 的情况,也即对二阶以上的系统,就难以 用系统的时域参数来定量地表征对信号的 影响。
信号与系统讲义第四章5系统频率特性及稳定性汇总

(系统的串联)
2020/3/10
信号与系统
2020/3/10
信号与系统
4.11 线性系统的稳定性
1、稳定系统
有限(界)激励,产生有限(界)输出,稳定系统 有限(界)激励,产生无限(界)输出,为不稳定系统
r(t) h(t)*e(t) h( )e(t )d
4.8由系统函数零、极点分布分析频响特性
一、系统的频响特性
1、频响特性
在正弦信号激励下稳态响应随频率的变化
H( j) H( j) e j()
幅频特性 相频特性
2020/3/10
信号与系统
分析正弦信号e(t) Em sin 0t u(t)激励下系统的响应?
H (s)为稳定系统,极点在左半开平面,自由响应为暂态响应
➢ 系统的极零点图 ➢ 确定系统的时域响应特性、系统稳定性分析 ➢ 绘制系统的幅频响应和相频响应特性曲线,通频特性分析
2020/3/10
信号与系统
作业
4-39(a)(e) 4-42 (b) 4-45
自读4.9节内容 预习 4.12 4.13章节内容
2020/3/10
信号与系统
H ( j)
K
0
系统的零、极点分布→系统的频率响应特性 零、极点分布特点??
2020/3/10
信号与系统
全通系统的零、极点分布
•极点在S左半平面,零点在右半平面 •极点数=零点数,且与虚轴成镜像对称
2020/3/10
信号与系统
幅频特性: 相频特性:
2020/3/10
信号与系统
二、最小相移系统
e(t) Me
信号与系统历年考题

目录04-05A (1)04-05B (4)05-06A (7)05-06B (10)06-07A (14)07-08A (16)07-08B (19)08-09(A) (22)08-09(B) (25)09-10(A) (28)09-10(B) (30)04-05A一、填空(每空2 分,共20分)(1) LTI 表示 。
(2)⎰∞∞-=-dt t t t f )()(0δ 。
(3) 无失真传输的频域条件为 。
(4) )]([)(t u et u at-*= 。
(5) 设)(0t f 是周期脉冲序列)(t f (周期为T 1)中截取的主值区间,其傅里叶变换为)(0w F ,n F 是)(t f 傅里叶级数的系数。
则n F = 。
(6) 设)3)(2(6)(+++=s s s s H ,=+)0(h 。
(7) 设)(t f 是带限信号,πω2=m rad/s ,则对)12(-t f 进行均匀采样的奈奎斯特采样间隔为 。
(8) 某连续系统的系统函数jw jw H -=)(,则输入为tj et f 2)(=时系统的零状态响应=)(t r zs 。
(9) 周期序列)873cos()(ππ-=n A n x ,其周期为 。
(10) 信号)(t f 的频谱如图如示,则其带宽为 。
二、选择题(将正确的答案的标号填在括号内,每小题2分,共20分)(1) 能正确反映)()(n u n 与δ关系的表达式是( )。
A. ∑∞=-=0)()(k k n n u δ B. ∑∞=-=1)()(k k n n u δC. ∑∞==)()(k k n u δ D. )1()()(+--=n u n u n δ(2) 下列叙述正确的是( )。
A. 各种离散信号都是数字信号B. 数字信号的幅度只能取0或1C. 将模拟信号采样直接可得数字信号D. 采样信号经滤波可得模拟信号(3) 下列系统中,属于线性时不变系统的是( )A. )1()(t e t r -=B. ∑∞-∞==m m x n y )()(C. ⎰∞-=td e t r 5)()(ττ D. )443sin()()(ππ+=n n x n y (4) 关于因果系统稳定性的描述或判定,错误的是( )A. 系统稳定的充要条件是所有的特征根都必须具有负实部。
郑君里《信号与系统》(第3版)【教材精讲+考研真题解析】讲义 第5章 傅里叶变换应用于通信系统——

3 2
c
j)2 (
3 2
c
)
2
| H ( j) | e
j ( )
| H ( j) |
1
[1
(
c
)
2
]2
(
c
)
2
(
)
arctan[
1
c
(c
)
2
]
h(t) F 1[H ( j)]
2 c 3
ct
e 2 sin(
3 2
ct
)
波形及频谱图:
6 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台
衰减不能过于迅速;佩利-维纳准则是系统物理可实现的必要条件,而不是充分条件。
五、希尔伯特变换研究系统函数的约束条件
7 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台
希尔伯特变换对
R()
1
X
()
d
X
(
)
1
R( )
d
该变换对说明具有因果性的系统函数 H ( j) 的实部 R() 被已知的虚部 X () 唯一
轴上的相对位置产生变化;
(3)线性失真:幅度、相位变化,不产生新的频率成分;
(4)非线性失真:产生新的频率成分。
2.无失真传输条件
(1)无失真传输
系统的无失真传输是指响应信号与激励信号相比,只是大小与出现的时间不同,而无波
形 上 的 变 化 。 设 激 励 信 号 为 e(t) , 响 应 信 号 为 r(t) , 则 无 失 真 传 输 的 条 件 是 r(t) Ke(t t0) ,K 为常数, t0 为滞后时间,如图 5-1 所示。
信号与系统第四章(2)

二. 零极点分布与h(t)的关系
∑ ∑ h(t)
=
L−1[H (s)] =
n
L−1 [
i =1
ki s− p
i
]=
n i=0
ki e pit
2 k1 eαt cos(ωt + θ )
jω
正弦振荡 (等幅)
h(t) 减幅的自由振荡
h(t)
2 k1 eαt cos(ωt + θ )
0
t
p 位于左半平面
+
R1
+
R2
H (s)与U s (s)无关, 由网络结构和参数决定
∴H (s) = I2(s) =
R1CS
U (s) s
R1LCS 2 + (R1R2C + L)S + R1 + R2
转移导纳函数
3、H (s)的一般性质。
(1 ) h ( t ) = L − 1 [ H ( s )]
证 : Q H (s) = Rzs (s) E(s)
当e(t) = δ (t)时E(s) = 1,
故rzs (t) = h(t) = L−1[H (s)]
此时Rzs (s) = H (s)
例3、试求图示电路的冲激 响应u1(t)。
2Ω
L
R1
SL
+ R1
2H
+ 1
is (t ) u1(t ) 1F
C
2Ω R2
Is (s) U1(s)
CS
R2
−
−
解:H (s) = R(s) = U1(s) — —策动点阻抗 E(s) Is (s)
+
Us (s) −
什么是正弦稳态电路(精)

二、研究正弦稳态电路的意义
正弦电压和电流产生容易,与非电量转换方便,在实用 电路中使用广泛。 复杂信号皆可分解为若干不同频率正弦信号之和,因此可 利用叠加定理将正弦稳态分析推广到非正弦信号激励下的电 路响应。
三、正弦稳态电路的分析方法
采用相量分析法,引入相量的概念以后,在电阻电路 中应用的公式、定理均可以运用于正弦稳态电路。
试求 i3 (t ),并作出各电流相量的相量图。
解:由 i1 (t ) 、 i2 (t ) 的时域形式,得:
I1 20 I 2 2120
i1 (t )
i2 (t )
i3 (t )
由KCL的相量形式,得:
I3 I1 I 2 20 2120 2 1 j 3 2 120 A
u2 (t ) 2U 2 cos(t 2 )
相位差定义为:
12 (t 1 ) (t 2 ) 1 2
同频正弦量的相位差等于它们的初相之差,是一个与 时间无关的常数
比较两正弦量的相位差时应注意: (1)两正弦量必须是同类型的函数
(2)两正弦量必须具有相同的频率
i iR u(t) iC C iL L
R=15Ω,C=83.3μF,L=30mH,求电流I. 解:利用KCL相量关系,有:
I I R IC I L
U 120 j120 V 2
U j120 IR j8 A R 15 I C j CU j 1000 (83.3 106 ) ( j120) 10 A U j120 IL 4A 3 j L j1000 (30 10 )
定理4
若A、B为复常数,若在所有的时刻都满足
Re[ Ae jt ] Re[ Be jt ]
信号与系统§6.4 由系统函数求频率响应

m
s
z
j
m
j
ω
z
j
H jω H s sjω K
j 1 n
sjω K
j 1 n
s Pi
jω pi
i 1
i 1
可见H jω的特性与零极点的位置 有关。
令分子中每一项 jω z j N j ejψj 分母中每一项 jω Pi Mi ejθi
ω ψ1 ψ2 ψm θ1 θ2 θn
当沿虚轴移动时,各复数因子(矢量)的模和
辐角都随之改变,于是得出幅频特性曲线和相 频特性曲线。
s jω
Hjω ——幅频特性
ω ——相频特性(相移特性)
几种常见的滤波器
H ( j) 低通滤波器
H ( j) 高通滤波器
0
c
(a)
H ( j) 带通滤波器
0
c
H ( j)
(b)
带阻滤波器
0
c1
c 2
0
c1
c 2
(c)
(d)
图4-15 滤波网络频响特性示例
根据H(s)零极图绘制系统的频响特性曲线
H
jω
K
N1 e jψ1 M1 e jθ1
N2 e jψ2 M 2 e jθ2
Nm e jψm M n e jθn
K
N1N2
N e jψ1ψ2 ψm m
M1M2
M e jθ1θ2 θn n
H jω K N1N2 Nm
M1M 2 M n
将 jω z j、jω - pi都看作两矢量之差,将矢量图画于复 平面内。