高三数学立体几何专题解剖
2021-2022年高考数学一轮复习专题8.1空间几何体的结构及其三视图和直观图讲

2021年高考数学一轮复习专题8.1空间几何体的结构及其三视图和直观图讲【考纲解读】【知识清单】1.空间几何体的结构特征一、多面体的结构特征二、旋转体的形成三、简单组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成;一种是由简单几何体截去或挖去一部分而成,有多面体与多面体、多面体与旋转体、旋转体与旋转体的组合体.对点练习:有下列四个命题:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中真命题的个数是( )A.1 B.2 C.3 D.4【答案】A2空间几何体的直观图简单几何体的直观图常用斜二测画法来画,基本步骤是:(1)画几何体的底面在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半.(2)画几何体的高在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变.对点练习:【xx年福建省数学基地校高三复习试卷】一水平放置的平面图形,用斜二测画法画出了它的直观图,此直观图恰好是一个边长为的正方形,则原平面图形的面积为( )A. B. C. D.【答案】D3.空间几何体的三视图三视图几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.对点练习:【xx北京,理7】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A)3 (B)2 (C)2 (D)2【答案】B【解析】【考点深度剖析】三视图是高考重点考查的内容,考查内容有三视图的识别;三视图与直观图的联系与转化;求与三视图对应的几何体的表面积与体积.命题形式为用客观题考查识读图形和面积体积计算,解答题往往以常见几何体为载体考查空间想象能力和推理运算能力,期间需要灵活应用几何体的结构特征.【重点难点突破】考点1:空间几何体的结构特征【1-1】如图几何体中是棱柱的有( )A.1个 B.2个 C.3个 D.4个【答案】C【1-2】下列命题中正确的有__________.①有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;②存在一个四个侧面都是直角三角形的四棱锥;③如果棱柱有一个侧面是矩形,则其余各侧面也都是矩形;④圆台的任意两条母线所在直线必相交;【答案】②④【解析】①不正确,因为不能保证等腰梯形的各个腰延长后交与一点.②如右图的四棱锥,底面是矩形,一条侧棱垂直底面,那么它的四个侧面都是直角三角形,故②正确;③如图所示的棱柱有一个侧面是矩形,则其余各侧面不是矩形;故③错误④根据圆台的定义和性质可知,命题④正确.所以答案为②④【领悟技法】系或增加线、面等基本元素,然后再依据题意判定.三棱柱、四棱柱、正方体、长方体、三棱锥、四棱锥是常见的空间几何体,也是重要的几何模型,有些问题可用上述几何体举特例解决.【触类旁通】【变式1】一个棱柱是正四棱柱的条件是( ).A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,具有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱【答案】C【解析】A,B两选项中侧棱与底面不一定垂直,D选项中底面四边形不一定为正方形,故选C.【变式2】【xx届云南省名校月考一】已知长方体的所有顶点在同一个球面上,若球心到过点的三条棱所在直线的距离分别是,则该球的半径等于__________.【答案】考点2 空间几何体的直观图【2-1】利用斜二测画法得到的以下结论,正确的是________(写出所有正确的序号).①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④圆的直观图是椭圆;⑤菱形的直观图是菱形.【答案】①②④【解析】①正确;由原图形中平行的线段在直观图中仍平行可知②正确;但是原图形中垂直的线段在直观图中一般不垂直,故③错;④正确;⑤中原图形中相等的线段在直观图中不一定相等,故错误.【2-2】在如图所示的直观图中,四边形O ′A ′B ′C ′为菱形且边长为2 cm ,则在xOy 坐标系中,四边形ABCO 为________,面积为________ cm 2.【答案】矩形8【领悟技法】按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系:S 直观图=S 原图形,S 原图形=S 直观图.【触类旁通】【变式1】如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A . B. C. D . 【答案】A【解析】由题意画出斜二测直观图及还原后原图,由直观图中底角均为45°,腰和上底长度均为1,得下底长为,所以原图上、下底分别为1, ,高为2的直角梯形. 所以面积S =12(+1)×2=.故选A.【变式2】如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,O ′C ′=2 cm ,则原图形是( )A .正方形B .矩形C .菱形D .一般的平行四边形【答案】C【解析】将直观图还原得▱OABC,如图,∵O′D′=2O′C′=2 2 (cm),OD=2O′D′=4 2 (cm),C′D′=O′C′=2 (cm),∴CD=2 (cm),OC=CD2+OD2=22+422=6 (cm),OA=O′A′=6 (cm)=OC,故原图形为菱形.综合点评:解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.考点3 空间几何体的三视图【3-1】【xx届河南省新乡市第一中学高三8月月考】一几何体的直观图如右图,下列给出的四个俯视图中正确的是()【答案】B【3-2】【江西卷】将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( )【答案】(1)D (2)D【解析】 (1)球、正方体的三视图形状都相同,大小均相等,首先排除选项A和C.对于如图所示三棱锥OABC,当OA、OB、OC两两垂直且OA=OB=OC时,其三视图的形状都相同,大小均相等,故排除选项B.不论圆柱如何放置,其三视图的形状都不会完全相同,故答案选D.(2)如图所示,点D1的投影为C1,点D的投影为C,点A的投影为B,故选D.【3-3】【xx届广东省广州市海珠区高三综合测试一】如图,点分别是正方体的棱的中点,用过点和点的两个截面截去正方体的两个角后得到的几何体的正(主)视图、侧(左)视图、俯视图依次为()A. ①③④B. ②④③C. ①②③D. ②③④【答案】D【领悟技法】三视图中的数据与原几何体中的数据不一定一一对应,识图要注意甄别. 揭示空间几何体的结构特征,包括几何体的形状,平行垂直等结构特征,这些正是数据运算的依据.还原几何体的基本要素是“长对齐,高平直,宽相等”.简单几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线.【触类旁通】【变式1】一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如图所示,则该几何体的俯视图为( )【答案】C【变式2】如图,多面体ABCD-EFG的底面ABCD为正方形,FC=GD=2EA,其俯视图如下,则其正视图和侧视图正确的是( ).【答案】D【变式3】【武汉市部分学校xx 届高三调研】)一个简单几何体的正视图、侧视图如右图所示,则其俯视图不可能为(.....).①长方形;②正方形;③圆;④椭圆.中的A.①②B.②③C.③④D.①④【答案】B【解析】若俯视图为正方形,则正视图中的边长3不成立;若俯视图为圆,则正视图中的边长3也不成立.综合点评:三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.即“长对正,宽相等,高平齐”.【易错试题常警惕】易错典例:一个几何体的主视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.【错解】①②⑤【错因】忽视几何体的不同放置对三视图的影响,漏选③.【正解】①三棱锥的主视图是三角形;②当四棱锥的底面是四边形放置时,其主视图是三角形;③把三棱柱某一侧面当作底面放置,其底面正对着我们的视线时,它的主视图是三角形;④对于四棱柱,不论怎样放置,其主视图都不可能是三角形;⑤当圆锥的底面水平放置时,其主视图是三角形;⑥圆柱不论怎样放置,其主视图也不可能是三角形.故正确答案为①②③⑤.【学科素养提升之思想方法篇】数形结合百般好,隔裂分家万事休——数形结合思想数形结合是一种重要的数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围.在解答三视图、直观图问题中,主要是通过图形的恰当转化,明确几何元素的数量关系,进行准确的计算.如:【典例】【xx届河北省石家庄市二模】如图是一个底面半径为1的圆柱被平面截开所得的几何体,截面与底面所成的角为,过圆柱的轴的平面截该几何体所得的四边形为矩形,若沿将其侧面剪开,其侧面展开图形状大致为()A. B.C. D. 【答案】A。
立体几何初步复习解剖

球
直观印象
旋转图形
矩形
底面 母线
2个(全等) 平行且相等
直角三角形 1个
相交一点
直角梯形 2个(相似) 延长线交于一点
半圆 无 无
棱柱 棱锥 棱台
(1)棱柱与圆柱统称为柱体。 (2)棱锥与圆锥统称为锥体。
圆柱 圆锥 圆台
(2)棱台与圆台统称为台体。
多面体 旋转体
球
面积 体积
圆柱的侧面积: S 2 rl
一一面个是个面有面是一是多个边 公多形共边,顶形其点余的,各三 其角形余,各由面这些是面有所一围成个的 公几何共体顶叫点做棱的锥三。角形 ,由这些面所围成 的几何体叫做棱锥 。用一个平行于棱锥底面 用底的与棱平截台一面面面个的去之平平截间棱 的行 面锥部于去,分棱截底叫面作锥棱 锥,底面与截面之
(1)侧棱都相等: (((212)))侧侧侧面棱面都都是相都平等是:行平四边行形:
底
并且每相邻两个四边形
面
的公共边都互相平行。
ED
侧棱 F
C
A
B
侧面
顶点
棱柱(分类)
D1 A1
C1
B1
A1
D
CC
A
BA
C1
B1
E1 A1
E BA
D1 C1
B1 D
C B
棱柱 棱锥 棱台 圆柱 圆锥 圆台
球
结构特征
有一个面是多
边形,其余各面都
是有一个公共顶点
的三角形。
侧棱
A
顶点 S
侧面
D
C
底面
B
棱柱 棱锥 棱台
多面体
柱 锥 台 球
旋转体
棱柱 棱锥 棱台
高考数学总复习考点知识专题讲解36---空间几何体的结构、三视图和直观图

2.给出下列几个命题:
①在圆柱的上、下底面的圆周上各取一点,则这两点
的连线是圆柱的母线;②底面为正多边形,且有相邻两个
侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可
以不相似,但侧棱长一定相等.其中正确命题的个数是
( B) A.0
B.1
C.2
D.3
[解析] ①不一定,只有这两点的连线平行于轴时才是 母线;②正确;③错误,棱台的上、下底面是相似且对边 平行的多边形,各侧棱延长线交于一点,但是侧棱长不一 定相等.
1.(2019·河北武邑中学期末)如图所示,正方体ABCD- A1B1C1D1中,E为棱BB1的中点,用过点A,E,C1的平面截 去该正方体的上半部分,则剩余几何体的侧视图为( A )
[解析] 用过点A,E,C1的平面截去该正方体的上半部 分后,剩余部分的直观图如图所示,则该几何体的侧视图 为选项A.故选A.
4.(必修2P15练习T4改编)如图为一个几何体的三视图, 则该几何体是( B )
A.四棱柱 B.三棱柱 C.长方体 D.三棱锥
[解析] 将三视图还原为直观图,如图所示,该几何体 为三棱柱,故选B.
5.若一个三棱柱的三视图如图所示,其俯视图为正三
角形,则这个三棱柱的高和底面边长分别为___2_____, ___4_____.
1.三类特殊多面体 (1)直棱柱:侧棱与底面垂直的棱柱称为直棱柱. (2)正棱柱:正棱柱是侧棱都垂直于底面,且底面是正 多边形的棱柱. (3)正棱锥:底面是正多边形,且顶点在底面的投影为 底面中心的棱锥为正棱锥.
2.一个结论 利用斜二测画法画出的水平放置的平面图形的直观图 的面积是原来图形面积的 42倍.
(1)有两个面平行,其余各面都是平行四边形的几何体 是棱柱.( × )
高考数学真题题型分类解析专题专题09 立体几何初步

面上,则该球的表面积为( )
. . . . A 100π B 128π C 144π D 192π
【答案】A
【分析】根据题意可求出正三棱台上下底面所在圆面的半径 r1, r2 ,再根据球心距,圆面半径,以及球的半
径之间的关系,即可解出球的半径,从而得出球的表面积.
【详解】设正三棱台上下底面所在圆面的半径
设正方体棱长为 ,则 , , , 1
C1O =
2 2
BC1 = 2
sin ∠C1BO
=
C1O BC1
=
1 2
6 / 36
所以,直线 BC1与平面 BB1D1D 所成的角为30 ,故 C 错误;
因为C1C ⊥ 平面 ABCD,所以∠C1BC 为直线 BC1 与平面 ABCD所成的角,易得∠C1BC = 45 ,故 D 正确. 故选:ABD .( 5 2023 新高考Ⅰ卷·12)下列物体中,能够被整体放入棱长为 1(单位:m)的正方体容器(容器壁厚度 忽略不计)内的有( )
棱台上底面积 ,下底面积 , S =140.0km2 =140×106m2
S′ = 180.0km2 = 180×106m2
∴ ( ) ( ) V = 1 h S + S′ + SS′ = 1 × 9 × 140×106 +180 ×106 + 140×180×1012
3
3
( ) . = 3× 320 + 60 7 ×106 ≈ (96 +18× 2.65)×107 = 1.437 ×109 ≈ 1.4×109 (m3)
A.直径为0.99m 的球体 B.所有棱长均为1.4m的四面体 C.底面直径为0.01m,高为1.8m 的圆柱体 D.底面直径为1.2m ,高为 0.01m 的圆柱体 【答案】ABD 【分析】根据题意结合正方体的性质逐项分析判断. 【详解】对于选项 A:因为0.99m <1m ,即球体的直径小于正方体的棱长, 所以能够被整体放入正方体内,故 A 正确; 对于选项 B:因为正方体的面对角线长为 2m ,且 , 2 >1.4 所以能够被整体放入正方体内,故 B 正确; 对于选项 C:因为正方体的体对角线长为 3m ,且 , 3 <1.8 所以不能够被整体放入正方体内,故 C 不正确; 对于选项 D:因为1.2m >1m ,可知底面正方形不能包含圆柱的底面圆, 如图,过 AC1的中点O 作OE ⊥ ,设 AC1 OE I , AC = E
剖解立体几何,探究解题方法

DM奂平面A MD,所以平面A MD彝平面BMC,证毕.
思 路 二 院 基 于 面 面 垂 直 的 定 义 :若 两 个 平 面 的 二 面
角 为 直 二 面 角 ,则 这 两 个 平 面 互 相 垂 直 . 因 此 可 以 根 据
上述面面垂直的定义来构建解题模型,首先确定二面角
的平面角,然后分析其平面角的角度,进而完成证明.该
1.几何法破解面面垂直 第(1)问求证面面垂直,可以采用常规的几何法,且 有以下两种解题思路. 思 路 一 院提 取 相 关 面 中 的 线 线 垂 直 条 件 ,基 于 线 面
垂直的判定定理来完成线面垂直的证明,然后基于面面 垂直的判定定理来构建面面垂直,思维导图如图2所示. 该思路的难点在于如何证明问题中的线面垂直,证明时 需要充分挖掘问题中所隐含的垂直关系,由平面几何的 线线垂直入手来完成证明.
蚁DMC=90毅,所以平面A MD彝平面BMC,证毕.
2.多视角构建二面角
第(2)问求 解 三 棱 锥M-A BC 的体 积 最 大时 ,平 面
MA B与平面MCD所成二面角的正弦值,实际上该问可以
拆分为两问:淤三棱锥M-A BC的体积最大时的情形;
44高中2019 年 Nhomakorabea7 月于 两平 面 所 成 二面 角 的 正 弦 值(“无 ”棱 二 面 角).根 据第 淤 问的体积最大的 条 件 可 以 确 定 圆 上 点 M的 位 置,然 后
角 ,对 于 该 类 二 面 角 ,解 题 的 关 键 是 确 定 两 个 平 面 所 成
的交线,后续在构建二面角的平面角时,具体为“四字”
步骤———“作,指,证,求”,即首先作辅助线,然后指出二
面角并加以证明,最后求解二面角. 解题步骤院MO彝CD时三棱锥M-A BC的体积最大.过
高考数学复习专题知识归纳总结—立体几何初步

高考数学复习专题知识归纳总结—立体几何初步1.多面体的结构特征名称棱柱棱锥棱台图形底面互相平行且全等多边形互相平行且相似侧棱互相平行且相等相交于一点,但不一定相等延长线交于一点侧面形状平行四边形三角形梯形2.正棱柱、正棱锥的结构特征(1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.3.旋转体的结构特征名称圆柱圆锥圆台球图形母线互相平行且相长度相等且相延长线交于一等,垂直于底面交于一点点轴截面全等的矩形全等的等腰三角形全等的等腰梯形圆侧面展开图矩形扇形扇环旋转图形矩形直角三角形直角梯形半圆4.三视图(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方和正上方观察几何体画出的轮廓线.(2)在画三视图时,重叠的线只画一条,挡住的线要画成虚线.(3)三视图的长度特征:“长对正、高平齐、宽相等”,即正俯同长、正侧同高、俯侧同宽.5.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.6.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.7.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r1+r2)l三者关系S圆柱侧=2πrl――→r′=rS圆台侧=π(r+r′)l――→r′=0S圆锥侧=πrl8.柱、锥、台和球的表面积和体积名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=Sh锥体(棱锥和圆锥)S表面积=S侧+S底V=13Sh台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球S=4πR2V=43πR39.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在这个平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.(4)公理2的三个推论推论1:经过一条直线和这条直线外的一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.10.空间直线的位置关系(1)位置关系的分类异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).(3)平行公理(公理4)和等角定理平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.11.空间中直线与平面、平面与平面的位置关系(1)空间中直线与平面的位置关系位置关系图形表示符号表示公共点直线a 在平面α内a⊂α有无数个公共点直线在平面外直线a 与平面α平行a ∥α没有公共点直线a与平面α斜交a ∩α=A有且只有一个公共点直线a 与平面α垂直a ⊥α(2)空间中两个平面的位置关系位置关系图形表示符号表示公共点两平面平行α∥β没有公共点两平面相交斜交α∩β=l有一条公共直线垂直α⊥β且α∩β=a12.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线∵l ∥a ,a ⊂α,线平行⇒线面平行”)l ⊄α,∴l ∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)∵l ∥α,l ⊂β,α∩β=b ,∴l ∥b13.面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)∵a ∥β,b ∥β,a ∩b =P ,a ⊂α,b ⊂α,∴α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行∵α∥β,α∩γ=a ,β∩γ=b ,∴a ∥b14.直线与平面垂直(1)定义:如果直线l 与平面α内的任意一条直线都垂直,则直线l 与平面α垂直.(2)判定定理:如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.(3)推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面.(4)直线和平面垂直的性质:①垂直于同一个平面的两条直线平行.②直线垂直于平面,则垂直于这个平面内的任一直线.③垂直于同一条直线的两平面平行.15.直线和平面所成的角(1)平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角.(2)当直线与平面垂直和平行(或直线在平面内)时,规定直线和平面所成的角分别为90°和0°.(3)直线和平面所成角的范围是0°≤θ≤90°.16.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.(3)二面角的范围是0°≤θ≤180°.17.平面与平面垂直(1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直.(2)平面与平面垂直的判定定理与性质定理文字语言图形语言符号语言<常用结论>1.特殊的四棱柱2.球的截面的性质(1)球的任何截面是圆面;(2)球心和截面(不过球心)圆心的连线垂直于截面;(3)球心到截面的距离d 与球的半径R 及截面的半径r 的关系为r =R 2-d 2.3.按照斜二测画法得到的平面图形的直观图,其面积与原图形面积的关系如下:S 直观图=24S 原图形,S 原图形=22S 直观图.4.正四面体的表面积与体积棱长为a 的正四面体,其表面积为3a 2,体积为212a 3.5.几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,①若球为正方体的外接球,则2R=3a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R=2a.(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2.(3)正四面体的外接球与内切球的半径之比为3∶1,棱长为a的正四面体,其内切球半径R内=612a,外接球半径R外=64a.6.异面直线的判定定理经过平面内一点的直线与平面内不经过该点的直线互为异面直线.7.等角定理的引申(1)在等角定理中,若两角的两边平行且方向相同或相反,则这两个角相等.(2)在等角定理中,若两角的两边平行且方向一个边相同,一个边相反,则这两个角互补.8.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.9.线、面平行的性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(2)夹在两个平行平面间的平行线段长度相等.(3)经过平面外一点有且只有一个平面与已知平面平行.(4)两条直线被三个平行平面所截,截得的对应线段成比例.(5)如果两个平面分别和第三个平面平行,那么这两个平面互相平行.(6)如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行.(7)垂直于同一条直线的两个平面平行.(8)垂直于同一平面的两条直线平行.10.若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.11.一条直线垂直于两平行平面中的一个,则这条直线与另一个平面也垂直.12.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.13.过一点有且只有一条直线与已知平面垂直.14.过一点有且只有一个平面与已知直线垂直.。
【把握高考】高三数学最新专题课件 第九章 9.1《空间几何题的结构特征及三视图和直观图》人教版选修

第九章 立体几何初步
第九章 立体几何初步
一、空间几何体 1.棱柱:有两个面_互__相__平__行__,其余各面都是四边形, 并且每相邻两个四边形的公共边都_互__相__平__行__ ,由这些 面所围成的几何体叫做棱柱. 2.棱锥:有一个面是_多__边__形__,其余各面都是有一个公 共顶点的_三__角__形__ ,由这些面所围成的几何体叫做棱 锥. 3.棱台:用一个_平__行__于__棱锥底面的平面去截棱锥,底 面与截面之间的部分,叫做棱台.
第九章 立体几何初步
5.画水平放置的几何图形的直观图时应注意的问 题:
(1)要根据图形的特点选取适当的坐标系,这样可以 简化作图步骤.
(2)平行于y轴的线段在画直观图时一定要画成原来长 度的一半.
(3)对于图形中与x轴、y轴、z轴都不平行的线段,可 通过确定端点的办法来解决,即过端点作坐标轴的平行线 段,再借助于所作的平行线段确定端点在直观图中的位 置.
解析:设等边三角形的边长为 l,则旋转所得的圆锥的 母线长为 l,底面圆的半径为2l ,如图 a,图 b.
因为 S = 正三角形 3,所以 43l2= 3,即 l=2.
所以圆锥侧面积为 S 侧=12πl2=2π.
第九章 立体几何初步
答案:2π
第九章 立体几何初步
【案例5】 如图,长方体ABCD-
答案:B
第九章 立体几何初步
4.(2009·全国Ⅱ)纸制的正方体的六个面根据其方位
分别标记为上、下、东、南、西、北.现在沿该正方体的
一些棱将正方体剪开,外面朝上展平,得到下面的平面图
形,则标“△”的面的方位是
()
第九章 立体几何初步
A.南
B.北
C.西
解析:如图所示,易知选B.
“立体几何”高考剖析及2022年备考指南(解析版)

“立体几何”高考剖析及2022年备考指南目录一、考查内容分析 (2)1.内容 (2)2.题型 (2)3.分值 (2)4.难度 (2)5.思想方法 (2)二、命题思路分析 (2)类型一以三视图为背景考查空间想象能力 (3)类型二在典型的情境中考查线面平行与垂直关系 (5)类型三基于典型的简单几何体刻画空间几何图形位置关系 (10)类型四多选题、开放题丰富了考查的形式和内容 (13)类型五通过应用问题考查数学阅读和知识运用 (23)类型六模型化解题模式体现对数学学科核心素养的考查 (26)类型七综合法和向量法为个性化解题提供可能 (29)三、复习建议 (32)1.夯实基础,用典型几何体培养基本思维模式 (33)2突出重点,以线面位置关系作为基石 (33)3.提升思想,以核心素养的提升为目标 (33)4.适度创新,适应高考改革和发展的要求 (33)“立体几何”高考剖析及2022年备考指南2021年高考立体几何试题延续近几年来的命题风格,以朴实简洁的试题形式,突出对立体几何基础知识和基本思想方法的考查.在不同情境中,考查学生对空间图形的观察和分析能力,运用符号语言和图形语言论证几何关系的能力,以及对几何图形和几何量进行运算求解的能力.实现了从多角度、多层次考查学生的空间想象能力、推理论证能力、运算求解能力.试题突出了基础性,兼顾了综合性和应用性.一、考查内容分析1.内容2021年高考数学试卷中的立体几何试题的主要内容有三个方面:一是对空间几何体的基本结构和度量的考查,主要内容有三视图和直观图、简单多面体和旋转体的性质、空间线段长度、表面积与体积;二是对空间点、直线、平面位置关系的考查,主要内容有直线、平面平行和垂直关系的判定、性质与应用,异面直线所成的角,直线与平面所成的角,两平面所成的二面角;三是立体几何的应用问题,主要内容是以典型的空间几何体为背景,以线面几何关系为切入点的实际问题,指向是实际问题中的长度、角度、面积和体积的计算.2.题型2021年高考立体几何试题涵盖了数学试题中的所有题型,有单选题、多选题、填空题和解答题.除了传统的试题表现形式外,也增加了开放题和应用题等试题形式,丰富了立体几何的考查方式.3.分值2021年每份高考数学试卷中的立体几何试题基本都是两道客观题、一道主观题,约22分,占全卷总分的15%左右,与解析几何试题的考查分量相当,仅次于函数与导数试题的考查分量,是数学学科考查的主要内容之一.采用新高考模式的数学试卷中的立体几何试题,其内容和形式与原全国卷没有本质上的变化,试题的占比与以往基本相同.4.难度2021年高考数学全国卷中的立体几何试题的难度总体上保持稳定,以容易题和中等题为主,而且试题往往都以学生熟悉的形态出现,文、理科立体几何试题基本上是相同试题或相似试题.文、理科试题类型基本相同,难度相差较小,文科稍微容易些.5.思想方法2021年高考数学试卷中的立体几何试题突出考查学生的直观想象、逻辑推理和数学运算素养,试题突出对转化与化归和数形结合的数学思想的要求,以直线与平面的位置关系作为空间问题的转化枢纽,实现空间问题平面化、几何问题数量化的目标.试题以对空间图形进行分解、组合、转换等手段,实现典型问题的变式转化和解决问题方法的灵活选择,大多数立体几何试题都能在教材中找到原型,做到了试题命制源于教材而高于教材.二、命题思路分析立体几何试题命制的基本依据是四个基本事实,空间直线、平面位置关系的概念与空间角的概念,以及空间直线与直线、直线与平面、平面与平面的平行与垂直关系的判定定理和性质定理,空间直角坐标系与空间向量.通过立体几何试题的不同呈现形式,要求学生能用定义、判定定理和性质定理证明空间基本图形的位置关系的简单命题,能用向量语言表述直线与直线、直线与平面、平面与平面的位置关系,会用向量方法解决立体几何中的夹角问题,会将立体几何中的各种夹角问题都转化为两个向量的夹角.2021年高考数学立体几何试题都是以最常见的空间几何体为命制背景,特点鲜明.解答题主要以三棱锥、三棱柱、四棱锥、四棱柱(包括正方体)为背景,因为这几个典型的空间几何体已经能够表现丰富的几何关系,能在学生熟悉的情境中考查最核心的内容,不人为设置障碍、不考细枝末节问题是立体几何试题的特点.对旋转体内容的考查多以选择题和填空题的形式呈现,主要考查旋转体的结构特征、性质、表面积和体积等基础知识.在选择题和填空题的命制中,通过三视图、线面平行或垂直关系的判断、面积和体积的计算等内容,以识图、画图、想图、用图等方式考查学生的空间想象能力.在解答题的命制中,通过直线与平面的平行或垂直关系的论证,要求从已有的正确前提到被论证的结论之间建立逻辑推理过程,考查学生的知识储备和演绎推理能力,从而实现对学生理性思维的考查;在直线、平面的有关夹角的计算中,重点考查学生的数学转化能力和运算求解能力,通过建立空间直角坐标系,用向量语言表述几何对象,对几何图形和各几何量进行运算求解,体现出对核心内容和思想方法的重点考查. 具体地,2021年高考数学立体几何试题的命题呈现出以下几个方面的特点.类型一以三视图为背景考查空间想象能力例1(全国甲卷·理6)在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥A EFG-后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()A.B.C.D.【考点】简单空间图形的三视图【分析】作出正方体,截去三棱锥A EFG-,根据正视图,摆放好正方体,即可求解侧视图.【解答】解:由题意,作出正方体,截去三棱锥A EFG-,根据正视图,可得A EFG-在正方体左侧面,如图,根据三视图的投影,可得相应的侧视图是D图形,故选:D.【评析】该题以正方体为载体,以三视图为切入点考查学生的空间想象能力和逻辑推理能力.用三视图中的一个视图来推理辨识另外的视图,是立体几何试题命制形式的创新.通过对原正方体的想象和还原,以达到对各个视图的辨别,体现出在熟悉的情境中考查空间想象能力的要求拓展题1.如图,模块①-⑤均由4个棱长为1的小正方体构成,模块⑥由15个棱长为1的小正方体构成.现从模块①-⑤中选出三个放到模块⑥上,使得模块⑥成为一个棱长为3的大正方体.则下列选择方案中,能够完成任务的为()A.模块①,②,⑤B.模块①,③,⑤C.模块②,④,⑥D.模块③,④,⑤【分析】先补齐中间一层,说明必须用⑤,然后的第三层,可以从余下的组合中选取即可.【解答】解:先补齐中间一层,只能用模块⑤或①,且如果补①则后续两块无法补齐,所以只能先用⑤补中间一层,然后再补齐其它两块.故选:A .【评析】本小题主要考查空间想象能力,有难度,是中档题.拓展题2.在圆柱内有一个内接正三棱锥,过一条侧棱和高作截面,正确的截面图形是( )A .B .C .D .【分析】根据题意,画出几何体的图形,容易得出圆柱与棱锥的截面图形.【解答】解:由题意作出图形,如图所示;SO ⊥底面BPM ,过侧棱SB 与高的平面ABCD截得圆柱与圆柱内接正三棱锥S BPM -,截面图形为D 选项.故选:D .【评析】本题考查了三棱锥的结构特征以及圆柱的内接三棱锥的应用问题,与考查空间想象能力,是基础题.例2、(2021浙江卷4)某几何体的三视图如图所示,则该几何体的体积是( )A .32B .3C .322D .32 【答案】A【分析】根据三视图可得如图所示的几何体,根据棱柱的体积公式可求其体积.【详解】几何体为如图所示的四棱柱1111ABCD A B C D -,其高为1,底面为等腰梯形ABCD ,该等腰梯形的上底为2,下底为22,腰长为1,故梯形的高为12122-=, 故()11111232221222ABCD A B C D V -=⨯+⨯⨯=, 故选:A .拓展题1.一个几何体的三视图如图所示,则该几何体的体积是( )A .23πB .3C .πD .53π 【分析】由三视图还原原几何体,该几何体为组合体,左侧为半圆锥,右侧为四分之一球,圆锥的底面半径为1,高为2,球的半径为1,再由圆锥体积公式及球的体积公式求解.【解答】解:由三视图还原原几何体如图,该几何体为组合体,左侧为半圆锥,右侧为四分之一球,圆锥的底面半径为1,高为2,球的半径为1,则该组合体的体积231114212123433V πππ=⨯⨯⨯+⨯⨯=. 故选:A .【评析】本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.拓展题2.一个几何体的三视图如图所示,则该几何体的体积为( )A .πB .3πC .2πD .34π+【分析】由三视图还原原几何体,可知该几何体为半圆柱,底面半径为1,高为2,再由圆柱体积公式求解.【解答】解:由三视图还原原几何体如图:该几何体为半圆柱,底面半径为1,高为2,则该几何体的体积为21122ππ⨯⨯⨯=.故选:A . 【评析】本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.类型二 在典型的情境中考查线面平行与垂直关系例1 (2021浙江卷6)如图已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则() A .直线1A D 与直线1D B 垂直,直线//MN 平面ABCDB .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线//MN 平面ABCDD .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B【分析】由正方体间的垂直、平行关系,可证1//,MN AB A D ⊥平面1ABD ,即可得出结论.【详解】连1AD ,在正方体1111ABCD A B C D -中,M 是1A D 的中点,所以M 为1AD 中点,又N 是1D B 的中点,所以//MN AB ,MN ⊄平面,ABCD AB ⊂平面ABCD ,所以//MN 平面ABCD .因为AB 不垂直BD ,所以MN 不垂直BD则MN 不垂直平面11BDD B ,所以选项B ,D 不正确;在正方体1111ABCD A B C D -中,11AD A D ⊥,AB ⊥平面11AA D D ,所以1AB A D ⊥,1AD AB A ⋂=,所以1A D ⊥平面1ABD ,1D B ⊂平面1ABD ,所以11A D D B ⊥,且直线11,A D D B 是异面直线,所以选项B 错误,选项A 正确.故选:A .【评析】以正方体这类最典型的空间几何体为载体,考查直线与直线、直线与平面、平面与平面的位置关系是立体几何试题命制的一大特点,体现在熟悉的情境中考查基础知识、基本能力的设想.直线A 1D 与直线D 1B 的位置关系的判定,涉及异面直线的判定、异面直线垂直的判定,而异面直线垂直的判定又可以通过线面垂直的判定得到.直线MN 与平面ABCD 及平面BDD 1B 1关系的判定通过直线MN 与直线AB 的平行关系得到.这种基于典型空间图形线面位置关系的考查,是立体几何试题命制的典型手法.拓展题1.已知正方体1111ABCD A B C D -,P 是直线1A C 上一点,( )A .若1113A P AC =,则直线//AP 平面1BC DB .若1112A P AC =,则直线//AP 平面1BC D C .若1113A P AC =,则直线BP ⊥平面1ACD D .若1112A P AC =,则直线BP ⊥平面1ACD 【考点】直线与平面平行;直线与平面垂直【分析】设正方体1111ABCD A B C D -的棱长为1,以D 为坐标原点,建立空间直角坐标系D xyz -,利用向量法求解.【解答】解:设正方体1111ABCD A B C D -的棱长为1,以D 为坐标原点,建立空间直角坐标系D xyz -,如图,(1A ,0,0),(1B ,1,0),(0C ,1,0),1(0C ,1,1),(0D ,0,0),1(0D ,0,1),(1DB =,1,0),1(0DC =,1,1),(1AC =-,1,0),1(1AD =-,0,1),设平面1BC D 的法向量(n x =,y ,)z ,则100n DB x y n DC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取1x =,得(1n =,1-,1),设平面1ACD 的法向量(m a =,b ,)c ,则100m AC a b m AD a c ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,取1a =,得(1m =,1,1), 当1113A P AC =时,1(1A ,0,1),2(3P ,13,2)3,1(3AP =-,13,2)3, 1120333AP n ⋅=--+=,且AP ⊂/平面1BC D ,∴直线1//AP BC D ,故A 正确; 1(3BP =-,23-,2)3,BP 与m 不平行,∴直线BP 不垂直于平面1ACD ,故C 错误; 当1112A P AC =时,111(,,)222P ,111(,,)222AP -, 111102222AP n ⋅=--+=-≠,∴直线AP 垂直于平面1BC D ,故C 错误; 111(,,)222BP =--,BP 与m 不平行,∴直线BP 不垂直于平面1ACD ,故D 错误. 故选:A .【评析】本题考查线面平行、线面垂直的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.例2(全国乙卷·理18)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.【考点】二面角的平面角及求法【分析】(1)连结BD ,利用线面垂直的性质定理证明AM PD ⊥,从而可以证明AM ⊥平面PBD ,得到AM BD ⊥,证明Rt DAB Rt ABM ∆∆∽,即可得到BC 的长度;(2)建立合适的空间直角坐标系,求出所需点的坐标和向量的坐标,然后利用待定系数法求出平面的法向量,由向量的夹角公式以及同角三角函数关系求解即可.【解答】解:(1)连结BD ,因为PD ⊥底面ABCD ,且AM ⊂平面ABCD ,则AM PD ⊥,又AM PB ⊥,PB PD P =,PB ,PD ⊂平面PBD ,所以AM ⊥平面PBD ,又BD ⊂平面PBD ,则AM BD ⊥,所以90ABD MAB ∠+∠=︒,又90ABD ADB ∠+∠=︒,则有ADB MAB ∠=∠,所以Rt DAB Rt ABM ∆∆∽, 则AD BA AB BM =,所以2112BC =,解得2BC =; (2)因为DA ,DC ,DP 两两垂直,故以点D 位坐标原点建立空间直角坐标系如图所示,则2(2,0,0),(2,1,0),(,1,0)2A B M ,(0P ,0,1), 所以(2,0,1)AP =-,22(,1,0),(,0,0),(2,1,1)22AM BM BP =-=-=--, 设平面AMP 的法向量为(,,)n x y z =,则有00n AP n AM ⎧⋅=⎪⎨⋅=⎪⎩,即20202x z x y ⎧-+=⎪⎨-+=⎪⎩, 令2x =,则1y =,2z =,故(2,1,2)n =,设平面BMP 的法向量为(,,)m p q r =,则有00m BM m BP ⎧⋅=⎪⎨⋅=⎪⎩,即20220p p q r ⎧-=⎪⎨⎪--+=⎩,令1q =,则1r =,故(0,1,1)m =, 所以||3314|cos ,|||||1472n m n m n m ⋅<>===⨯, 设二面角A PM B --的平面角为α,则22231470sin 11,1()1414cos cos n m αα=-=-<>=-=, 所以二面角A PM B --的正弦值为7014. 【评析】该题是以长方体为载体的立体几何试题.这个四棱锥是长方体中的一部分,是基于长方体命制的试题,.通过将线面关系PD ⊥底面ABCD ,·PB ⊥AM 转化为BD ⊥AM 实现空间几何关系向一个平面的转化,从而可以求得边BC 的长.对于二面角A -PM -B 的正弦值的问题,试题显然营造了两种计算途径:一是建立空间直角坐标系,运用向量的方法,将二面角大小的计算转化为两个向量的夹角,以点D 为坐标原点可以方便地建立空间直角坐标系D -xyz ;二是综合几何的方法,找出二面角A -PM -B 的平面角,在四棱锥P -ABCD 所构成的长方体中,二面角A -PM -B 就是平面P AM 与平面PEBC 所成的角.设F 为BE 的中点,则AF ⊥平面PBM ,四边形PEBC 是正方形.因此,可设CF 交PM 于点G ,则∠AGF 是二面角A -PM -B 的平面角.于是很容易在直角三角形中求得∠AGF 的正弦值拓展题1 如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==,2AB =,M 是PD 中点.(1)求直线CD 与平面ACM 所成的角的正弦值;(2)求二面角P AM C --的余弦值.【考点】直线与平面所成的角;二面角的平面角及求法【分析】(1)以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,利用向量法能求出直线CD 与平面ACM 所成的角的正弦值.(2)求出平面PAM 的法向量和平面ACM 的法向量,利用向量法有求出二面角P AM C --的余弦值.【解答】解:(1)在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,∴以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,4PA AD ==,2AB =,M 是PD 中点,(2C ∴,4,0),(0D ,4,0),(0A ,0,0),(0P ,0,4),(0M ,2,2),(2CD =-,0,0),(2AC =,4,0),(0AM =,2,2),设平面ACM 的法向量(n x =,y ,)z ,则240220n AC x y n AM y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取1y =,得(2n =-,1,1)-,设直线CD 与平面ACM 所成的角为θ,则||46sin 3||||26CD n CD n θ⋅===⋅. ∴直线CD 与平面ACM 所成的角的正弦值为63. (2)平面PAM 的法向量(1m =,0,0),平面ACM 的法向量(2n =-,1,1)-,设二面角P AM C --的平面角为θ,由题知θ为钝角,则||26cos ||||36m n m n θ⋅=-=-=-⋅. ∴二面角P AM C --的余弦值为63-. 【评析】本题考查线面角的正弦值、二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.类型三 基于典型的简单几何体刻画空间几何图形位置关系题型一 几何体的外接球解决多面体的外接球问题,关键是确定球心的位置,方法是先选择多面体中的一面,确定此面外接圆的圆心,再过圆心作垂直此面的垂线,则球心一定在此垂线上,最后根据其他顶点确定球心的准确位置.对于特殊的多面体还可采用补成正方体或长方体的方法找到球心位置.例1、已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π 【解答】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r π=π=∴,ABC 为等边三角形, 由正弦定理可得2sin6023AB r =︒=,123OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,222211111,4OO O A R OA OO O A OO r ∴⊥==+=+=,∴球O 的表面积2464S R ππ==.故选:A .【评析】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.拓展题1若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为A .12πB .24πC .36πD .144π 【答案】C【解答】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即,,m n l ,所以,这个球的表面积为,,m n l .故选:C .【评析】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.拓展题2 已知边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕进行折叠,使折后的2BDC π∠=,则过A ,B ,C ,D四点的球的表面积为( )A .3πB .4πC .5πD .6π【答案】C【解答】边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕进行折叠,使折后的2BDC π∠=,构成以D 为顶点的三棱锥,且三条侧棱互相垂直,可构造以其为长宽高的长方体,其对角线即为球的直径,三条棱长分别为1,1,3,所以21135R =++=,球面积254()52S ππ==,故选C . 拓展题3 已知四棱锥P ABCD -的体积是363,底面ABCD 是正方形,PAB ∆是等边三角形,平面PAB ⊥平面ABCD ,则四棱锥P ABCD -外接球体积为( )A .2821πB .99112πC .6372π D .1083π【答案】A【解答】设AB 的中点为Q ,因为PAB ∆是等边三角形,所以PQ AB ⊥,而平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,所以PQ ⊥平面ABCD , 四棱锥P ABCD -的体积是363,13633AB AB PQ =⨯⨯⨯ 1336332AB AB AB =⨯⨯⨯,所以边长6AB =,33PQ =,设OH x =,33OM x =-,()()2222223332R OA OM AM x ==+=-+,2222223R OP OH PH x ==+=+,23x =,2212321R =+= 3428213V R ππ==球.故选:A .拓展题4 中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,5AD =,3ED =,若鳖臑P ADE -的外接球的体积为92π,则阳马P ABCD -的外接球的表面积等于______. 【答案】20π 【解答】四边形ABCD 是正方形,AD CD ∴⊥,即AD CE ⊥,且5AD =,3ED =,所以,ADE ∆的外接圆半径为221222AEAD ED r +===,设鳖臑P ADE -的外接球的半径1R ,则314923R ππ=,解得1322R =. PA ⊥平面ADE ,22112PA R r ⎛⎫∴=+ ⎪⎝⎭,可得22111022PA R r =-=,10PA ∴=. 正方形ABCD 的外接圆直径为22210r AC AD ===,2102r ∴=,PA ⊥平面ABCD ,所以,阳马P ABCD -的外接球半径222252PA R r ⎛⎫=+= ⎪⎝⎭,因此,阳马P ABCD -的外接球的表面积为22420R ππ=. 故答案为:20π.题型二、几何体的内切球求解多面体的内切球的问题,一般是将多面体分割为以球心为顶点,多面体的各面为底面的棱锥,利用多面体的体积等于各棱锥的体积之和求内切球的半径.例1、已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________. 【答案】23π 【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示, 其中2,3BC AB AC ===,且点M 为BC 边上的中点, 设内切圆的圆心为O ,由于223122AM =-=,故1222222S =⨯⨯=△ABC , 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()1332222r =⨯++⨯=, 解得:22r =,其体积:34233V r =π=π. 故答案为:23π.【评析】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.拓展题1 如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的表面积为__________;若该六面体内有一小球,则小球的最大体积为___________.【解析】(1)因为16(1222S =⨯⨯⨯=,所以该六面体的表面积为2.(2,六面体体积是正四面体的2倍,所以六面体体积是6由于图像的对称性,内部的小球要是体积最大,就是球要和六个面相切,连接球心和五个顶点,把六面体分成了六个三棱锥,设球的半径为R ,所以16()6349R R =⨯⨯⨯⇒=,所以球的体积334433V R ππ===.故答案为: 2;729.类型四 多选题、开放题丰富了考查的形式和内容例 1 (全国新高考Ⅰ卷·12)在正三棱柱111ABC A B C -中,11AB AA == ,点P 满足1BP BC BB λμ=+ ,其中[0λ∈,1],[0μ∈,1],则( )A .当1λ=时,△1AB P 的周长为定值 B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P【考点】棱柱、棱锥、棱台的体积【分析】判断当1λ=时,点P 在线段1CC 上,分别计算点P 为两个特殊点时的周长,即可判断选项A ;当1μ=时,点P 在线段11B C 上,利用线面平行的性质以及锥体的体积公式,即可判断选项B ;当12λ=时,取线段BC ,11B C 的中点分别为M ,1M ,连结1M M ,则点P 在线段1M M 上,分别取点P 在1M ,M 处,得到均满足1A P BP ⊥,即可判断选项C ;当12μ=时,取1CC 的中点1D ,1BB 的中点D ,则点P 在线的1DD 上,证明当点P在点1D 处时,1A B ⊥平面11AB D ,利用过定点A 与定直线1A B 垂直的平面有且只有一个,即可判断选项D . 【解答】对于A ,当1λ=时,1BP BC BB μ=+,即1CP BB μ=,所以1//CP BB , 故点P 在线段1CC 上,此时△1AB P 的周长为11AB B P AP ++, 当点P 为1CC 的中点时,△1AB P 的周长为52+, 当点P 在点1C 处时,△1AB P 的周长为221+, 故周长不为定值,故选项A 错误;对于B ,当1μ=时,1BP BC BB λ=+,即1B P BC λ=,所以1//B P BC ,故点P 在线段11B C 上,因为11//B C 平面1A BC ,所以直线11B C 上的点到平面1A BC 的距离相等,又△1A BC 的面积为定值,所以三棱锥1P A BC -的体积为定值,故选项B 正确; 对于C ,当12λ=时,取线段BC ,11B C 的中点分别为M ,1M ,连结1M M , 因为112BP BC BB μ=+,即1MP BB μ=,所以1//MP BB ,则点P 在线段1M M 上, 当点P 在1M 处时,1111A M B C ⊥,111A M B B ⊥,又1111B C B B B =,所以11A M ⊥平面11BB C C ,又1BM ⊂平面11BB C C ,所以111A M BM ⊥,即1A P BP ⊥, 同理,当点P 在M 处,1A P BP ⊥,故选项C 错误; 对于D ,当12μ=时,取1CC 的中点1D ,1BB 的中点D ,因为112BP BC BB λ=+,即DP BC λ=,所以//DP BC ,则点P 在线的1DD 上,当点P 在点1D 处时,取AC 的中点E ,连结1A E ,BE ,因为BE ⊥平面11ACC A ,又1AD ⊂平面11ACC A ,所以1AD BE ⊥, 在正方形11ACC A 中,11AD A E ⊥, 又1BEA E E =,BE ,1A E ⊂平面1A BE ,故1AD ⊥平面1A BE ,又1A B ⊂平面1A BE ,所以11A B AD ⊥ ,在正方体形11ABB A 中,11A B AB ⊥,又11AD AB A =,1AD ,1AB ⊂平面11AB D ,所以1A B ⊥平面11AB D ,因为过定点A 与定直线1A B 垂直的平面有且只有一个, 故有且仅有一个点P ,使得1A B ⊥平面1AB P ,故选项D 正确. 故选:BD .【评析】2021年是第二年在新高考数学试卷中出现多选题,只有全部答对才能得满分(5分),部分答对部分得分(2分),但只要选错一个就得0分.通过多选题可以实现多种考查目标.该题以正三棱柱为载体,结合空间向量考查学生识图、画图、读图的能力,以及线面的垂直关系的判定、三棱锥体积和几何图形性质等内容.试题并没有给出图形,需要学生将符号语言转化为图形语言,画出相应的空间图形(图12).由于是多选题,各个选项都有可能正确,所以四个选项相当于四个问题,增加了考试的容量和得分的难度.对于1BP BC BB λμ=+ ,其中[0,1],[0,1]λμ∈∈ ,根据向量基本定理,点P 在正方形11BCC B 内,当1λ=时,点P 的轨迹是线段1CC ;当1μ=时,点P 的轨迹是线段11B C ;当12λ=时,点P 的轨迹为过BC 与11B C 中点的线段MN ;当12μ=时,点P 的轨迹为过1BB 与1CC 中点的线段EF .由此可以根据线面关系的有关结论进行判断.拓展题1.正三棱柱111ABC A B C -,11AB AA ==,P 点满足1(01,01)BP BC BB λμλμ=+,( ) A .当1λ=时,1PBB ∆的面积是定值 B .当1λ=时,1PAB ∆的周长是定值 C .当1μ=时,PBC ∆的面积是定值 D .当1μ=时,三棱锥1P A BC -的体积为定值【分析】根据向量的线性关系,结合已知条件以及正三棱柱的几何性质,分别判断1λ=,1μ=时点P 所在的位置,进而判断四个选项即可.【解答】解:由题意,点P 在平面11BCC B 内,ABC ∆,△111A B C 为正三角形且正三棱柱的侧面都是正方形,它们的边长均为1,当1λ=时,点P 在线段1CC 上运动,则1PBB ∆的面积为定值, 又211(1)PB μ=+-,21PA μ=+,则1PAB ∆的周长为2221(1)1μμ++-++不是定值, 故选项A 正确,选项B 错误;当1μ=时,点P 在线段11B C 上运动,则PBC ∆的面积为定值, 而11//B C BC ,11B C ⊂/平面1A BC ,BC ⊂平面1A BC , 所以11//B C 平面1A BC ,则点P 到平面1A BC 的距离为定值, 所以三棱锥1P A BC -的体积为定值, 故选项C 正确,选项D 正确. 故选:ACD .【评析】本题以命题的真假判断为载体,考查了空间向量在立体几何中的应用,正三棱柱的几何性质以及三棱锥体积公式的理解与应用,考查了逻辑推理能力与空间想象能力,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何专题【命题趋向】高考对空间想象能力的考查集中体现在立体几何试题上,着重考查空间点、线、面的位置关系的判断及空间角等几何量的计算.既有以选择题、填空题形式出现的试题,也有以解答题形式出现的试题.选择题、填空题大多考查概念辨析、位置关系探究、空间几何量的简单计算求解,考查画图、识图、用图的能力;解答题一般以简单几何体为载体,考查直线与直线、直线与平面、平面与平面的位置关系,以及空间几何量的求解问题,综合考查空间想象能力、推理论证能力和运算求解能力.试题在突出对空间想象能力考查的同时,关注对平行、垂直关系的探究,关注对条件或结论不完备情形下的开放性问题的探究.【考点透析】立体几何主要考点是柱、锥、台、球及其简单组合体的结构特征、三视图、直观图,表面积体积的计算,空间点、直线、平面的位置关系判断与证明,(理科)空间向量在平行、垂直关系证明中的应用,空间向量在计算空间角中的应用等.【例题解析】题型1 空间几何体的三视图以及面积和体积计算例1(2008高考海南宁夏卷)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为A . 22B . 32C . 4D . 52 分析:想像投影方式,将问题归结到一个具体的空间几何体中解决.解析:结合长方体的对角线在三个面的投影来理解计算,如图设长方体的高宽高分别为,,m n k ==1n ⇒=,a =b =,所以22(1)(1)6a b -+-=228a b ⇒+=,22222()282816a b a ab b ab a b +=++=+≤++=∴4a b ⇒+≤当且仅当2a b ==时取等号.点评:本题是课标高考中考查三视图的试题中难度最大的一个,我们通过移动三个试图把问题归结为长方体的一条体对角线在三个面上的射影,使问题获得了圆满的解决.例2 (2008高考山东卷、2009年福建省理科数学高考样卷第3题)下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是A.9πB.10πC.11πD.12π分析:想像、还原这个空间几何体的构成,利用有关的计算公式解答.解析:这个空间几何体是由球和圆柱组成的,圆柱的底面半径是1,母线长是3,球的半径是1,故其表面积是22213214112ππππ⨯⨯+⨯⨯+⨯=,答案D.点评:由三视图还原空间几何体的真实形状时要注意“高平齐、宽相等、长对正”的规则.例3(江苏省苏州市2009届高三教学调研测试第12题)已知一个正三棱锥P ABC-的主视图如图所示,若32AC BC==,6PC=_________.分析:正三棱锥是顶点在底面上的射影是底面正三角形的中心的三棱锥,根据这个主试图知道,主试图的投影方向是面对着这个正三棱锥的一条侧棱,并且和底面三角形的一条边垂直,这样就知道了这个三棱锥的各个棱长.解析:这个正三棱锥的底面边长是3,故底面正三角形的中心到一个顶点的距离是233=3=,由此知道这个正三棱锥的侧面也是边长为3的正三角形,故其全面积是243=答案 点评:由空间几何体的一个视图再加上其他条件下给出的问题,对给出的这“一个视图”要仔细辨别投影方向,这是三视图问题的核心.题型2 空间点、线、面位置关系的判断例4(江苏苏州市2009届高三教学调研测试7)已知n m ,是两条不同的直线,βα,为两个不同的平面,有下列四个命题:①若βα⊥⊥n m ,,m n ⊥,则βα⊥;②若n m n m ⊥,//,//βα,则βα//;③若n m n m ⊥⊥,//,βα,则βα//;④若βαβα//,//,n m ⊥,则n m ⊥.其中正确的命题是(填上所有正确命题的序号)_______________.分析:根据空间线面位置关系的判定定理和性质定理逐个作出判断.解析:我们借助于长方体模型解决.①中过直线,m n 作平面γ,可以得到平面,αβ所成的二面角为直二面角,如图(1),故βα⊥①正确;②的反例如图(2);③的反例如图(3);④中由,m ααβ⊥可得m β⊥,过n 作平面γ可得n 与交线g 平行,由于m g ⊥,故m n ⊥.答案①④.点评:新课标的教材对立体几何处理的基本出发点之一就是使用长方体模型,本题就是通过这个模型中提供的空间线面位置关系解决的,在解答立体几何的选择题、填空题时合理地使用这个模型是很有帮助的.例5(浙江省2009年高考省教研室第一次抽样测试理科第5题)设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题正确的是A .若,,//m n m n αβ⊥⊥,则//αβB .若//,//,//,m n αβαβ则//m nC .若,//,//m n αβαβ⊥,则m n ⊥D .若//,//,//,m n m n αβ则//αβ 分析:借助模型、根据线面位置关系的有关定理逐个进行分析判断.解析:对于//αβ,结合,//,m n αβ⊥则可推得m n ⊥.答案C .点评:从上面几个例子可以看出,这类空间线面位置关系的判断类试题虽然形式上各异,但本质上都是以空间想象、空间线面位置关系的判定和性质定理为目标设计的,主要是考查考生的空间想象能力和对线面位置关系的判定和性质定理掌握的程度.题型3 空间平行与垂直关系的证明、空间几何体的有关计算(文科解答题的主要题型) 例6.(2009江苏泰州期末16)如图所示,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别为1DD 、DB 的中点.(1)求证:EF //平面11ABC D ;(2)求证:1EF B C ⊥;(3)求三棱锥EFC B V -1的体积.分析:第一问就是找平行线,最明显的就是1EFBD ;第二问转化为线面垂直进行证明;第三问采用三棱锥的等积变换解决.解析:(1)连结1BD ,如图,在B DD 1∆中, E 、F 分别为1D D ,DB 的中点,则111111////EF D B D B ABC D EF EF ABC D ⎫⎪⊂⇒⎬⎪⊄⎭平面平面平面11ABC D .(2)11111111111111111,//B C AB B C BC B C BD B C ABC D EF B C AB B C ABC D EF BD BD ABC D AB BC B ⊥⎫⎪⊥⊥⊥⎫⎫⎪⇒⇒⇒⊥⎬⎬⎬⊂⊂⎭⎭⎪⎪=⎭平面平面平面 (3)CF ⊥平面11BDD B ,1CF EFB ∴⊥平面且2CF BF ==,1132EF BD ==,222211(2)26B F BF BB =+=+=, 222211111(22)3B E B D D E =+=+=∴22211EF B F B E += 即190EFB ∠=, 11113B EFC C B EF B EF V V S CF --∆∴==⋅⋅=11132EF B F CF ⨯⋅⋅⋅=11362132⨯⨯⨯⨯= .点评:这个题目也属于文科解答题的传统题型.空间线面位置关系证明的基本思想是转化,根据线面平行、垂直关系的判定和性质,进行相互之间的转化,如本题第二问是证明线线垂直,但问题不能只局限在线上,要把相关的线归结到某个平面上(或是把与这些线平行的直线归结到某个平面上,通过证明线面的垂直达到证明线线垂直的目的,但证明线面垂直又得借助于线线垂直,在不断的相互转化中达到最终目的.立体几何中的三棱柱类似于平面几何中的三角形,可以通过“换顶点”实行等体积变换,这也是求点面距离的基本方法之一.例7.(江苏省苏州市2009届高三教学调研测试第17题)在四棱锥P ABCD -中,90ABC ACD ∠=∠=,60BAC CAD ∠=∠=,PA ⊥平面ABCD ,E 为PD 的中点,22PA AB ==.(1)求四棱锥P ABCD -的体积V ;(2)若F 为PC 的中点,求证PC ⊥平面AEF ;(3)求证CE ∥平面PAB .分析:第一问只要求出底面积和高即可;第二问的线面垂直通过线线垂直进行证明;第三问的线面平行即可以通过证明线线平行、利用线面平行的判定定理解决,也可以通过证明面面平行解决,即通过证明直线CE 所在的一个平面和平面PAB 的平行解决. 解析:(1)在ABC ∆Rt 中,1,60AB BAC =∠=,∴3BC =2AC =.在ACD Rt Δ中,2,60AC ACD =∠=,∴23,4CD AD ==.∴1122ABCD S AB BC AC CD =⋅+⋅115132233222=⨯⨯⨯ 则155323323V = (2)∵PA CA =,F 为PC 的中点,∴AF PC ⊥.∵PA ⊥平面ABCD ,∴PA CD ⊥,∵AC CD ⊥,PA AC A =,∴CD ⊥平面PAC ,∴CD PC ⊥. ∵E 为PD 中点,F 为PC 中点,∴EF ∥CD ,则EF CD ⊥,∵AFEF F =,∴PC ⊥平面AEF .(3)证法一:取AD 中点M ,连,EM CM .则EM ∥PA ,∵EM ⊄平面PAB ,PA ⊂平面PAB ,∴EM ∥平面PAB .在ACD ∆Rt 中,60CAD ∠=,2AC AM ==,∴60ACM ∠=.而60BAC ∠=,∴MC ∥AB .∵MC ⊄平面PAB ,AB ⊂平面PAB ,∴MC ∥平面PAB .∵EM MC M =,∴平面EMC ∥平面PAB .∵EC ⊂平面EMC ,∴EC ∥平面PAB .证法二:延长,DC AB ,设它们交于点N ,连PN .∵60NAC DAC ∠=∠=,AC CD ⊥, ∴C 为ND 的中点. ∵E 为PD 中点,∴EC ∥PN .∵EC ⊄平面PAB , PN ⊂平面PAB ,∴EC ∥平面PAB .点评:新课标高考对文科的立体几何与大纲的高考有了诸多的变化.一个方面增加了空间几何体的三视图、表面积和体积计算,拓展了命题空间;另一方面删除了三垂线定理、删除了凸多面体的概念、正多面体的概念 与性质、球的性质与球面距离,删除了空间向量,这就给立体几何的试题加了诸多的枷锁,由于这个原因课标高考文科的立体几何解答题一般就是空间几何体的体积和表面积的计算、空间线面位置关系的证明(主要是平行与垂直).题型4 空间向量在立体几何中的应用(理科立体几何解答题的主要题型)例8.(2009年福建省理科数学高考样卷第18题)如图,在棱长为2的正方体1111ABCD A B C D -中,E F 、分别为11A D 和1CC 的中点.(1)求证:EF ∥平面1ACD ;(2)求异面直线EF 与AB 所成的角的余弦值;(3)在棱1BB 上是否存在一点P ,使得二面角P AC P--的大小为30?若存在,求出BP 的长;若不存在,请说明理由.【解析】解法一:如图分别以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系D xyz -,由已知得()0,0,0D 、()2,0,0A 、()2,2,0B 、()0,2,0C 、()12,2,2B 、()10,0,2D ()1,0,2E 、、()0,2,1F . (1)取1AD 中点G ,则()1,0,1G ,()1,2,1CG =-,又()1,2,1EF =--,由EF CG =-,∴EF 与CG 共线.从而EF ∥CG ,∵CG ⊂平面1ACD , EF ⊄平面1ACD ,∴EF ∥平面1ACD .(2)∵()0,2,0AB =,cos ,||||2EF AB EF AB EF AB ⋅===⋅ ∴异面直线EF 与AB 所成角的余弦值为36. (3)假设满足条件的点P 存在,可设点()2,2,P t (02t <≤),平面ACP 的一个法向量为(),,n x y z =, 则0,0.n AC n AP ⎧⋅=⎪⎨⋅=⎪⎩ ∵()0,2,AP t = ()2,2,0AC =-,∴220,20,x y y tz -+=⎧⎨+=⎩ 取2(1,1,)n t=-. 易知平面ABC 的一个法向量1(0,0,2)BB =,依题意知, 1,30BB n=或150, ∴14||cos ,BB N -==,即22434(2)4t t=+,解得t =∵(0,2]3∈,∴在棱1BB 上存在一点P ,当BP 的长为3二面角P AC B --的大小为30.解法二:(1)同解法一知()1,2,1EF =-- ,()12,0,2AD =-, ()2,2,0AC =-,∴112EF AC AD =-,∴EF 、AC 、1AD 共面.又∵EF ⊄平面1ACD ,∴EF ∥平面1ACD .(2)、(3)同解法一.解法三:易知平面1ACD 的一个法向量是()12,2,2DB =.又∵()1,2,1EF =--,由10EF DB ⋅=·, ∴1EF DB ⊥,而EF ⊄平面1ACD ,∴EF ∥平面1ACD .(2)、(3)同解法一.点评:本题主要考查直线与直线、直线与平面的位置关系、二面角的概念等基础知识;考查空间想像能力、推理论证能力和探索问题、解决问题的能力.利用空间向量证明线面平行的方法基本上就是本题给出的三种,一是证明直线的方向向量和平面内的一条直线的方向向量共线,二是证明直线的方向向量和平面内的两个不共线的向量共面、根据共面向量定理作出结论;三是证明直线的方向向量与平面的一个法向量垂直.例9(浙江宁波市2008学年度第一学期期末理科第20题)已知几何体A BCED -的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.(1)求异面直线DE 与AB 所成角的余弦值;(2)求二面角A ED B --的正弦值;(3)求此几何体的体积V 的大小.【解析】(1)取EC 的中点是F ,连结BF ,则BFDE ,∴FBA ∠或其补角即为异面直线DE 与AB 所成的角.在BAF ∆中,42AB =,25BF AF ==10cos ABF ∠=. ∴异面直线DE 与AB 所成的角的余弦值为105. (2)AC ⊥平面BCE ,过C 作CG DE ⊥交DE 于G ,连结AG . 可得DE ⊥平面ACG ,从而AG DE ⊥,∴AGC ∠为二面角A ED B --的平面角.在ACG ∆Rt 中,90ACG ∠=,4AC =, 855CG =∴5tan 2AGC ∠=. ∴5sin AGC ∠= ∴二面角A ED B --5 (3)1163BCED V S AC =⋅⋅=,∴几何体的体积V 为16. 方法二:(坐标法)(1)以C 为原点,以,,CA CB CE 所在直线为,,x y z 轴建立空间直角坐标系.则()4,0,0A ,(0,4,0)B ,(0,4,2)D ,()0,0,4E , (0,4,2),(4,4,0)DE AB =-=-, ∴10cos ,DE AB <>= ∴异面直线DE 与AB 10 (2)平面BDE 的一个法向量为(4,0,0)CA =,设平面ADE 的一个法向量为(,,)n x y z =,,,n AD n DE ⊥⊥(4,4,2),(0,4,2)AD DE =-=- ∴0,0n AD n DE ==从而4420,420x y z y z -++=-+=, 令1y =,则(2,1,2)n =, 2cos ,3CA n <>=∴二面角A ED B --的的正弦值为3. (3)1163BCED V S AC =⋅⋅=,∴几何体的体积V 为16. 点评:本题考查异面直线所成角的求法、考查二面角的求法和多面体体积的求法.空间向量对解决三类角(异面直线角、线面角、面面角)的计算有一定的优势.对理科考生来说除了要在空间向量解决立体几何问题上达到非常熟练的程度外,不要忽视了传统的方法,有些试题开始部分的证明就没有办法使用空间向量.【专题训练与高考预测】说明:文科以选择题、填空题和解答题前三题为主.理科以选择题、填空题和解答题后三题为主. 一、选择题1.如图为一个几何体的三视图,尺寸如图所示,则该几何体的表面积为(不考虑接触点) ( )A . 6πB . 184πC . 18π+D . 32π+2.某几何体的三视图如图所示,根据图中数据,可得该几何体的体积是 ( )A .323+B .233+C .2233-D . 3223-3.已知一个几何体的主视图及左视图均是边长为2的正三角形,俯视图是直径为2的圆,则此几何体的外接球的表面积为 ( ) A .π34B .π38C .π316D .π3324.一个水平放置的平面图形的斜二测直观图是一个底角为45,腰和上底长均为1的等腰梯形,则这个平面图形的面积是 ( )A .2221+B .221+C .21+D .22+5. 一个盛满水的三棱锥容器S ABC -,不久发现三条侧棱上各有一个小洞,,D E F ,且知:::2:1SD DA SE EB CF FS ===,若仍用这个容器盛水,则最多可盛原来水的( ) A .2923 B .2719 C .3130D .27236. 点P 在直径为2的球面上,过P 作两两垂直的三条弦,若其中一条弦长是另一条弦长的2倍,则这三条弦长之和为最大值是( )A .270 B .370 C .415D .6157.正方体''''ABCD A B C D -中,AB 的中点为M ,'DD 的中点为N ,异面直线'B M 与CN所成的角是 ( )A .30B .90C .45D .608.已知异面直线a 和b 所成的角为50,P 为空间一定点,则过点P 且与,a b 所成角都是30 的直线有且仅有 ( ) A . 1条 B . 2条 C . 3条 D . 4条 9.如图所示,四边形ABCD 中,//,,45,90AD BC AD AB BCD BAD =∠=∠=,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A BCD -,则在三棱锥A BCD -中,下列命题正确的是( ) A .平面ABD ⊥平面ABC B .平面ADC ⊥平面BDCC .平面ABC ⊥平面BDCD .平面ADC ⊥平面ABC10.设x 、y 、z 是空间不同的直线或平面,对下列四种情形:① x 、y 、z 均为直线;② x 、y 是直线,z 是平面;③ z 是直线,x 、y 是平面;④ x 、y 、z 均为平面. 其中使“x ⊥z 且y ⊥z ⇒x ∥y ”为真命题的是 ( ) A . ③ ④ B . ① ③C . ② ③D . ① ②11.已知三条不重合的直线m 、n 、l 两个不重合的平面α、β,有下列命题①若//,m n n α⊂,则//m α;②若l α⊥,m β⊥且l m ,则αβ;③若,m m αα⊂⊂,,m n ββ,则αβ;④若αβ⊥,m αβ=,n β⊂,n m ⊥,则n α⊥.中正确的命题个数是 ( )A .1B . 2C .3D .412.直线AB 与直二面角l αβ--的两个面分别交于,A B 两点,且,A B 都不在棱上,设直线AB 与平面,αβ所成的角分别为,θϕ,则θϕ+的取值范围是 ( )A .(0,)2πB .0,2π⎛⎤⎥⎝⎦C .(,)2ππ D .{}2π二、填空题13. 在三棱锥P ABC -中,2PA PB PC ===,30APB BPC CPA ∠=∠=∠=,一只蚂蚁从A 点出发沿三棱锥的侧面绕一周,再回到A 点,则蚂蚁经过的最短路程是 .14.四面体的一条棱长为x ,其它各棱长为1,若把四面体的体积V 表示成x 的函数()f x ,则()f x 的增区间为 ,减区间为 .15. 如图,是正方体平面展开图,在这个正方体中:① BM 与ED 平行; ② CN 与BE 是异面直线;③CN 与BM 成60角; ④DM 与BN 垂直. 以上四个说法中,正确说法的序号依次是 .16. 已知棱长为1的正方体1111ABCD A B C D -中,E 是11A B 的中点,则直线AE 与平面11ABC D 所成的角的正弦值是 .三、解答题17.已知,如图是一个空间几何体的三视图. (1)该空间几何体是如何构成的; (2)画出该几何体的直观图; (3)求该几何体的表面积和体积.18.如图,已知等腰直角三角形RBC ,其中90RBC ∠=,2==BC RB .点,A D 分别是RB ,RC 的中点,现将RAD ∆沿着边AD 折起到PAD ∆位置,使PA AB ⊥,连结PB 、PC .(1)求证:BC PB ⊥;(2)求二面角P CD A --的平面角的余弦值.19.如下图,在正四棱柱1111ABCD A B C D -中,112AA AB =,点,E M 分别为11,A B CC 的中点,过点1,,A B M 三点的平面1A BMN 交11C D 于点N .(1)求证:EM 平面1111A B C D ; (2)求二面角11B A N B --的正切值;(3)设截面1A BMN 把该正四棱柱截成的两个几何体的体积分别为12,V V (12V V <),求12:V V 的值.20. 如图,在四棱锥ABCD P -中,底面为直角梯形,//,90AD BC BAD ︒∠=,PA 垂直于底面ABCD ,N M BC AB AD PA ,,22====分别为PB PC ,的中点. (1)求证:DM PB ⊥;(2)求BD 与平面ADMN 所成的角;(3)求截面ADMN 的面积.21.如图,正方形ACDE 所在的平面与平面ABC 垂直,M 是CE 和AD 的交点,BC AC ⊥,且BC AC =.(1)求证:⊥AM 平面EBC ;(2)求直线AB 与平面EBC 所成的角的大小; (3)求二面角C EB A --的大小.22.已知斜三棱柱111ABC A B C -,90BCA ∠=,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥.(1)求证:1AC ⊥平面1A BC ; (2)求1CC 到平面1A AB 的距离; (3)求二面角1A A B C --的一个三角函数值.【参考答案】1.解析:C 该几何体是正三棱柱上叠放一个球.故其表面积为2231323224182342ππ⎛⎫⨯⨯+⨯⨯+⨯=+ ⎪⎝⎭.2.解析:B 这个空间几何体的是一个底面边长为33部分是一个底面边长为3的正方形、高为2的四棱锥,故其体积为13333323323⨯⨯+⨯⨯⨯=+.3.解析:C 由三视图知该几何体是底面半径为1,高为3的圆锥,其外接球的直径为433. 4.解析:D 如图设直观图为''''O A B C ,建立如图所示的坐标系,按照斜二测画法的规则,在原来的平面图形中OC OA ⊥,且2OC =,1BC =,212122OA =+⨯=+,故其面积为()11222222⋅++⋅=+5.解析:D 当平面EFD 处于水平位置时,容器盛水最多2121sin 31sin 313131h ASB SB SA h DSE SE SD h S h S V V SAB SDE SAB C SDE F ⋅∠⋅⋅⋅⋅∠⋅⋅⋅=⋅⋅=∴∆∆--27431323221=⋅⋅=⋅⋅=h h SB SE SA SD最多可盛原来水得42312727-=.6.解析:A 设三边长为,2,x x y ,则2254x y +=,令442cos ,2sin ,33cos 2sin 70555x y x y θθθθ==∴+=+≤. 7.解析:B 如图,取'AA 的中点P ,连结BP ,在正方形''ABB A 中易证'BP B M ⊥.8.解析:B 过点P 作a a ',b b ',若P a ∈,则取a 为a ',若P b ∈,则取b 为b '.这时a ',b '相交于P 点,它们的两组对顶角分别为50和130. 记a ',b '所确定的平面为α,那么在平面α内,不存在与a ',b '都成30的直线. 过点P 与a ',b '都成30角的直线必在平面α外,这直线在平面α的射影是a ',b '所成对顶角的平分线.其中射影是50对顶角平分线的直线有两条l 和l ',射影是130对顶角平分线的直线不存在.故答案选B .9.解析:D 如图,在平面图形中CD BD ⊥,折起后仍然这样,由于平面ABD ⊥平面BCD ,故CD ⊥平面ABD ,CD AB ⊥,又AB AD ⊥,故AB ⊥平面ADC ,所以平面ADC ⊥平面ABC .10.解析:C x 、y 、z 均为直线,显然不行;由于垂直于同一个平面的两条直线平行,故②,可以使“x ⊥z 且y ⊥z ⇒x ∥y ”为真命题;又由于垂直于同一条直线的两个平面平行,故③可以使“x ⊥z 且y ⊥z ⇒x ∥y ”为真命题;当x 、y 、z 均为平面时,也不能使“x ⊥z 且y ⊥z ⇒x ∥y ”为真命题. 11.解析:B ①中有m α⊂的可能;l m 且l α⊥,可得m α⊥,又m β⊥,故αβ,②正确;③中当m n 时,结论不成立;④就是面面垂直的性质定理,④正确.故两个正确的.12.解析:B 如图,在Rt ADC∆中,cos,sinAD AB AC ABθϕ==,而AD AC>,即cos sin cos2πθϕϕ⎛⎫>=-⎪⎝⎭,故2πθϕ<-,即2πθϕ+<,而当AB l⊥时,2πθϕ+=.13.解析:22将如图⑴三棱锥P ABC-,沿棱PA展开得图⑵,蚂蚁经过的最短路程应是AA',又∵30APB BPC CPA∠=∠=∠=,'90APA∠=,∴AA'=22.14.解析:60,⎛⎤⎥⎝⎦,⎪⎪⎭⎫⎢⎣⎡326,2()34xf x x=-,利用不等式或导数即可判断.15.解析:③④如图,逐个判断即可.1610取CD的中点F,连接EF交平面11ABC D于O,连AO.由已知正方体,易知EO ⊥平面11ABC D ,所以EAO ∠为所求.在EOA ∆Rt 中,1112EO EF A D ===,2215()12AE =+=,10sin EO EAO AE ∠==.所以直线AE 与平面11ABC D 所成的角的正弦值为10.17.解析:(1)这个空间几何体的下半部分是一个底面边长为2的正方形高为1的长方体,上半部分是一个底面边长为2的正方形高为1的四棱锥. (2)按照斜二测的规则得到其直观图,如图.(3)由题意可知,该几何体是由长方体''''ABCD A B C D -与正四棱锥''''P A B C D -构成的简单几何体.由图易得:2,'1,'1AB AD AA PO ====,取''A B 中点Q ,连接PQ ,从而2222''112PQ PO O Q =+=+()()1'''''''''''''''''212.2S A B B C C D D A PQ A B B C C D D A AA AB AD =++++++++⋅=体积11622122133V =⨯⨯+⨯⨯⨯=. 18.解析:(1)∵点A 、D 分别是RB 、RC 的中点,∴BC AD BC AD 21,//=. ∴90PAD RAD RBC ∠=∠=∠=,∴AD PA ⊥.∴ BC PA ⊥,∵A AB PA AB BC =⊥ ,,∴BC ⊥平面PAB . ∵⊂PB 平面PAB ,∴PB BC ⊥. (2)取RD 的中点F ,连结AF 、PF . ∵1==AD RA ,∴RC AF ⊥. ∵AD AP AR AP ⊥⊥,,∴⊥AP 平面RBC . ∵⊂RC 平面RBC ,∴AP RC ⊥. ∵,A AP AF = ∴⊥RC 平面PAF .∵⊂PF 平面PAF ,∴PF RC ⊥.∴AFP ∠是二面角P CD A --的平面角. 在RAD ∆Rt 中, 22212122=+==AD RA RD AF , 在PAF ∆Rt 中, 2622=+=AF PA PF , 332622cos ===∠PF AF AFP . ∴ 二面角P CD A --的平面角的余弦值是33. 19.解析:(1)设11A B 的中点为F ,连结1,EF FC .∵E 为1A B 的中点,∴EF112BB . 又1C M112BB ,∴EF 1MC .∴四边形1EMC F 为平行四边形.∴1EMFC .∵EM ⊄平面1111A B C D ,1FC ⊂平面1111A B C D ,∴EM 平面1111A B C D .(2)作11B H A N ⊥于H ,连结BH ,∵1BB ⊥⊥平面1111A B C D ,∴1BH A N ⊥.∴1BHB ∠为二面角11B A N B --的平面角.∵EM ∥平面1111A B C D ,EM ⊂平面1A BMN ,平面1A BMN平面11111A B C D A N = ,∴1EM A N .又∵1EM FC ,∴11A N FC .又∵11A FNC ,∴四边形11A FC N 是平行四边形.∴11NC A F =.设1AA a =,则112A B a =,1D N a =. 在11A D N∆Rt 中,1A N ==,∴sin ∠A 1ND 1=11111sin A D A ND A N ∠==. 在11A B H ∆Rt中,11111sin 2B H A B HA B a =∠== 在1BB H ∆Rt 中,111tan 4BB a BHB B H ∠===. (3)延长1A N 与11B C 交于P ,则P ∈平面1A BMN ,且P ∈平面11BB C C . 又∵平面1A BMN平面11BB C C BM = ,∴P BM ∈,即直线111,,A N B C BM 交于一点P .又∵平面1MNC ∥平面11BA B ,∴几何体111MNC BA B -为棱台.∵112122A BB S a a a ∆=⋅⋅=,12111224MNC S a a a ∆=⋅⋅=, 棱台111MNC BA B -的高为112B C a =,故22311172346V a a a a ⎛⎫=⋅= ⎪ ⎪⎝⎭,3327172266V a a a a a =⋅⋅-=,.∴12717V V =. 20.解析:(1)因为N 是PB 的中点,AB PA =, 所以PB AN ⊥. 由PA ⊥底面ABCD ,得PA AD ⊥,又90BAD ︒∠=,即BA AD ⊥,∴ ⊥AD 平面PAB ,所以PB AD ⊥ ,∴ ⊥PB 平面ADMN , ∴DM PB ⊥.(2)连结DN , 因为⊥BP 平面ADMN ,即⊥BN 平面ADMN ,所以BDN ∠是BD 与平面ADMN 所成的角. 在ABD ∆Rt中,BD ==,在PAB∆Rt 中,PB ==,故12BN PB ==,在BDN ∆Rt 中, 21sin ==∠BD BN BDN ,又02BDN π≤∠≤,故BD 与平面ADMN 所成的角是6π.(3)由,M N 分别为PB PC ,的中点,得//MN BC ,且1122MN BC ==,又//AD BC ,故//MN AD ,由(1)得⊥AD 平面PAB ,又AN ⊂平面PAB ,故AD AN ⊥,∴四边形ADMN 是直角梯形,在Rt PAB ∆中,PB ==,12AN PB ==,∴ 截面ADMN 的面积111()(2)222S MN AD AN =+⨯=+=.法二: (1)以A 点为坐标原点建立空间直角坐标系A xyz -,如图所示(图略) 由22====BC AB AD PA ,得(0,0,0)A ,1(0,0,2),(2,0,0),(1,,1),(0,2,0)2P B M D因为3(2,0,2)(1,,1)2PB DM ⋅=-- 0= ,所以DM PB ⊥.(2)因为 (2,0,2)(0,2,0)PB AD ⋅=-⋅0=,所以PB AD ⊥,又DM PB ⊥ , 故PB ⊥平面ADMN ,即(2,0,2)PB =-是平面ADMN 的法向量. 设BD 与平面ADMN 所成的角为θ,又(2,2,0)BD =-. 则||1sin |cos ,|2||||4444BD PB BD PB BD PB θ⋅=<>===+⨯+,又[0,]2πθ∈,故6πθ=,即BD 与平面ADMN 所成的角是6π. 因此BD 与平面ADMN 所成的角为6π. (3)同法一. 21.解析:法一:(1)∵四边形ACDE 是正方形, EC AM AC EA ⊥⊥∴,.∵平面⊥ACDE 平面ABC ,又∵AC BC ⊥,⊥∴BC 平面EAC .⊂AM 平面EAC ,⊥∴BC AM . ⊥∴AM 平面EBC .(2)连结BM ,⊥AM 平面EBC ,ABM ∠∴是直线AB 与平面EBC 所成的角.设a BC AC EA 2===,则a AM 2=,a AB 22=, 21sin ==∠∴AB AM ABM ,︒=∠∴30ABM . 即直线AB 与平面EBC 所成的角为︒30(3)过A 作EB AH ⊥于H ,连结HM . ⊥AM 平面EBC ,EB AM ⊥∴.⊥∴EB 平面AHM .AHM ∠∴是二面角C EB A --的平面角.∵平面⊥ACDE 平面ABC ,⊥∴EA 平面ABC .⊥∴EA AB . 在EAB Rt ∆中, EB AH ⊥,有AH EB AB AE ⋅=⋅. 由(2)所设a BC AC EA 2===可得aAB 22=,aEB 32=,322aEB AB AE AH =⋅=∴. 23sin ==∠∴AH AM AHM .︒=∠∴60AHM .∴二面角C EB A --等于︒60.法二: ∵四边形ACDE 是正方形 ,EC AM AC EA ⊥⊥∴,,∵平面⊥ACDE 平面ABC ,⊥∴EA 平面ABC , ∴可以以点A 为原点,以过A 点平行于BC 的直线为x 轴,分别以直线AC 和AE 为y 轴和z 轴,建立如图所示的空间直角坐标系xyz A -.设2===BC AC EA ,则),0,2,2(),0,0,0(B A )2,0,0(),0,2,0(E C ,M 是正方形ACDE 的对角线的交点,)1,1,0(M ∴. (1)=AM )1,1,0(,)2,2,0()2,0,0()0,2,0(-=-=,)0,0,2()0,2,0()0,2,2(=-=,0,0=⋅=⋅∴, CB AM EC AM ⊥⊥∴,⊥∴AM 平面EBC .(2) ⊥AM 平面EBC ,∴为平面EBC 的一个法向量,)0,2,2(),1,1,0(==AB AM ,21==∴.︒=60.∴直线AB 与平面EBC 所成的角为︒30.(3)设平面EAB 的法向量为),,(z y x n =,则⊥且⊥,0=⋅∴且0=⋅. ⎩⎨⎧=⋅=⋅∴.0),,()0,2,2(,0),,()2,0,0(z y x z y x 即⎩⎨⎧=+=.0,0y x z ,取1-=y ,则1=x , 则)0,1,1(-=. 又∵AM 为平面EBC 的一个法向量,且)1,1,0(=,21-==∴,设二面角C EB A --的平面角为θ,则21cos cos ==θ,︒=∴60θ.∴二面角C EB A --等于︒60. 22.解析:法一:(1)因为1A D ⊥平面ABC ,所以平面11AA C C ⊥平面ABC ,又BC AC ⊥,所以BC ⊥平面11AAC C ,得1BC AC ⊥,又11BA AC ⊥,所以1AC ⊥平面1A BC ; (2)因为11AC A C ⊥,所以四边形11AAC C 为 菱形,故12AA AC ==,又D 为AC 中点,知160A AC ∠=.取1AA 中点F ,则1AA ⊥平面BCF ,从而面1A AB ⊥面BCF , 过C 作CH BF ⊥于H ,则CH ⊥面1A AB .在Rt BCF ∆中,2,BC CF ==CH =即1CC 到平面1A AB 的距离为7CH =.(3)过H 作1HG A B ⊥于G ,连CG ,则1CG A B ⊥, 从而CGH ∠为二面角1A A B C --的平面角, 在1Rt A BC ∆中,12A C BC ==,所以2CG =,在Rt CGH ∆中,42sin 7CH CGH CG ∠==, 故二面角1A A B C --的正弦值为427. 法二:(1)如图,取AB 的中点E ,则//DE BC ,因为BC AC ⊥,所以DE AC ⊥,又1A D ⊥平面ABC ,以1,,DE DC DA 为,,x y z 轴建立空间坐标系,则()0,1,0A -,()0,1,0C ,()2,1,0B ,()10,0,A t ,()10,2,C t ,()10,3,AC t =,()12,1,BA t =--,()2,0,0CB =,由10AC CB ⋅=,知1A C CB ⊥,又11BA AC ⊥,从而1AC ⊥平面1A BC ;(2)由1AC ⋅2130BA t =-+=,得t = 设平面1A AB 的法向量为(),,n x y z =,(1AA =,()2,2,0AB =,所以1022n AA y n AB x y ⎧⋅==⎪⎨⋅=+=⎪⎩,设1z =,则()3,n =所以点1C 到平面1A AB 的距离1AC n d n⋅==. (3)再设平面1A BC 的法向量为(),,m x y z =,(10,CA =-,()2,0,0CB =,所以13020m CA y m CB x ⎧⋅=-+=⎪⎨⋅==⎪⎩,设1z =,则()0,3,1m =,故cos,m n m n m n⋅<>==⋅7-,根据法向量的方向,可知二面角1A A B C --的余弦。