(北师大版)七年级数学下册《3.4 用尺规作三角形》课件
新北师大版数学七下3.4《用尺规作三角形》word教案1

课时课题:第三章第4节用尺规作三角形课型:新授课授课人:台儿庄区涧头集镇第一中学王元教学目标:1. 掌握尺规作图的方法及一般步骤.2.在分别给出的两角夹边、两边夹角和三边的条件下,能够利用尺规作出三角形.3.能结合三角形全等的条件与同伴交流作图过程和结果的合理性.教学重点与难点:重点:会根据条件作三角形.难点:作图语言的准确应用,作图的规范与准确.教法及学法指导:许多教师和学生认为:尺规作图很麻烦,需要一定的时间,对解题无甚帮助,影响到解题的速度.殊不知,这是本末倒置的做法.俄国数学家沙雷金就说过:未来的几何学习应当重视以下四个步骤,直观感知—操作确认—思辨论证—度量计算.但我们往往把前两个步骤忽略了,变成纯粹的思辨论证,以及论证基础上的计算.缺乏直观,实际上就扼杀了几何.这句话一语中的的点出了当前在几何教学中存在的问题.正确的做法是:在教学过程中,教师和学生都应当尺规作图,这样才可以增强学生的直观感知能力.而直观感知能力,是问题解决的第一步,也可为以后的作图和解题积累经验,提高尺规作图的速度和效率.由于学习本节课前,学生已经学习了作一条线段等于已知线段、作一个角等于已知角这两种基本作图,能利用尺规作图解决一些简单的问题,同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力.基于以上情况,我对本节课主要采用“引导——合作探究教学法”,借助于多媒体课件,通过问题启发学生建立数学模型,应用与拓展的模式展开教学.课前准备:制作多媒体课件教学过程:一、创设情景,导入新课师:王超同学在做作业时,不小心把书上的一个三角形污染了一部分,他想在作业本上画出一个与书上完全一样的三角形,你能告诉他应该怎么办吗?生:用刻度尺量出露出的边的长,画出一条线段等于这条线段,然后分别以这条线段的两个端点为顶点,画出两个角和露出的两个角分别相等,所得的三角形就是与书上完全一样的三角形.师:他们为什么是完全一样的哪?生:因为这样的两个三角形满足了“ASA”,他们是全等的,所以他们完全一样.(作图之后及时让学生说出理由,让学生养成严谨思考问题的好习惯,同时让学生初步感受作图的实质是构造两个全等的三角形)师:如果不允许用刻度尺和量角器,只用直尺和圆规的话,你还能画出这样的三角形吗?生:思考.师:这就是我们今天要学习的内容用尺规作三角形.(板书课题)【设计意图】通过现实中的问题创设情景,使学生体会数学与现实生活的联系.并试着想办法去解决问题,在学生顺利解决问题后,教师提出新的要求,即与前面学习的尺规作图相联系,又能激发学生更强烈的求知欲望,极大地调动了学生的学习积极性,为后面的教学做好准备.二、自主探究,发现新知(一)已知三角形的两角及夹边作三角形师:我们已经学习了哪些尺规作图的方法?生:我们已经学习了作一条线段等于已知线段、作一个角等于已知角这两种作图.师:在以后的学习中,这两种作图属于基本作图,我们不需要把他们的作法进行一一叙述,直接说明即可.对于上面的问题,我们可以把它转化为下面的问题:(展示问题)已知:线段∠α,∠β,线段c .求作:ΔABC,使得∠A=∠α,∠B=∠β,AB=c.(此处与教材的顺序不一致,也是为了与引人更好的相结合,同时处理方式也作适当的改变,以此题作为范例的形式进行讲解)师:请思考作图方法,并把你的作图方法和大家一起分享.生:我是这样做的:1.作一条线段AB=a,2.以AB为一边作∠DAB=ɑ,3.以AB为一边作∠ABE=β,BE交AD于点C,△ABC就是所求作的三角形.师:他的作法正确吗?生:正确.师:哪位同学还有不同做法吗?生:我是这样做的:1.作∠DAB=ɑ,2.在射线AF上截取线段AB=c,3.以B为顶点,以BA为一边,作∠ABE=β,BE交AD于点C,△ABC就是所求作的三角形.师:这位同学的作法是否也正确?生:正确.师:这两位同学以及你们所作的三角形全等吗?为什么?生1:全等,我经过观察和重叠法都能验证这两个三角形全等.生2:这位同学的方法不够恰当,因为通过观察和试验的方法得到的结论不够严密,我是这样认为的,这样的三角形满足了两角和夹边对应相等,根据ASA可知他们是全等的.【设计意图】已知三角形的两角及夹边作三角形的方法可能是多样的,教师要注意让学生逐步了解接受作图方法,培养学生初步的作图能力.处理建议:1.让学生自己探究作图的方法.2.教师可在黑板演示,让学生按步骤进行作图,做好示范,让后进生感到“有章可循”.3.让学生尝试说出解题过程,教师及时规范学生的作图语言.4.让学生明确作图的道理,能用学过的全等知识加以说理.(二)已知三角形的两边及夹角作三角形师:同学们的回答很好,我们刚刚知道了已知三角形的两边及夹角作三角形的方法,那么如果我们已知三角形的两角及夹边,应该如何作三角形哪?(出示问题)已知:线段a, c, ∠ɑ.求作:△ABC,使BC=a AB=c, ∠ABC=∠ɑ.师:请结合刚才的作法,把这个三角形画出来吧!记得把你的结果展示给大家!(认真作图后互相展示)生1:我的作图过程是这样的:作法:(1)作一条线段BC=a;(2)以B为顶点,以BC为一边,作∠DBC=∠ɑ;(3)在射线BD上截取线段BA=c;(4)连接AC.△ABC就是所求作的三角形.生2:我和他的画图过程不太相同,我是先画三角形的角,然后再画三角形的另两个边,具体画法如下:作法:(1)作∠DBE=∠ɑ;(2)在射线BD上截取线段BA=c;(3)在射线BE上截取线段BC=a;(4)连接AC.△ABC就是所求作的三角形.师:这两位同学的做法都正确吗?生:正确.师:这两位同学以及你们所作的三角形全等吗?为什么?生:全等,因为这样的三角形满足了两边和夹角对应相等,根据SAS可知他们是全等的.【设计意图】学生有了上面的解题经验,本题的解决相对较为顺利,让学生进一步体验尺规作图的强大作用,进一步培养学生的作图能力.处理建议:1.让学生自己探究作图的方法.2.学生的作法叙述可能仍不成熟,教师可让学生之间互相补充,对于学生出现的共性问题进行有针对性的讲解.3.注意培养学生图形语言与符号语言之间的相互转化,使语言更加规范、精练.(三)已知三角形的三边作三角形师:刚才的两个作图,同学们完成的都很好,相信下面的作图一定也难不倒你,让我们一起来看一看吧!(展示已知三角形的三边作三角形的问题)已知:线段a,b,c.求作:△ABC,使AB=c,AC=b,BC=a.师:请你独立作图,然后把你的作法和大家交流.生:认真作图.师生共同总结本题的作图方法如下:作法:(1)作一条线段BC=a;(2)分别以B,C为圆心,以c,b为半径画弧,两弧交于A点;(3)连接AB,AC,△ABC就是所求作的三角形.师:你能说出刚刚作出的三角形全等的理由吗?生:根据SSS可判定所作的三角形全等.【设计意图】本题作图难度不大,学生基本能独立完成,这里可放手给学生,重点关注学生作图语言的规范表述,教师要给以及时恰当的引导.三、学以致用,应用新知师:通过刚才的学习,我们已经学会了根据已知条件画三角形,下面就让我们利用这些方法解决问题吧!(展示例1)例1:已知:线段a,b求作:△ABC,使AB=a,BC=b,AC=2a.师:你认为怎样作出这个三角形哪?生1:先画一条线段等于a,再以其两个端点为圆心,分别以2a和b的长为半径画圆其交点就是三角形的另一个端点.生2:我认为先画一条线段等于2a较简单.师:第二位同学的说法很好,下面就让我们动手把它画出来吧!生:画图并展示如下:师:根据以上几个问题的解决,哪位同学能说一下根据已知条件画三角形的一般步骤吗?生:1.先画出草图,根据草图寻找作图方法.2.确定作图的第一步是画边还是角,有时方法不唯一,但有难易之分,要注意把握.3.根据确定的作图方法按步骤进行作图.4.必要时对自己所在的图形的正确性进行证明.师:作图题的基本格式是什么?生:作图题的基本格式有四步:已知、求作、作法、证明.【设计意图】用尺规作三角形的题目类型较多,要及时对学生的作图能力,分析能力进行培养.处理建议:1.教学时要首先让学生明确作图的思路,然后再动手作图.2.教师要时刻关注学生作图步骤的规范性,对学生出现的问题及时加以纠正.3.如果学生不能发现较简单的作法,教师要适时加以引导,提醒学生在解题的过程中及时归纳的重要性.四、当堂检测,巩固提高师:同学们的表现都很棒,下面就让我们检测一下今天的学习效果吧!请独立完成以下各题.(出示检测题)1.利用尺规不能唯一作出的三角形是()A.已知三边B.已知两边及夹角C.已知两角及夹边D.已知两边及其中一边的对角2.已知:(如图)线段a和∠α,求作:△ABC,使A B=AC=a,∠A=∠α.3.已知:线段a、b和∠α,如图,求作△ABC,使AB=a,AC=b, ∠B=∠α.【设计意图】及时反馈,了解学生对本节课知识的掌握情况,让学生在独立自主解答问题的过程中,进一步巩固所学的知识,夯实基础,同时培养学生发现问题,解决问题的能力.教师要及时巡视,要注意问题3的解决,通过此题让学生明确SSA为什么不能作为三角形全等的证明.五、归纳总结、形成体系师:通过本节课的学习你都学到了哪些知识?掌握了哪些数学方法?你还有什么疑难问题要和大家一起探讨吗?生:畅所欲言,谈收获与感受.【设计意图】让学生在总结的过程中理清思路、整理经验,对本节课所学的知识结构有一个清晰的认识,对平方差公式有一个新的感悟,形成知识的正向迁移.从而构建出合理的知识体系,养成良好的学习习惯.六、作业布置课本第88页T1T2.七、板书设计八、教学反思在本节课教学中,我注意结合教学内容和学生的认知规律,创设引人入胜的问题情境,激发学生学习的兴趣,提高了学生学习的主动性,为下一步教学的顺利展开开个好头;二是注重引导学生动手操作,在亲自的实践中发现结论,学到知识;三是在巩固环节精心挑选例题和练习,进行有针对性的训练,鉴于以上三点本节课的教学效果非常显著.本堂课的不足之处是:1.对学生的画图估计不足,学生在基本作图上浪费了大量时间,导致准备的题目没有全部完成.2.整堂课教师启发引导的较多,给学生自主探索思考的空间较少.这样不利于学生思维的发展,不利于学生主体作用的发挥.3.对已知三边作三角形处理过于简单,讲解不够清晰,个别学生不能正确画图.4.时间安排有待改进,要学会在课堂上灵活处理.。
用尺规作角(课件)七年级数学下册(北师大版)

D C
A/ C/
∵∠EO'F在∠AOB的内部 ∴∠AOB>∠EO'F
探究新知
例2: 已知:∠1. 求作:∠MON,使∠MON=2∠1.
1
探究新知
作法:(1)作射线OM; (2)以点B为圆心,以任意长为半径画弧,交BA于点P,交BC
于点Q; (3)以点O为圆心,以BP长为半径画弧,交OM于点D ;
(4)以点D为圆心,以PQ长为半径画弧,交前面弧于点E ;
(5)过点O作射线OF,得到 ∠MOF=∠1.
C
F
Q
E
B1
P
A
D
O
M
探究新知
(6)以点B为圆心,以任意长为半径画弧,交BA于点R, 交BC于点S;
(7)以点O为圆心,以BR长为半径画弧,交OF于点G ; (8)以点G为圆心,以SR长为半径画弧,交前面弧于点H ;
随堂练习
2. 画一个钝角∠AOB,然后以O为顶点,以OA为一边,在角的内 部画一条射线OC,使∠AOC=90°,正确的图形是( D )
随堂练习
3. 下列作图语句正确的是( D ) A. 过点P作线段AB的中垂线 B. 在线段AB的延长线上取一点C,使AB=BC C. 过直线a,直线b外一点P作直线MN使MN∥a∥b D. 过点P作直线AB的垂线
随堂练习
7.已知∠α,∠β (∠α>∠β),如图。 求作∠AOB,使∠AOB=∠α-∠β.
随堂练习
作法:先作∠AOC,使∠AOC=∠α; 再以OC为一边,作∠COB,使∠COB=∠β ,并且使射线OB落在 ∠AOC的内部,则∠AOB就是所要求作的角.
课堂小结
1.作一个角等于已知角可以归纳为“一线三弧” 先画一条射线,再作三次弧.其中前两次弧半径相同,而第三次
用尺规作角课件数学北师大版七年级下册

∠COD=∠α,再以OD为一边,
在∠AOD的外部,作∠BOD=
∠α,则∠AOB=3∠α,所以
∠AOB就是所求作的角.
感悟新知
知2-练
2-1. 如图,用尺规作出∠OBF=∠AOB,作图痕迹中弧MN
是( D ) A. 以点B为圆心,以OD长为半径作弧
B. 以点B为圆心,以DC长为半径作弧
C. 以点E为圆心,以OD长为半径作弧
已知:∠ AOB(如图2-4-1). 求作:∠ A′O′B′,使∠ A′O′B′= ∠ AOB.
知2-讲
感悟新知
作法与示范:利用尺规作一个角等于已知角
作法
示范ห้องสมุดไป่ตู้
(1)作射线O′A′
(2)以点O为圆心,以任意长 为半径作弧,交OA于点C,交 OB于点D
(3)以点O′为圆心,以OC长为 半径作弧,交O′A′于点C′
第二章 相交线与平行线
2.4 用尺规作角
学习目标
1 课时讲授 尺规作图
利用尺规作一个角等于已知角
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 尺规作图
知1-讲
1. 尺规作图 在几何作图中,只用圆规和没有刻度的直尺 来作图,称为尺规作图.
特别解读 1. 尺规作图是一种规定了作图工具, 且能够有效地减少误差的
中用的是带有刻度的直尺, 所以只有选项B 符合尺规 作图的定义.
感悟新知
1-1. 下列作图属于尺规作图的是( C ) A. 用刻度尺画线段AB=2 cm B. 用量角器画∠ AOB 的平分线 C. 用圆规和直尺作∠ AOB等于已知角∠α D. 用圆规画半径为5 cm的圆
知1-练
感悟新知
《用尺规作三角形》三角形PPT优秀课件

b
c
求作:△ABC,使AB=c,AC=b,BC=a.
作法: (1)作一条线段BC=a;
(2)分别以B,C为圆心,以c,b的长为半径画弧 ,两弧交于点A;
B
(3)连接AB,AC,
△ABC就是所求作的三角形.
A C
连接中考
(2020•广州模拟)如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE 上截取AD=BC,连接CD,并说明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)
a
b
α
课堂检测
作法: 1. 作∠MAN=∠α;
N C C'
aa
α
A
bB
M
2. 在射线AM上截取AB=b;
3. 以B为圆心,以a为半径画弧,交AN于点C, C ';
4. 连接BC,BC', △ABC和△ABC'就是所求作的三角形.
课堂检测
拓广探索题
如图,在△ABC中,BC=5厘米,AC=3厘米, AB=3.5厘米,∠B=36°,∠C=44°,请你选择 适当数据,画与△ABC全等的三角形(选择三个合适的条件画图,不写作法,但要从所画的三 角形中标出用到的数据)
N
E′
B bA
a D′ C
M
(3)连接AC,则△ABC为所求 作的三角形.
探究新知
2.已知三角形的两角及其夹边,求作这个三角形. 已知:∠α ,∠β ,线段c.
c
求作:△ABC,使∠A=∠α ,∠B= ∠β ,AB=c.
探究新知
请按照给出的作法作出相应的图形.
作法
(1)作 ∠DAF=∠α .
图形
2.如图所示,已知线段a,用尺规作出△ABC,使AB=a,
2022-2023学年初中数学北师大版七年级下册第四章三角形单元复习课课件

本章知识梳理
/
目 录
1.
目录
2.
课标要求
3.
知识梳理
课标要求
1. 理解三角形相关概念(内角、外角、中线、高、角平分线),会 画出任意三角形的中线、高线和角平分线,了解三角形的稳定性 . 2. 掌握三角形的内角和定理(三角形的内角和等于180度),掌握 “三角形任意两边之和大于第三边”. 3. 了解全等图形的概念,理解全等三角形的概念,能识别全等三 角形的对应边、对应角.
3. 如图M4-3,已知△ABC≌△CDE,其中AB=CD,那么下列 结论中,不正确的是(C )
A. AC=CE
B. ∠BAC=∠ECD
C. ∠ACB=∠ECD
D. ∠B=∠D
4. 如图M4-4,全等的三角形是( D )
A. Ⅰ和Ⅱ
B. Ⅱ和Ⅳ C. Ⅱ和Ⅲ D. Ⅰ和Ⅲ
三、SSA是指两个三角形的两边对应相等及一边的对角对应相
等,但是这种判断方法是不能判定这两个三角形全等的,SAS
是指两个三角形的两条对应边相等且两边的夹角对应相等.
【例3】如图M4-5,已知∠ABC=∠DCB,下列所给条件不能
证明△ABC≌△DCB的是( )
A. ∠A=∠D
B. AB=DC
C. ∠ACB=∠DBC D. AC=BD
易错条件都是两条边及一个角对应相等,但是选项B是以 SAS来判定两个三角形全等,而选项D是SSA. 正解:A. 添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选 项不合题意;B. 添加AB=DC可利用SAS定理判定 △ABC≌△DCB,故此选项不合题意;C. 添加∠ACB=∠DBC可利 用ASA定理判定△ABC≌△DCB,故此选项不合题意;D. 添加 AC=BD不能判定△ABC≌△DCB,故此选项符合题意. 答案:D
北师大版七年级下册(新)第四章《4.3.2利用“角边角”“角角边”判定三角形全等》教案

-难点一:理解并区分ASA和AAS判定条件。学生可能会混淆两种判定方法中角的对应关系和边的对应关系。
-举例:学生需要明确ASA中的边是夹在两组相等角之间的边,而AAS中的边不是夹在两组相等角之间的边。
-难点二:在实际问题中灵活应用判定方法。学生在面对具体的几何图形时,可能难以确定使用哪种判定方法。
2.利用“角角边”(AAS)判定三角形全等:学生通过实例分析,掌握当两个三角形中,有两组角和非夹边相等时,这两个三角形全等。
本节课将结合教材内容,通过实际例题和练习,使学生熟练运用“角边角”和“角角边”判定方法,证明三角形全等。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的逻辑推理能力:通过引导学生运用“角边角”和“角角边”判定方法证明三角形全等,使其掌握几何图形的基本证明方法,提高逻辑推理能力。
北师大版七年级下册(新)第四章《4.3.2利用“角边角”“角角边”判定三角形全等》教案
一、教学内容
本节课选自北师大版七年级下册(新)第四章《几何图形的尺规作图与证明》中的4.3.2节,主要内容包括以下两点:
1.利用“角边角”(ASA)判定三角形全等:学生通过观察和实际操作,理解当两个三角形中,有两组角和它们之间的夹边相等时,这两个三角形全等。
2.培养学生的空间观念:通过观察、分析、操作几何图形,使学生形成对三角形全等的空间观念,提高对几何图形的理解和认识。
3.培养学生的数学应用意识:将三角形全等的判定方法应用于解决实际问题,使学生体会数学与现实生活的联系,提高数学应用意识。
三、教学难点与重点
1.教学重点
- “角边角”(ASA)判定方法的掌握:学生需要理解并熟练运用ASA判定方法,通过两组角和它们之间的夹边相等来证明两个三角形全等。
北师大版数学七年级下册第二章4用尺规作角(共28张PPT)
栏目索引
解答题 (2019河北保定十七中期中,29,★★☆)如图2-4-4甲,OA⊥OB,OC⊥OD. (1)∠AOC与∠BOD有何数量关系?依据是什么? (2)小明做完(1)后受到启发,在图2-4-4乙中用尺规作出了OD⊥OC,请你也 试一试.
图2-4-4
4 用尺规作角
解析 (1)∠AOC=∠BOD. 依据是同角的余角相等. (2)如图(在∠AOB外部作∠BOD=∠AOC即可).
4 用尺规作角
2.用尺规作一个角等于已知角 尺规作图一般有以下四步: 已知,求作,作法,写出结论. 如图2-4-1,已知∠AOB,求作∠A'O'B',使∠A'O'B'=∠AOB.
栏目索引
图2-4-1
图2-4-2
作法:①作射线O'A';
②以点O为圆心,任意长为半径画弧,交OA于点C,交OB于点D;
4 用尺规作角
A.以点F为圆心,OE长为半径画弧 B.以点F为圆心,EF长为半径画弧 C.以点E为圆心,OE长为半径画弧 D.以点E为圆心,EF长为半径画弧 答案 D
4 用尺规作角
栏目索引
如图2-4-6所示,用尺规作出∠OBF=∠AOB,作图痕迹弧MN是 ( )
图2-4-6 A.以点B为圆心,OD长为半径的弧 B.以点B为圆心,OC长为半径的弧 C.以点E为圆心,OD长为半径的弧 D.以点E为圆心,DC长为半径的弧
答案 D 圆规有两只脚,一只脚固定,另一只脚旋转.
4 用尺规作角
栏目索引
2.(2017广西南宁中考,7,★☆☆)如图2-4-5,△ABC中,AB>AC,观察图中尺规 作图的痕迹,则下列结论错误的是 ( )
图2-4-5
北师大版七年级下册数学:4 用尺规作三角形
能利用直尺和圆规根据已知 条件作三角形,规范尺规作图的 过程,提高动手实践能力,培养 团队精神和合作交流意识。
➢基础知识复习
1、尺规作图的工具:直尺和圆规 2、尺规基本作图: (1)作一条线段等于已知线段; (2)作一个角等于已知角。
a
bcຫໍສະໝຸດ 学以致用现有一块等边三角形的绿地
需要进行规划,要求工程师先进
行标准的图纸设计。
a
如果边长规定为线段a,请你
利用尺规帮助工程师设计出该等
边三角形的图样。
--利用尺规作三角形的条件
➢已知两边及夹角可作三角形(SAS) ➢已知两角及夹边可作三角形(ASA) ➢已知三边可作三角形(SSS)
合作探究
a α
已知:∠AOB,
求作:∠A′O′B′,
使∠A′O′B′=∠AOB
A
D
D′ A′
O
C
B O′
∠A′O′B′为所求作的角
C′ B′
已知三角形的两边及其夹角,求作三角形
已知:线段a, b, ∠α , 求作:△ABC,使BC= a,AB= b, ∠ABC =∠α
a
b
a
已知三角形的两角及其夹边,求作三角形
如图,已知△ABC,请你选择 合适的三个已知条件,利用尺规 画一个与△ABC全等的三角形。 (尽量用多种方法画图,不写作法,B 但要保留作图痕迹)
A
C
➢理论检测
1、利用尺规不能唯一作出的三角形是( D )
A、已知三边
B、已知两边及夹角
C、已知两角及夹边 D、已知两边及其中一边的对角
2、以下列线段为边能作三角形的是 ( A )
七年级数学下册课件(北师大版)用尺规作三角形
解:如图,A 为汽车站的位置,B 为桥的位置,这三个
场所构成一个等腰三角形.
6 综合与实践”学习活动准备制作一组三角形,记这些三
角形的三边分别为a,b,c,并且这些三角形三边的长度
为大于1且小于5的整数个单位长度.
(1)用记号(a,b,c )(a ≤b ≤c )表示一个满足条件的三角
形,如(2,3,3)表示边长分别为2,3,3个单位长度的 一个三角形,请列举出所有满足条件的三角形;
(2)用直尺和圆规作出三边满足a< b<c 的三角形(用给
定的单位长度,不写作法,保留作图痕迹).
解:(1)共九种:(2,2,2),(2,2,3),(2,3,3), (2,3,4),(2,4,4),(3,3,3),(3,3,4), (3,4,4),(4,4,4).
(2)只有a=2,b=3,c=4的一个三角形.如图, △ABC 即为满足条件的三角形.
知识点 2 用尺规作三角形 做一做 1.已知三角形的两边及其夹角,求作这个三角形.
已知:线段a,c,∠α (如图).
求作:△ABC,使BC=a,AB=c,∠ABC=∠α.
作法与示例:
作法
(1)作一条线段BC=a;
示范
(2)以B 为顶点,以BC 为一边 作角∠DBC= ∠α;
(3)在射线BD上截取线段BA =c;
(1)已知,即将条件具体化; (2)求作,即具体叙述所作图形应满足的条件; (3)分析,即寻找作图方法(通常画出草图); (4)作法,即根据分析所得的作图方法,作出正式图
形,并依次叙述作图过程; (5)说明,即验证所作图形的正确性.其中(3)在草稿
纸上进行,(5)通常省略不写.
例4 如图,△ABC 是不等边三角形,DE=BC,以D,E 为两个顶 点作位置不同的三角形,使所作的三角形与△ABC 全等,则
《三角形的尺规作图》参考课件1
随堂练习
1.利用尺规不能唯一作出的三角形是(
)
A、已知三边
B、已知两边及夹角
C、已知两角及夹边 D、已知两边及其中一边的对角
2.已知∠α和线段a,用尺规作ΔABC,∠A=∠α, ∠C=3∠α, AC=a,则全班同学用尺规作出的ΔABC都是全 等的,其根据是( )
A. SSS B. SAS C.ASA D.AAS
费曼学习法--
实操
第五步 反思总结
(五) 反 思 总 结
1. 反思你前面哪个步骤停留时间最长 ;
2. 总结是什么原因造成的
(是之前相关知识基础不牢固 还是这次的某个概念自己理解错了); 3.反思你思考的时候在哪里卡住了, 着重这个地方,再次理解。
费曼学习法--
实操
第六步 实践检验
(六) 实 践 检 验
1
第一遍知道大概说了什么就行;
2
第二遍知道哪块是重点;
3
第三遍可以做出一些判断。
高效学习逻辑 思维
事实知识(know--what):知道是什么的知识, 主要叙述事实方面的知识; 原理知识(know--why):知道为什么的知识 , 主要是自然原理和规律方面的知识; 技能知识(know--how):知道怎么做的知识 , 主要是对某些事物的技能和能力; 人力知识(know--who):知道是谁的知识 , 主要是谁知道以及谁知道如何做某些事的能 力;
费曼学习法--实操步骤
1 获取并理解 费
32 根据参考复述 仅靠大脑复述
曼 学
54 循环强化 反思总结
习 法
6 实践检验
费曼学习法--
实操
第一步 获取并理解你要学习的内容
(一) 理 解 并 获 取
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析:先在草纸上画出一个假设的“已作 出的三角形”;然后在草图上标出已给的 边、角的对应位置;再找出边与角,确定 作图的顺序。
C C' α A b a a
N
B
M
作法: 1、作∠MAN=∠α 2、在射线AM上截取AB=b
同样是已知两边及 一角,为什么会出 现两个三角形呢? 你从中可以感悟到 什么?
D
A
作法: (1)作∠DBE=∠α (2)在射线BD、BE上分别截取BA=c,BC=a (3)连接AC △ABC就是所求作的三角形 。
B
C
E
你知道的常用作图语 言有哪些呢? (1)作∠···=∠ ··· ; (2)在···上截取,使··· = ··· ; (3)以···为顶点,以···为一边,作 ∠ ··· =∠ ··· ; (4)作一条线段··· = ··· ; (5)连接·· ,或连接··交··于点· · ; (6)分别以·· , ··为圆心,以·· , ···画弧,两弧交于···点;
夹角
边
边
还有没有其他 的作法?
夹角 边
2、已知三角形的两边及夹角,求作 这个三角形。 a c α 已知:线段a , c , ∠α。 求作:△ABC,使BC=a,AB=c,∠ABC=∠α。 角 边 对于边和角,你想先作__,再作__ 边 ,最后作__。
c B
A α a
C
尝试自己作图,并 用语言表述作法
1、已知三角形的两角及其夹边,求作这 个三角形。 已知:∠α,∠β,线段c。
α
β
c
求作:△ABC,使∠A=∠α ,∠B=∠β ,AB=c。 C 你能作出这个 假设这个 β α 三角形吗? B A c 三角形已 作出
1、已知三角形的两角及其夹边,求作这 个三角形。
C α c β
A
B
角 边 对于边和角,你想先作__,再作__ 角 ,最后作__。
第Байду номын сангаас章
三角形
4 用尺规作三角形
• 豆豆书上的三角形被墨迹污染了一部分 ,他想在作业本上画出一个与书上完全 一样的三角形,他该怎么办? 你能帮他画出来吗?
回顾基本作图 解决方法
边 角 三角形的基本元素是___和___。
你会用尺规作一条线段等于已知线段吗 ? 自己动手试一试! 你会用尺规作一个角等于已知角吗? 你能利用尺规作一个三角形与已知三角 形全等吗?
2、已知三角形的两边及夹角,求作这个 三角形。 已知:线段a , c , ∠α。
a c α
求作:△ABC,使BC=a,AB=c,∠ABC=∠α。
假设这个 三角形已 作出
A c B α a C
2、已知三角形的两边及夹角,求作这 A 个三角形。
c a c α B α C
a
边 角 对于边和角,你想先作__,再作__ 边 ,最后作__。 请按照给出的作法作出图形
3.已知三角形的三条边,求作这个三角 形。 已知:线段 a,b,c。
a b c
求作:△ABC,使AB=c,AC=b,BC=a。 尝试自己分析并作出这个三角形、写出 作法。
3.已知三角形的三条边,求作这个三角形。 已知:线段 a,b,c。
a b c
A
求作:△ABC,使AB=c,AC=b,BC=a。 作法: (1)作一条线段BC=a; (2)分别以B,C为圆心,以 c B C , 你所作的三角形与 b为半 径画弧,两弧交于A点; (3)连接AB,AC 同伴所作的三角形 。 △ABC就是所求作的三角形 比较,它们全等吗 。 ?为什么?
3、以B为圆心,以a为半径画弧,交AN 于点C, C' 4、连接BC,BC' △ABC和△ABC'就是所求作的三角形 。
D C' α a C E a b
C
N
A c B α
a
A
B
M
两边及夹角
两边及一边的对角
感悟:已知三角形的两边及一角并不都 能只确定一个三角形。当已知两边及夹 角时可以确定一个三角形,因此可以用 来判定两个三角形全等;而当已知两边 及一边的对角时,会画出两个不同的三 角形,因此不能用来作为判别两个三角 形全等的条件。
角
1、已知三角形的两角及其夹边,求作这个 三角形。
C A
α
c
β
B
边 角 对于边和角,你想先作__,再作__,最 后作__。 角 请按照给出的作法作出图形
C α β
E C B A B
D
A
c
作法: (1)作线段AB=c; (2)以A为顶点,以AB为一边,作∠DAB=∠α (3)以B为顶点,以BA为一边,作∠ABE=∠β ; ,BE交AD于点C。 你现在能帮助 △ABC就是所求作的三角形 豆豆画出三角 。 形了吗?
E
2、已知∠α和∠β、线段a,用尺规作一个 三角形,使其一个内角等于∠α,另一个内 角等于∠β ,且∠α的对边等于a。
α
β
a
提示:先作出一个角等于∠α+∠β,通过 反向延长角的一边得到它的补角,即三角形 中的第三个内角∠ γ 。由此转换成已知 ∠β 和∠ γ及其这两角的夹边a,求作这 个三角形。
你所作的三角形与同伴所作的三角形比 较,它们全等吗?为什么?
经过前面的实践,我们如何来分析作图 题呢?
1、假设所求作的图形已经作出,并在 草稿纸上作出草图; 2、在草图上标出已给的边、角的对应 位置; 3、从草图中首先找出基本图形,由此 确定作图的起始步骤; 4、在3的基础上逐步向所求图形扩展 。
1、你能用尺规作一个直角三角形,使其 两条直角边分别等于已知线段a,b吗?并 写出作法。
E C
D C
A
α c
β
B
A B
F
作法: (1)作∠DAF=∠α ; (2)在射线AF上截取线段AB=c ; (3)以B为顶点,以BA为一边 ,作∠ABE=∠β,BE交AD于 点C。 △ABC就是所求作的三角形 。
你所作的三角形与 同伴所作的三角形 比较,它们全等吗 ?为什么?
1、已知三角形的两角及其夹边,求作这 个三角形。 回顾刚才作三 角形的顺序 角 夹 边 角 还有没有其 他的作法? 夹 边 角
β
γ α
F
G
A
α
作法:1、作∠α+∠β的补角∠ γ 2、作∠GBE= ∠β E β γ 3、在射线BE上截取BC=a B a C 4、以C为顶点,CB为一边作∠FCB= ∠ γ 5、射线BG与射线CF相交于点A △ABC就是所求作的三角形。
已知线段a,b和∠α,求作△ABC,使其 有一个内角等于∠α,且∠α的对边等 于a,另有一边等于b。
A c a c
α
α
B a
C
作法:(1)作一条线段BC=a (2)以B为顶点,以BC为一边,作角∠DBC=∠α
(3)在射线BD上截取线段BA=c (4)连接AC
D
△ABC就是所求作的三角形 。 你所作的三角形与同伴
A
所作的三角形比较,它 们全等吗?为什么?
B
C
2、已知三角形的两边及夹角,求作这 个三角形。 回顾刚才作三 角形的顺序 边
谈 谈 你 本 节 课 的
收 获 与 感 受
a b
分析:先在草纸上画出一个假设的“已作 出的三角形”,会发现是“已知两边及夹 角求作三角形”,所以按照此方法作图。
已知:直角,线段a,b 求作:直角三角形ABC,使BC=a,AC=b
D B
作法 : (1)作∠DCE=90° C A (2)在射线CD、CE上分别截取CB=a,CA=b (3)连接AB △ABC就是所求作的三角形 。