数列的概念与简单表示法练习题及答案解析

合集下载

高中数学《 数列的概念与简单表示法》(答案)

高中数学《 数列的概念与简单表示法》(答案)

§2.1 数列的概念与简单表示法题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)相同的一组数按不同顺序排列时都表示同一个数列.( × ) (2)所有数列的第n 项都能使用公式表达.( × )(3)根据数列的前几项归纳出数列的通项公式可能不止一个.( √ ) (4)1,1,1,1,…,不能构成一个数列.( × )(5)任何一个数列不是递增数列,就是递减数列.( × )(6)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( √ ) 题组二 教材改编2.[P33A 组T4]在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5等于( )A.32B.53C.85D.23 答案 D解析 a 2=1+(-1)2a 1=2,a 3=1+(-1)3a 2=12,a 4=1+(-1)4a 3=3,a 5=1+(-1)5a 4=23.3.[P33A 组T5]根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.答案 5n -4 题组三 易错自纠4.已知a n =n 2+λn ,且对于任意的n ∈N *,数列{a n }是递增数列,则实数λ的取值范围是________. 答案 (-3,+∞)解析 因为{a n }是递增数列,所以对任意的n ∈N *,都有a n +1>a n ,即(n +1)2+λ(n +1)>n 2+λn ,整理,得2n +1+λ>0,即λ>-(2n +1).(*)因为n ≥1,所以-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3. 5.数列{a n }中,a n =-n 2+11n (n ∈N *),则此数列最大项的值是________. 答案 30解析 a n =-n 2+11n =-⎝⎛⎭⎫n -1122+1214, ∵n ∈N *,∴当n =5或n =6时,a n 取最大值30. 6.已知数列{a n }的前n 项和S n =n 2+1,则a n =________.答案 ⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2,n ∈N *解析 当n =1时,a 1=S 1=2,当n ≥2时, a n =S n -S n -1=n 2+1-[(n -1)2+1]=2n -1,故a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2,n ∈N *.题型一 由数列的前几项求数列的通项公式1.数列0,23,45,67,…的一个通项公式为( )A .a n =n -1n +2(n ∈N *)B .a n =n -12n +1(n ∈N *)C .a n =2(n -1)2n -1(n ∈N *)D .a n =2n2n +1(n ∈N *)答案 C解析 注意到分子0,2,4,6都是偶数,对照选项排除即可.2.数列-11×2,12×3,-13×4,14×5,…的一个通项公式a n =________.答案 (-1)n 1n (n +1)解析 这个数列前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式为a n =(-1)n1n (n +1).思维升华 由前几项归纳数列通项的常用方法及具体策略(1)常用方法:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.(2)具体策略:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项的符号特征和绝对值特征;⑤化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;⑥对于符号交替出现的情况,可用(-1)k 或(-1)k +1,k ∈N *处理. (3)如果是选择题,可采用代入验证的方法.题型二 由a n 与S n 的关系求通项公式典例 (1)已知数列{a n }的前n 项和S n =3n 2-2n +1(n ∈N *),则其通项公式为________________.答案 a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2,n ∈N *解析 当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1] =6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2,n ∈N *.(2)若数列{a n }的前n 项和S n =23a n +13(n ∈N *),则{a n }的通项公式a n =________.答案 (-2)n -1解析 由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13,两式相减,整理得a n =-2a n -1,又当n =1时,S 1=a 1=23a 1+13,∴a 1=1,∴{a n }是首项为1,公比为-2的等比数列,故a n =(-2)n -1.思维升华 已知S n ,求a n 的步骤 (1)当n =1时,a 1=S 1. (2)当n ≥2时,a n =S n -S n -1.(3)对n =1时的情况进行检验,若适合n ≥2的通项则可以合并;若不适合则写成分段函数形式. 跟踪训练 (1)(2017·河南八校一联)在数列{a n }中,S n 是其前n 项和,且S n =2a n +1,则数列的通项公式a n =________. 答案 -2n -1解析 由题意得S n +1=2a n +1+1,S n =2a n +1, 两式相减得S n +1-S n =2a n +1-2a n , 即a n +1=2a n ,又S 1=2a 1+1=a 1,因此a 1=-1,所以数列{a n }是以a 1=-1为首项、2为公比的等比数列,所以a n =-2n -1. (2)已知数列{a n }的前n 项和S n =3n +1,则数列的通项公式a n =________.答案 ⎩⎪⎨⎪⎧4,n =1,2·3n -1,n ≥2解析 当n =1时,a 1=S 1=3+1=4,当n ≥2时,a n =S n -S n -1=3n +1-3n -1-1=2·3n -1. 显然当n =1时,不满足上式.∴a n =⎩⎪⎨⎪⎧4,n =1,2·3n -1,n ≥2.题型三 由数列的递推关系求通项公式典例 根据下列条件,确定数列{a n }的通项公式.(1)a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ; (2)a 1=1,a n +1=2n a n ; (3)a 1=1,a n +1=3a n +2. 解 (1)∵a n +1=a n +ln ⎝⎛⎭⎫1+1n , ∴a n -a n -1=ln ⎝⎛⎭⎫1+1n -1=ln n n -1(n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=ln n n -1+ln n -1n -2+…+ln 32+ln 2+2=2+ln ⎝ ⎛⎭⎪⎫n n -1·n -1n -2·…·32·2=2+ln n (n ≥2). 又a 1=2适合上式,故a n =2+ln n (n ∈N *). (2)∵a n +1=2n a n ,∴a n a n -1=2n -1 (n ≥2),∴a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·2·1=21+2+3+…+(n -1)=(1)22n n -.又a 1=1适合上式,故a n =(1)22n n -(n ∈N *).(3)∵a n +1=3a n +2,∴a n +1+1=3(a n +1), 又a 1=1,∴a 1+1=2,故数列{a n +1}是首项为2,公比为3的等比数列, ∴a n +1=2·3n -1,故a n =2·3n -1-1(n ∈N *).引申探究 在本例(2)中,若a n =n -1n ·a n -1(n ≥2,且n ∈N *),其他条件不变,则a n =________.答案 1n解析 ∵a n =n -1n a n -1 (n ≥2),∴a n -1=n -2n -1a n -2,…,a 2=12a 1.以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .当n =1时也满足此等式,∴a n =1n.思维升华 已知数列的递推关系求通项公式的典型方法 (1)当出现a n =a n -1+m 时,构造等差数列. (2)当出现a n =xa n -1+y 时,构造等比数列. (3)当出现a n =a n -1+f (n )时,用累加法求解.(4)当出现a na n -1=f (n )时,用累乘法求解.跟踪训练 (1)已知数列{a n }满足a 1=1,a 2=4,a n +2+2a n =3a n +1(n ∈N *),则数列{a n }的通项公式a n =______________. 答案 3×2n -1-2解析 由a n +2+2a n -3a n +1=0, 得a n +2-a n +1=2(a n +1-a n ),∴数列{a n +1-a n }是以a 2-a 1=3为首项,2为公比的等比数列,∴a n +1-a n =3×2n -1, ∴当n ≥2时,a n -a n -1=3×2n -2,…,a 3-a 2=3×2,a 2-a 1=3, 将以上各式累加,得a n -a 1=3×2n -2+…+3×2+3=3(2n -1-1), ∴a n =3×2n -1-2(当n =1时,也满足).(2)在数列{a n }中,a 1=3,a n +1=a n +1n (n +1),则通项公式a n =________.答案 4-1n解析 原递推公式可化为a n +1=a n +1n -1n +1,则a 2=a 1+11-12,a 3=a 2+12-13,a 4=a 3+13-14,…,a n -1=a n -2+1n -2-1n -1,a n =a n -1+1n -1-1n ,逐项相加得a n =a 1+1-1n ,故a n =4-1n.题型四 数列的性质命题点1 数列的单调性典例 已知a n =n -1n +1,那么数列{a n }是( )A .递减数列B .递增数列C .常数列D .摆动数列 答案 B解析 a n =1-2n +1,将a n 看作关于n 的函数,n ∈N *,易知{a n }是递增数列.命题点2 数列的周期性典例 数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=_______________________________________.答案 12解析 ∵a n +1=11-a n ,∴a n +1=11-a n=11-11-a n -1=1-a n -11-a n -1-1=1-a n -1-a n -1=1-1a n -1=1-111-a n -2=1-(1-a n -2)=a n -2,n ≥3, ∴周期T =(n +1)-(n -2)=3. ∴a 8=a 3×2+2=a 2=2. 而a 2=11-a 1,∴a 1=12.命题点3 数列的最值典例 数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大项是( )A .310B .19 C.119 D.1060答案 C解析 令f (x )=x +90x (x >0),运用基本不等式得f (x )≥290,当且仅当x =310时等号成立.因为a n =1n +90n ,所以1n +90n ≤1290,由于n ∈N *,不难发现当n =9或n =10时,a n =119最大.思维升华 (1)解决数列的单调性问题可用以下三种方法①用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列. ②用作商比较法,根据a n +1a n (a n >0或a n <0)与1的大小关系进行判断.③结合相应函数的图象直观判断. (2)解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. (3)数列的最值可以利用数列的单调性或求函数最值的思想求解.跟踪训练 (1)数列{a n }满足a n +1=⎩⎨⎧2a n ,0≤a n ≤12,2a n-1,12<a n<1, a 1=35,则数列的第 2 018项为________. 答案 15解析 由已知可得,a 2=2×35-1=15,a 3=2×15=25,a 4=2×25=45,a 5=2×45-1=35,∴{a n }为周期数列且T =4, ∴a 2 018=a 504×4+2=a 2=15.(2)(2017·安徽名校联考)已知数列{a n }的首项为2,且数列{a n }满足a n +1=a n -1a n +1,数列{a n }的前n 项的和为S n ,则S 2 016等于( ) A .504 B .588 C .-588 D .-504 答案 C解析 ∵a 1=2,a n +1=a n -1a n +1,∴a 2=13,a 3=-12,a 4=-3,a 5=2,…,∴数列{a n }的周期为4,且a 1+a 2+a 3+a 4=-76,∵2 016÷4=504,∴S 2 016=504×⎝⎛⎭⎫-76=-588,故选C.解决数列问题的函数思想典例 (1)数列{a n }的通项公式是a n =(n +1)·⎝⎛⎭⎫1011n,则此数列的最大项是第________项. (2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立,则实数k 的取值范围是__________. 思想方法指导 (1)可以将数列看成定义域为正整数集上的函数;(2)数列的最值可以根据单调性进行分析.解析 (1)∵a n +1-a n =(n +2)⎝⎛⎭⎫1011n +1-(n +1)⎝⎛⎭⎫1011n =⎝⎛⎭⎫1011n ×9-n11,当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n ,∴该数列中有最大项,且最大项为第9,10项. (2)由a n +1>a n 知该数列是一个递增数列, 又∵通项公式a n =n 2+kn +4, ∴(n +1)2+k (n +1)+4>n 2+kn +4, 即k >-1-2n ,又n ∈N *,∴k >-3. 答案 (1)9或10 (2)(-3,+∞)1.(2017·湖南长沙一模)已知数列的前4项为2,0,2,0,则依此归纳该数列的通项不可能是( ) A .a n =(-1)n -1+1 B .a n =⎩⎪⎨⎪⎧2,n 为奇数,0,n 为偶数C .a n =2sin n π2D .a n =cos(n -1)π+1 答案 C解析 对n =1,2,3,4进行验证,知a n =2sinn π2不合题意,故选C. 2.(2018·葫芦岛质检)数列23,-45,67,-89,…的第10项是( )A .-1617B .-1819C .-2021D .-2223答案 C解析 所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把每一部分进行分解:符号、分母、分子.很容易归纳出数列{a n }的通项公式a n =(-1)n +1·2n 2n +1,故a 10=-2021.3.(2017·黄冈质检)已知在正项数列{a n }中,a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ≥2),则a 6等于( )A .16B .4C .2 2D .45 答案 B解析 由题意得a 2n +1-a 2n =a 2n -a 2n -1=…=a 22-a 21=3,故{a 2n }是以3为公差的等差数列,即a 2n =3n -2.所以a 26=3×6-2=16.又a n >0,所以a 6=4.故选B.4.若数列{a n }满足a 1=2,a 2=3,a n =a n -1a n -2(n ≥3且n ∈N *),则a 2 018等于( )A .3B .2 C.12 D.23答案 A解析 由已知a 3=a 2a 1=32,a 4=a 3a 2=12,a 5=a 4a 3=13,a 6=a 5a 4=23,a 7=a 6a 5=2,a 8=a 7a 6=3,∴数列{a n }具有周期性,且T =6, ∴a 2 018=a 336×6+2=a 2=3.5.(2018·长春调研)设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ) A.163 B.133 C .4 D .0 答案 D解析 ∵a n =-3⎝⎛⎭⎫n -522+34,由二次函数性质,得当n =2或3时,a n 最大,最大为0. 6.(2017·江西六校联考)已知数列{a n }满足a n =⎩⎪⎨⎪⎧(5-a )n -11,n ≤5,a n -4,n >5,且{a n }是递增数列,则实数a 的取值范围是( )A .(1,5) B.⎝⎛⎭⎫73,5 C.⎣⎡⎭⎫73,5 D .(2,5) 答案 D解析 ∵a n =⎩⎪⎨⎪⎧(5-a )n -11,n ≤5,a n -4,n >5,且{a n }是递增数列,∴⎩⎪⎨⎪⎧5-a >0,a >1,5(5-a )-11<a 2,解得2<a <5,故选D.7.若数列{a n }满足关系a n +1=1+1a n ,a 8=3421,则a 5=________.答案 85解析 借助递推关系,由a 8递推依次得到a 7=2113,a 6=138,a 5=85.8.已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =________.答案 ⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2解析 当n ≥2时,a n =S n -S n -1=2n +1, 当n =1时,a 1=S 1=4≠2×1+1,因此a n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.9.(2018·大庆模拟)已知数列{a n }的通项公式a n =(n +2)·⎝⎛⎭⎫67n,则数列{a n }的项取最大值时,n =________. 答案 4或5解析 假设第n 项为最大项,则⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1,即⎩⎨⎧(n +2)·⎝⎛⎭⎫67n≥(n +1)·⎝⎛⎭⎫67n -1,(n +2)·⎝⎛⎭⎫67n≥(n +3)·⎝⎛⎭⎫67n +1,解得⎩⎪⎨⎪⎧n ≤5,n ≥4, 即4≤n ≤5,又n ∈N *,所以n =4或n =5,故数列{a n }中a 4与a 5均为最大项,且a 4=a 5=6574.10.(2017·太原模拟)已知数列{a n }满足a 1=1,a n -a n +1=na n a n +1(n ∈N *),则a n =__________. 答案2n 2-n +2解析 由a n -a n +1=na n a n +1,得1a n +1-1a n=n ,则由累加法得1a n -1a 1=1+2+…+(n -1)=n 2-n 2,又因为a 1=1,所以1a n =n 2-n2+1=n 2-n +22,所以a n =2n 2-n +2(n ∈N *).11.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式. 解 (1)由S n =12a 2n +12a n (n ∈N *)可得 a 1=12a 21+12a 1,解得a 1=1, S 2=a 1+a 2=12a 22+12a 2,解得a 2=2, 同理,a 3=3,a 4=4. (2)S n =a n 2+12a 2n ,①当n ≥2时,S n -1=a n -12+12a 2n -1,②①-②得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0,所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }为首项为1,公差为1的等差数列, 故a n =n .12.已知数列{a n }的各项均为正数,记数列{a n }的前n 项和为S n ,数列{a 2n }的前n 项和为T n ,且3T n =S 2n +2S n ,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式. 解 (1)由3T 1=S 21+2S 1,得3a 21=a 21+2a 1,即a 21-a 1=0.因为a 1>0,所以a 1=1. (2)因为3T n =S 2n +2S n ,① 所以3T n +1=S 2n +1+2S n +1,②②-①,得3a 2n +1=S 2n +1-S 2n +2a n +1.因为a n +1>0,所以3a n +1=S n +1+S n +2,③ 所以3a n +2=S n +2+S n +1+2,④④-③,得3a n +2-3a n +1=a n +2+a n +1, 即a n +2=2a n +1, 所以当n ≥2时,a n +1a n =2.又由3T 2=S 22+2S 2,得3(1+a 22)=(1+a 2)2+2(1+a 2),即a 22-2a 2=0.因为a 2>0,所以a 2=2,所以a 2a 1=2,所以对n ∈N *,都有a n +1a n=2成立, 所以数列{a n }的通项公式为a n =2n -1,n ∈N *.13.(2017·江西师大附中、鹰潭一中联考)定义:在数列{a n }中,若满足a n +2a n +1-a n +1a n =d (n ∈N *,d 为常数),称{a n }为“等差比数列”.已知在“等差比数列”{a n }中,a 1=a 2=1,a 3=3,则a 2 015a 2 013等于( ) A .4×2 0152-1 B .4×2 0142-1 C .4×2 0132-1 D .4×2 0132 答案 C解析 由题知⎩⎨⎧⎭⎬⎫a n +1a n 是首项为1,公差为2的等差数列,则a n +1a n =2n -1,所以a n =a n a n -1×a n -1a n -2×…×a 2a 1×a 1=(2n -3)×(2n -5)× (1)所以a 2 015a 2 013=(2×2 015-3)(2×2 015-5)×…×1(2×2 013-3)(2×2 013-5)×…×1=4 027×4 025=(4 026+1)(4 026-1)=4 0262-1=4×2 0132-1.14.若数列⎩⎨⎧⎭⎬⎫n (n +4)⎝⎛⎭⎫23n 中的最大项是第k 项,则k =________.答案 4解析 设数列为{a n },则a n +1-a n =(n +1)(n +5)·⎝⎛⎭⎫23n +1-n (n +4)·⎝⎛⎭⎫23n =⎝⎛⎭⎫23n ⎣⎡⎦⎤23(n 2+6n +5)-n 2-4n =2n3n +1(10-n 2). 所以当n ≤3时,a n +1>a n ; 当n ≥4时,a n +1<a n .因此,a 1<a 2<a 3<a 4,a 4>a 5>a 6>…, 故a 4最大,所以k =4.15.在数列{a n }中,a 1=1,a 2=2,若a n +2=2a n +1-a n +2,则a n 等于( ) A.15n 2-25n +65 B .n 3-5n 2+9n -4 C .n 2-2n +2 D .2n 2-5n +4 答案 C解析 由题意得(a n +2-a n +1)-(a n +1-a n )=2,因此数列{a n +1-a n }是以1为首项,2为公差的等差数列,a n +1-a n =1+2(n -1)=2n -1,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+3+…+(2n -3)=1+(1+2n -3)(n -1)2=(n -1)2+1=n 2-2n +2,又a 1=1=12-2×1+2,因此a n =n 2-2n +2(n ∈N *),故选C.16.(2017·太原五中模拟)设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1·a n =0(n =1,2,3,…),则它的通项公式a n =________. 答案 1n(n ∈N *)解析 因为数列{a n }是首项为1的正项数列, 所以a n ·a n +1≠0,所以(n +1)a n +1a n -na na n +1+1=0.令a n +1a n=t (t >0),则(n +1)t 2+t -n =0, 分解因式,得[(n +1)t -n ](t +1)=0, 所以t =n n +1或t =-1(舍去),即a n +1a n =nn +1.方法一 (累乘法)因为a 2a 1·a 3a 2·a 4a 3·a 5a 4·…·a n a n -1=12·23·34·45·…·n -1n ,所以a n =1n (n ∈N *).方法二 (迭代法) 因为a n +1=nn +1a n,所以a n =n -1n a n -1=n -1n .n -2n -1.a n -2=n -1n .n -2n -1.n -3n -2.a n -3=...=n -1n .n -2n -1.n -3n -2.. (1)2a 1,所以a n =1n (n ∈N *).方法三 (特殊数列法)因为a n +1a n =n n +1,所以(n +1)a n +1na n=1.所以数列{na n }是以a 1为首项,1为公比的等比数列. 所以na n =1×1n -1=1. 所以a n =1n(n ∈N *).。

高考数学---数列的概念与简单表示法课后作业练习(含答案解析)

高考数学---数列的概念与简单表示法课后作业练习(含答案解析)

高考数学---数列的概念与简单表示法课后作业练习(含答案解析)建议用时:45分钟一、选择题1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式a n等于()A.(-1)n+12B.cosnπ2C.cos n+12πD.cosn+22πD[令n=1,2,3,…,逐一验证四个选项,易得D正确.]2.若S n为数列{a n}的前n项和,且S n=nn+1,则1a5等于()A.56 B.65C.130D.30D[当n≥2时,a n=S n-S n-1=nn+1-n-1n=1n(n+1),所以1a5=5×6=30.]3.记S n为数列{a n}的前n项和.“任意正整数n,均有a n>0”是“{S n}是递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A[∵“a n>0”⇒“数列{S n}是递增数列”,∴“a n>0”是“数列{S n}是递增数列”的充分条件.如数列{a n}为-1,1,3,5,7,9,…,显然数列{S n}是递增数列,但是a n 不一定大于零,还有可能小于零,∴“数列{S n}是递增数列”不能推出“a n>0”,∴“a n>0”是“数列{S n}是递增数列”的不必要条件.∴“a n>0”是“数列{S n}是递增数列”的充分不必要条件.] 4.(2019·武汉5月模拟)数列{a n}中,a n+1=2a n+1,a1=1,则a6=() A.32 B.62C.63 D.64C[数列{a n}中,a n+1=2a n+1,故a n+1+1=2(a n+1),因为a1=1,故a1+1=2≠0,故a n+1≠0,所以a n+1+1a n+1=2,所以{a n+1}为等比数列,首项为2,公比为2.所以a n+1=2n即a n=2n-1,故a6=63,故选C.]5.若数列{a n}的前n项和S n=n2-10n(n∈N*),则数列{na n}中数值最小的项是()A.第2项B.第3项C.第4项D.第5项B[∵S n=n2-10n,∴当n≥2时,a n=S n-S n-1=2n-11;当n=1时,a1=S1=-9也适合上式.∴a n=2n-11(n∈N+).记f(n)=na n=n(2n-11)=2n2-11n,此函数图像的对称轴为直线n=114,但n∈N+,∴当n=3时,f(n)取最小值.∴数列{na n}中数值最小的项是第3项.]二、填空题6.已知数列5,11,17,23,29,…,则55是它的第________项.21[数列5,11,17,23,29,…中的各项可变形为5,5+6,5+2×6,5+3×6,5+4×6,…,所以通项公式为a n=5+6(n-1)=6n-1,令6n-1=55,得n=21.]7.若数列{a n}满足a1=1,a2=3,a n+1=(2n-λ)a n(n=1,2,…),则a3等于________.15[令n=1,则3=2-λ,即λ=-1,由a n+1=(2n+1)a n,得a3=5a2=5×3=15.]8.在一个数列中,如果∀n∈N*,都有a n a n+1a n+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{a n}是等积数列,且a1=1,a2=2,公积为8,则a1+a2+a3+…+a12=________.28[∵a1a2a3=8,且a1=1,a2=2.∴a3=4,同理可求a4=1,a5=2.a6=4,∴{a n}是以3为周期的数列,∴a1+a2+a3+…+a12=(1+2+4)×4=28.]三、解答题9.(2019·洛阳模拟)已知数列{a n}满足a1=50,a n+1=a n+2n(n∈N*),(1)求{a n}的通项公式;(2)已知数列{b n}的前n项和为a n,若b m=50,求正整数m的值.[解](1)当n≥2时,a n=(a n-a n-1)+(a n-1-a n-2)+…+(a3-a2)+(a2-a1)+a1=2(n-1)+2(n-2)+…+2×2+2×1+50=2×(n-1)n2+50=n 2-n +50.又a 1=50=12-1+50,∴{a n }的通项公式为a n =n 2-n +50,n ∈N *. (2)b 1=a 1=50, 当n ≥2时,b n =a n -a n -1=n 2-n +50-[(n -1)2-(n -1)+50]=2n -2, 即b n =⎩⎪⎨⎪⎧50,n =12n -2,n ≥2.当m ≥2时,令b m =50,得2m -2=50,解得m =26. 又b 1=50,∴正整数m 的值为1或26.10.设数列{a n }的前n 项和为S n .已知a 1=a (a ≠3),a n +1=S n +3n ,n ∈N *,设b n =S n -3n ,(1)求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围. [解] (1)依题意,S n +1-S n =a n +1=S n +3n , 即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ), 即b n +1=2b n , 又b 1=S 1-3=a -3,所以数列{b n }的通项公式为b n =(a -3)2n -1,n ∈N *. (2)由(1)知S n =3n +(a -3)2n -1,n ∈N *,于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n-1+(a -3)2n -2,a n +1-a n =4×3n -1+(a -3)2n -2 =2n -2⎣⎢⎡⎦⎥⎤12×⎝ ⎛⎭⎪⎫32n -2+a -3,当n ≥2时,a n +1≥a n ⇒12×⎝ ⎛⎭⎪⎫32n -2+a -3≥0⇒a ≥-9,又a 2=a 1+3>a 1(a ≠3).综上,a 的取值范围是[-9,3)∪(3,+∞).1.已知数列{a n }满足:a 1=1,a n +1=a n a n +2(n ∈N *),若b n +1=(n -λ)⎝ ⎛⎭⎪⎫1a n +1,b 1=-λ,且数列{b n }是递增数列,则实数λ的取值范围是( )A .(2,+∞)B .(3,+∞)C .(-∞,2)D .(-∞,3)C [由a n +1=a n a n +2,知1a n +1=2a n +1,即1a n +1+1=2⎝ ⎛⎭⎪⎫1a n +1,所以数列⎩⎨⎧⎭⎬⎫1a n +1是首项为1a 1+1=2,公比为2的等比数列,所以1a n +1=2n ,所以b n +1=(n -λ)·2n ,因为数列{b n }是递增数列,所以b n +1-b n =(n -λ)2n -(n -1-λ)2n -1=(n +1-λ)2n-1>0对一切正整数n 恒成立,所以λ<n +1,因为n ∈N *,所以λ<2,故选C.]2.(2019·临沂三模)意大利数学家列昂那多·斐波那契以兔子繁殖为例,引入“兔子数列”: 1,1,2,3,5,8,13,21,34,55,…即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2)(n ≥3,n ∈N *),此数列在现代物理“准晶体结构”、化学等都有着广泛的应用.若此数列被2整除后的余数构成一个新数列{a n },则数列{a n }的前2 019项的和为( )A .672B .673C .1 346D .2 019C [由数列1,1,2,3,5,8,13,21,34,55,…各项除以2的余数,可得{a n }为1,1,0,1,1,0,1,1,0,1,1,0,…,所以{a n }是周期为3的周期数列,一个周期中三项和为1+1+0=2, 因为2 019=673×3,所以数列{a n }的前2 019项的和为673×2=1 346,故选C.]3.(2019·晋城三模)记数列{a n }的前n 项和为S n ,若S n =3a n +2n -3,则数列{a n }的通项公式为a n =________.a n =2-⎝ ⎛⎭⎪⎫32n[当n =1时,S 1=a 1=3a 1-1,解得a 1=12;当n ≥2时,S n =3a n +2n -3,S n -1=3a n -1+2n -5,两式相减可得,a n =3a n -3a n -1+2,故a n =32a n -1-1,设a n +λ=32(a n -1+λ),故λ=-2,即a n -2=32(a n -1-2),故a n -2a n -1-2=32.故数列{a n -2}是以-32为首项,32为公比的等比数列,故a n -2=-32·⎝ ⎛⎭⎪⎫32n -1,故a n =2-⎝ ⎛⎭⎪⎫32n .] 4.已知数列{a n }中,a 1=1,其前n 项和为S n ,且满足2S n =(n +1)a n (n ∈N *). (1)求数列{a n }的通项公式;(2)记b n =3n -λa 2n ,若数列{b n }为递增数列,求λ的取值范围. [解] (1)∵2S n =(n +1)a n , ∴2S n +1=(n +2)a n +1,∴2a n +1=(n +2)a n +1-(n +1)a n , 即na n +1=(n +1)a n ,∴a n +1n +1=a nn ,∴a n n =a n -1n -1=…=a 11=1,∴a n =n (n ∈N +). (2)由(1)知b n =3n -λn 2.b n +1-b n =3n +1-λ(n +1)2-(3n -λn 2) =2·3n -λ(2n +1). ∵数列{b n }为递增数列, ∴2·3n -λ(2n +1)>0, 即λ<2·3n2n +1.令c n =2·3n2n +1,即c n +1c n =2·3n +12n +3·2n +12·3n =6n +32n +3>1. ∴{c n }为递增数列, ∴λ<c 1=2,即λ的取值范围为(-∞,2).1.(2019·烟台、菏泽高考适应性练习一)已知数列:1k ,2k -1,…,k 1(k ∈N *),按照k 从小到大的顺序排列在一起,构成一个新的数列{a n }:1,12,21,13,22,31,…,则89首次出现时为数列{a n }的( )A .第44项B .第76项C .第128项D .第144项C [观察分子分母的和出现的规律:2,3,4,5,…,把数列重新分组:⎝ ⎛⎭⎪⎫11,⎝ ⎛⎭⎪⎫12,21,⎝ ⎛⎭⎪⎫13,22,31,…,⎝ ⎛⎭⎪⎫1k ,2k -1,…,k 1,可看出89第一次出现在第16组,因为1+2+3+…+15=120,所以前15组一共有120项;第16组的项为⎝ ⎛⎭⎪⎫116,215,…,710,89…,所以89是这一组中的第8项,故89第一次出现在数列的第128项,故选C.]2.已知二次函数f (x )=x 2-ax +a (a >0,x ∈R )有且只有一个零点,数列{a n }的前n 项和S n =f (n )(n ∈N *).(1)求数列{a n }的通项公式;(2)设c n =1-4a n(n ∈N *),定义所有满足c m ·c m +1<0的正整数m 的个数,称为这个数列{c n }的变号数,求数列{c n }的变号数.[解] (1)依题意,Δ=a 2-4a =0, 所以a =0或a =4. 又由a >0得a =4, 所以f (x )=x 2-4x +4. 所以S n =n 2-4n +4.当n =1时,a 1=S 1=1-4+4=1; 当n ≥2时,a n =S n -S n -1=2n -5. 所以a n =⎩⎪⎨⎪⎧1,n =1,2n -5,n ≥2.(2)由题意得c n =⎩⎪⎨⎪⎧-3,n =1,1-42n -5,n ≥2. 由c n =1-42n -5可知,当n ≥5时,恒有c n >0.又c 1=-3,c 2=5,c 3=-3,c 4=-13,c 5=15,c 6=37, 即c 1·c 2<0,c 2·c 3<0,c 4·c 5<0,所以数列{c n}的变号数为3.。

2024年高考数学总复习第六章数列真题分类22数列的概念与简单表示法

2024年高考数学总复习第六章数列真题分类22数列的概念与简单表示法

= an an-1
=9-9a2n
,所以 an+1=an.又 a1=3≠a2,所以数列
{an}不为等比数列,所以②不正确.由题知 an·Sn=an+1·Sn+1,所以 an an+1
Sn+1 = Sn
>1,所以
an>an+1>0,所以数列{an}为递减数列,所以③正确.若数列{an}的所有项均大于等于1100 ,
真题分类22 数列的概念与简单表示法
高考·数学
第六章 数列
§6.1 数列的概念及其表示 真题分类22 数列的概念与简单表示法
C1.数列的概念及通项公式 C2.由an与Sn的关系求通项an C3.由递推关系式求数列的通项公式 C4.数列的单调性、周期性和最值 C5.数列求和问题
第1页
返回总目录
真题分类22 数列的概念与简单表示法
∴Sn=a1(11--qqn) =-1(1-1-22n) =1-2n,
∴S6=1-26=-63.
第7页
返回层目录 返回目录
真题分类22 数列的概念与简单表示法
高考·数学
4.(2021·全国乙卷(理),1
n
项和,bn
为数列 S n
的前 n
项积,已知S2n +b1n =2. (1)证明:数列{bn}是等差数列; (2)求{an}的通项公式.

1 an≥100
,取 n>90 000,则 Sn>900,于是 an·Sn>9,与已知矛盾,所以{an}中存在小于1100
的项,所以④正确.
第5页
返回层目录 返回目录
真题分类22 数列的概念与简单表示法
高考·数学
2.(2020·江苏,11,5 分)设{an}是公差为 d 的等差数列,{bn}是公比为 q 的等比数列.已 知数列{an+bn}的前 n 项和 Sn=n2-n+2n-1(n∈N*),则 d+q 的值是________.

高三一轮复习第五章 第一节数列的概念与简单表示法

高三一轮复习第五章 第一节数列的概念与简单表示法

课时作业1.在数列{a n }中,a n =n 2-9n -100,则最小的项是( ) A .第4项 B .第5项C .第6项D .第4项或第5项【解析】 ∵a n =(n -92)2-814-100,∴n =4或5时,a n 最小.【答案】 D2.数列{a n }:1,-58,715,-924,…的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n (n ∈N +)B .a n =(-1)n -12n +1n 3+3n (n ∈N +)C .a n =(-1)n +12n -1n 2+2n (n ∈N +)D .a n =(-1)n -12n +1n 2+2n(n ∈N +)【解析】 观察数列{a n }各项,可写成:31×3,-52×4,73×5,-94×6,故选D .【答案】 D3.(2022·福建福州质检)已知数列{a n }满足a 1=1,a n +1=a 2n -2a n +1(n ∈N *),则a 2 019=( )A .1B .0C .2 019D .-2 019【解析】 ∵a 1=1,∴a 2=(a 1-1)2=0,a 3=(a 2-1)2=1,a 4=(a 3-1)2=0,…,可知数列{a n }是以2为周期的数列,∴a 2 019=a 1=1.【答案】 A4.(2022·大庆二模)已知数列{a n }满足:a n ={(3-a )n -3,n ≤7a n -6,n >7(n ∈N *),且数列{a n }是递增数列,则实数a 的取值范围是( )A .(94,3)B .[94,3)C .(1,3)D .(2,3)【解析】 根据题意,a n=f(n)={(3-a)n-3,n≤7a n-6,n>7,n∈N*,要使{a n}是递增数列,必有{3-a>0a>1(3-a)×7-3<a8-6,据此有:{a<3a>1a>2或a<-9,综上可得2<a<3.【答案】 D5.(2022·黄冈模拟)已知数列{a n}的前n项和为S n=n2-2n+2,则数列{a n}的通项公式为( )A.a n=2n-3 B.a n=2n+3C.a n={1,n=12n-3,n≥2D.a n={1,n=12n+3,n≥2【解析】 当n=1时,a1=S1=1,当n≥2时,a n=S n-S n-1=2n-3,由于a1的值不适合上式,故选C.【答案】 C6.(多选)(2022·常州期末)已知数列{a n}中,a1=2,a n+1=1+a n1-a n,使a n=-12的n可以是( )A.2 019 B.2 021C.2 022 D.2 023【解析】 由题意可知,a1=2,a2=-3,a3=-12,a4=13,a5=2,a6=-3,a7=-12,a8=13,可得数列{a n}的周期为4,所以a2 019=a3=-12,a2 021=a1=2,a2 022=a2=-3,a2 023=a3=-12,所以使a n=-12的n可以是2 019,2 023,故答案选AD.【答案】 AD7.(2022·石家庄二模)在数列{a n}中,已知a1=2,a2=7,a n+2等于a n a n+1(n∈N*)的个位数,则a2 015=( )A.8 B.6C.4 D.2【解析】 由题意得a3=4,a4=8,a5=2,a6=6,a7=2,a8=2,a9=4,a10=8.所以数列中的项从第3项开始呈周期性出现,周期为6,故a2 015=a335×6+5=a5=2.【答案】 D8.(多选)已知数列{a n}满足a1=-12,a n+1=11-a n,则下列各数是{a n}的项的有( )A.-2 B.2 3C.32D.3【解析】 ∵数列{a n}满足a1=-12,a n+1=11-a n,∴a2=11-(-12)=23,a3=11-a2=3,a4=11-a3=-12=a1,∴数列{a n}是周期为3的数列,且前3项为-12,23,3,故选BD.【答案】 BD9.(多选)下列四个命题中,正确的有( )A.数列{n+1n}的第k项为1+1kB.已知数列{a n}的通项公式为a n=n2-n-50,n∈N*,则-8是该数列的第7项C.数列3,5,9,17,33,…的一个通项公式为a n=2n-1D.数列{a n}的通项公式为a n=nn+1,n∈N*,则数列{a n}是递增数列【解析】 对于A,数列{n+1n}的第k项为1+1k,A正确;对于B,令n2-n-50=-8,得n=7或n=-6(舍去),B正确;对于C,将3,5,9,17,33,…的各项减去1,得2,4,8,16,32,…,设该数列为{b n},则其通项公式为b n=2n(n∈N*),因此数列3,5,9,17,33,…的一个通项公式为a n=b n+1=2n+1(n∈N*),C错误;对于D,a n=nn+1=1-1n+1,则a n+1-a n=1n+1-1n+2=1(n+1)(n+2)>0,因此数列{a n}是递增数列,D正确.故选ABD.【答案】 ABD10.(2022·太原二模)已知数列{a n}满足a1=1,a n-a n+1=na n a n+1(n∈N*),则a n=________.【解析】 由已知得1a n+1-1a n=n,∴1a n-1a n-1=n-1,1a n-1-1a n-2=n-2,…,1a2-1a1=1,∴1a n -1a1=n (n -1)2,∴1an =n 2-n +22,∴a n =2n 2-n +2.【答案】 2n 2-n +211.在数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=________.【解析】 由题意知a 1·a 2·a 3·…·a n -1=(n -1)2,∴a n =(nn -1)2(n ≥2),∴a 3+a 5=(32)2+(54)2=6116. 【答案】 611612.数列{a n }满足12a 1+122a 2+…+12n a n =2n +5,n ∈N *,则a n =________.【解析】 在12a 1+122a 2+…+12n a n =2n +5中,用n -1代换n 得12a 1+122a 2+…+12n -1a n -1=2(n -1)+5 (n ≥2),两式相减得12n a n =2,a n =2n +1,又12a 1=7,即a 1=14,故a n={14,n =1,2n +1,n ≥2.【答案】 {14,n =1,2n +1,n ≥213.根据下列条件,确定数列{a n }的通项公式. (1)a 1=1,a n +1=3a n +2; (2)a 1=1,a n +1=(n +1)a n ; (3)a 1=2,a n +1=a n +ln (1+1n).【解】 (1)∵a n +1=3a n +2, ∴a n +1+1=3(a n +1), ∴a n +1+1a n +1=3,∴数列{a n +1}为等比数列,公比q =3,又a 1+1=2, ∴a n +1=2·3n -1,∴a n =2·3n -1-1.(2)∵a n +1=(n +1)a n ,∴a n +1an =n +1.∴a nan -1=n ,a n -1a n -2=n -1,…a 3a 2=3,a 2a1=2,a 1=1. 累乘可得,a n =n ×(n -1)×(n -2)×…×3×2×1=n! 故a n =n!(3)∵a n +1=a n +ln (1+1n ),∴a n +1-a n =ln (1+1n )=ln n +1n.∴a n -a n -1=ln nn -1,a n -1-a n -2=ln n -1n -2,…a 2-a 1=ln 21,∴a n -a 1=ln n n -1+ln n -1n -2+…+ln 21=ln n .又a 1=2,∴a n =ln n +2.14.设数列{a n }的前n 项和为S n .已知a 1=a (a ∈R 且a ≠3),a n +1=S n +3n ,n ∈N *. (1)设b n =S n -3n ,求数列{b n }的通项公式; (2)若a n +1≥a n ,n ∈N *,求a 的取值范围. 【解】 (1)依题意,S n +1-S n =a n +1=S n +3n , 即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ), 又S 1-31=a -3(a ≠3),故数列{S n -3n }是首项为a -3,公比为2的等比数列, 因此,所求通项公式为b n =S n -3n =(a -3)2n -1,n ∈N *. (2)由(1)知S n =3n +(a -3)2n -1,n ∈N *, 于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n -1+(a -3)2n -2, a n +1-a n =4×3n -1+(a -3)2n -2 =2n -2[12·(32)n -2+a -3],当n≥2时,a n+1≥a n 12·(32)n-2+a-3≥0 a≥-9.又a2=a1+3>a1.综上,所求a的取值范围是[-9,3)∪(3,+∞).。

高中数学选择性必修二 专题4 1 数列的概念与简单表示法(含答案)同步培优专练

高中数学选择性必修二 专题4 1 数列的概念与简单表示法(含答案)同步培优专练

专题4.1 数列的概念与简单表示法知识储备知识点一数列及其有关概念思考1数列1,2,3与数列3,2,1是同一个数列吗?【答案】不是.顺序不一样.思考2根据你对于数列的定义的理解,看看能不能回答下面的问题:(1)按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,……,排在第n位的数称为这个数列的第n项.(2) 数列的一般形式可以写成a1,a2,…,a n,…,简记为{a n}.思考3数列的记法和集合有些相似,那么数列与集合的区别在哪儿?【答案】数列中的数讲究顺序,集合中的元素具有无序性;数列中可以出现相同的数,集合中的元素具有互异性.知识点二通项公式思考1数列1,2,3,4,…的第100项是多少?你是如何猜的?【答案】100.由前四项与它们的序号相同,猜第n项a n=n,从而第100项应为100.思考2上例中的a n=n当序号n取不同的值,就可得到不同的项,所以可以把a n=n当作数列1,2,3,4,…的项的通用公式,这个公式就叫通项公式.你能把通项公式推广到一般数列吗?【答案】如果数列{a n}的第n项a n与序号n之间的关系可以用一个式子a n=f(n)来表示,那么这个公式叫做这个数列的通项公式.思考3数列的通项公式a n=f(n)与函数解析式y=f(x)有什么异同?【答案】如图,数列可以看成以正整数集N*(或它的有限子集{1,2,3,…,n})为定义域的函数a n=f(n)当自变量按照从小到大的顺序依次取值时所对应的一列函数值.不同之处是定义域,数列中的n必须是从1开始且连续的正整数,函数的定义域可以是任意非空数集.知识点三数列的分类(1)按项数分类,项数有限的数列叫做有穷数列,项数无限的数列叫做无穷数列.(2)按项的增减趋势分类,从第二项起,每一项都大于它的前一项的数列叫做递增数列;从第二项起,每一项都小于它的前一项的数列叫做递减数列;各项相等的数列叫做常数列;从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列. 知识点四 递推公式思考1 (1)已知数列{a n }的首项a 1=1,且有a n =3a n -1+2(n >1),则a 4=________. (2) 已知数列{a n }中,a 1=a 2=1,且有a n +2=a n +a n +1(n ∈N *),则a 4=________. 【答案】(1)53 (2)3思考2 上例是一种给出数列的方法,叫递推公式.你能概括一下什么叫递推公式吗?【答案】如果数列{a n }的第1项或前几项已知,并且数列{a n }的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个式子来表示,那么这个式子就叫做这个数列的递推公式.思考3 我们已经知道通项公式和递推公式都能给出数列.那么通项公式和递推公式有什么不同? 【答案】通项公式和递推公式都是给出数列的方法.已知数列的通项公式,可以直接求出任意一项;已知递推公式,要求某一项,则必须依次求出该项前面所有的项. 知识点五 数列的表示方法思考1 以数列2,4,6,8,10,12,…为例,你能用几种方法表示这个数列? 【答案】(1)解析法、列表法、图象法.数列可以用通项公式、图象、列表等方法来表示. (2)对数列2,4,6,8,10,12,…可用以下几种方法表示: ①通项公式法:a n =2n .②递推公式法:⎩⎪⎨⎪⎧a 1=2,a n +1=a n +2,n ∈N *.③列表法:④图象法:思考2 归纳一下数列的表示方法.【答案】数列的表示方法有通项公式法、图象法、列表法、递推公式法.能力检测注意事项:本试卷满分100分,考试时间45分钟,试题共16题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、单选题1.下列说法正确的是( )A .数列1,3,5,7与数集{1,3,5,7}是一样的B .数列1,2,3与数列3,2,1是相同的C .数列11n ⎧⎫+⎨⎬⎩⎭是递增数列 D .数列()11nn ⎧⎫-⎪⎪+⎨⎬⎪⎪⎩⎭是摆动数列【答案】D【解析】数列是有序的,而数集是无序的,所以A ,B 不正确;选项C 中的数列是递减数列;选项D 中的数列是摆动数列. 2.已知数列12,23,34,…,1n n +,则0.96是该数列的( ) A .第20项 B .第22项 C .第24项 D .第26项【答案】C 【解析】由1nn +=0.96,解得n =24. 3.在数列1,1,2,3,5,8,x,21,34,55中,x 等于( ) A .11 B .12 C .13 D .14 【答案】C【解析】观察数列可知,后一项是前两项的和,故x =5+8=13.4.已知数列{a n }的通项公式a n =log (n +1)(n +2),则它的前30项之积是( ) A.15B .5C .6D .231log 3log 325+【答案】B【解析】a1·a2·a3·…·a30=log23×log34×log45×…×log3132=log232=log225=5. 5.已知递减数列{a n}中,a n=kn(k为常数),则实数k的取值范围是() A.R B.(0,+∞)C.(-∞,0) D.(-∞,0]【答案】C【解析】a n+1-a n=k(n+1)-kn=k<0.6.数列{a n}中,a n=-n2+11n,则此数列最大项是()A.第4项B.第6项C.第5项D.第5项和第6项【答案】D【解析】a n=-n2+11n=-2112n⎛⎫-⎪⎝⎭+1214,∵n∈N+,∴当n=5或n=6时,a n取最大值.故选D.7.我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:第一步:构造数列1,12,13,14,…,1n.①第二步:将数列①的各项乘n,得到数列(记为)a1,a2,a3,…,a n.则n≥2时,a1a2+a2a3+…+a n-1a n=()A.n2B.(n-1)2 C.n(n-1) D.n(n+1)【答案】C【解析】由题意得a k=nk.k≥2时,a k-1a k=2211(1)1nnk k k k⎛⎫=-⎪--⎝⎭.∴n≥2时,a1a2+a2a3+…+a n-1a n=n21111112231n n⎡⎤⎛⎫⎛⎫⎛⎫-+-++-⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎝⎭⎣⎦=n211n⎛⎫-⎪⎝⎭=n(n-1).故选C.8.由1,3,5,…,2n-1,…构成数列{a n},数列{b n}满足b1=2,当n≥2时,b n=a b n-1,则b6的值是()A.9 B.17C.33 D.65【答案】C【解析】∵b n=a b n-1,∴b2=a b1=a2=3,b3=a b2=a3=5,b4=a b3=a5=9,b5=a b4=a9=17,b6=a b5=a17=33.二、多选题9.(多选)一个无穷数列{a n }的前三项是1,2,3,下列可以作为其通项公式的是( ) A .a n =nB .a n =n 3-6n 2-12n -6C .a n =12n 2-12n +1 D .a n =26611n n -+ 【答案】AD【解析】对于A ,若a n =n ,则a 1=1,a 2=2,a 3=3,符合题意;对于B ,若a n =n 3-6n 2-12n +6,则a 1=-11,不符合题意;对于C ,若a n =12n 2-12n +1,当n =3时,a 3=4≠3,不符合题意;对于D ,若a n =26611n n -+,则a 1=1,a 2=2,a 3=3,符合题意.故选A 、D. 10.(多选)数列{F n }:1,1,2,3,5,8,13,21,34,…称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入的,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.记数列{F n }的前n 项和为S n ,则下列结论正确的是( ) A .S 5=F 7-1 B .S 5=S 6-1 C .S 2 019=F 2 021-1 D .S 2 019=F 2 020-1【答案】AC【解析】根据题意有F n =F n -1+F n -2(n ≥3),所以S 3=F 1+F 2+F 3=1+F 1+F 2+F 3-1=F 3+F 2+F 3-1=F 4+F 3-1=F 5-1,S 4=F 4+S 3=F 4+F 5-1=F 6-1,S 5=F 5+S 4=F 5+F 6-1=F 7-1,…,所以S 2 019=F 2 021-1.故选A 、C.11.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( ) A .0,2,n n a n ⎧=⎨⎩为奇数为偶数B .1(1)1n n a -=-+C .2sin 2n n a π= D .cos(1)1n a n π=-+【答案】BD【解析】因为数列{}n a 的前4项为2,0,2,0, 选项A :不符合题设;选项B :01(1)12,a =-+=12(1)10,a =-+=23(1)12,a =-+=34(1)10a =-+=,符合题设;选项C :,12sin2,2a π==22sin 0,a π==332sin22a π==-不符合题设; 选项D :1cos 012,a =+=2cos 10,a π=+=3cos 212,a π=+=4cos310a π=+=,符合题设.故选:BD.12.“太极生两仪,两仪生四象,四象生八卦……”大衍数列,来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,是中华传统文化中隐藏着的世界数学史上第一道数列题.大衍数列中的每一项都代表太极衍生过程中,曾经经历过的两仪数量总和,从第一项起依次为0,2,4,8,12,18,24,32,40,50,…….记大衍数列为{}n a ,其前n 项和为*,n S n ∈N ,则( )A .20220a =B .357202111115051011a a a a ++++=C .232156S =D .246489800a a a a ++++=【答案】BCD【解析】根据数列前10项依次是0,2,4,8,12,18,24,32,40,50,,则奇数项为:2112-,2312-,2512-,2712-,2912-,,偶数项为:222,242,262,282,2102,,所以通项公式为221,(2,(2n n n a n n ⎧-⎪⎪=⎨⎪⎪⎩为奇数)为偶数),对于A , 22020020==2a ,故A 错误;对于B ,35720211111a a a a ++++22222222=++++31517120211----1111224466820202022⎛⎫=++++⎪⨯⨯⨯⨯⎝⎭111111*********20202505100222202211⎛⎫=⨯-+-++-=-= ⎪⎝⎭,故B 正确; 对于C ,()()2313232422S a a a a a a =++++++222212323122+++-=,由()()22221211236n n n n +++++=,所以()()2323231461112215626S ++⎛⎫=-= ⎪⎝⎭,故C 正确;对于D ,24648a a a a ++++()222221242922421224=⨯+⨯+⨯++⨯=++()()242412241298006+⨯+=⋅=,故D 正确.故选:BCD三、填空题13.已知数列{a n }的通项公式a n =19-2n ,则使a n >0成立的最大正整数n 的值为________. 【答案】9【解析】由a n =19-2n >0,得n <192.∵n ∈N *,∴n ≤9.14.已知数列{a n }的通项公式a n =1nn +,则a n ·a n +1·a n +2=________. 【答案】3n n + 【解析】a n ·a n +1·a n +2=1n n +·12n n ++·23n n ++=3n n +. 15.数列{a n }的前n 项和为S n ,若S n +S n -1=2n -1(n ≥2),且S 2=3,则a 1+a 3的值为________. 【答案】-1【解析】∵S n +S n -1=2n -1(n ≥2),令n =2, 得S 2+S 1=3,由S 2=3得a 1=S 1=0, 令n =3,得S 3+S 2=5,所以S 3=2,则a 3=S 3-S 2=-1,所以a 1+a 3=0+(-1)=-1.16.如图(1)是第七届国际数学教育大会(简称ICME­7)的会徽图案,会徽的主体图案是由如图(2)的一连串直角三角形演化而成的,其中OA 1=A 1A 2=A 2A 3=…=A 7A 8=1,如果把图(2)中的直角三角形继续作下去,记OA 1,OA 2,…,OA n ,…的长度构成数列{a n },则此数列的通项公式为a n =________.【解析】因为OA 1=1,OA 2,OA 3…,OA n ,…,所以a 1=1,a 2,a 3…,a n . 四、解答题17.已知数列{}n a 的前n 项和2321n S n n =-+,(1)求数列{}n a 的通项公式; (2)求数列{}n a 的前多少项和最大.【解析】(1)当1n =时,11321132a S ==-+=;当2n ≥时,()()()22132132111n n n a S S n n n n -⎡⎤=-=-+----+⎣⎦332n =-;所以:32,1332,2n n a n n =⎧=⎨-≥⎩;(2)因为()22321321n S n n n n =-+=--+()216257n =--+;所以前16项的和最大.18.在数列{}n a 中,2293n a n n =-++.(1)-107是不是该数列中的某一项?若是,其为第几项? (2)求数列中的最大项.【解析】(1)令22107,293107,291100n a n n n n =--++=---=,解得10n =或112n =-(舍去).所以10107a =- (2)229105293248n a n n n ⎛⎫=-++=--+ ⎪⎝⎭, 由于*n ∈N ,所以最大项为213a = 19.数列{a n }满足a 1= 1 ,a n +1 +2a n a n +1- a n =0. (1)写出数列的前5项;(2)由(1)写出数列{a n }的一个通项公式;(3)实数199是否为这个数列中的一项?若是,应为第几项? 【答案】(1)见解析(2)121n a n =-(3)50【解析】(1)由已知可得11a =,213a =,315a =,417a =,519a =.(2)由(1)可得数列的每一项的分子均为1,分母分别为1,3,5,7,9,…,所以它的一个通项公式为121n a n =-. (3)令119921n =-,解得50n =,故199是这个数列的第50项.20.已知数列2299291n n n ⎧⎫-+⎨⎬-⎩⎭. (1)求这个数列的第10项; (2)98101是不是该数列中的项,为什么? (3)求证:数列中的各项都在区间(0,1)内;(4)在区间1233⎛⎫ ⎪⎝⎭,内有无数列中的项?若有,是第几项?若没有,说明理由.【解析】(1)设a n =f (n )=2299291n n n -+-=(31)(32)(31)(31)n n n n ---+=3231n n -+.令n =10,得第10项a 10=f (10)=2831. (2)令3231n n -+=98101,得9n =300. 此方程无正整数解,所以98101不是该数列中的项. (3)证明:∵a n =3231n n -+=1-331n +, 且n ∈N *,∴0<1-331n +<1, ∴0<a n <1.∴数列中的各项都在区间(0,1)内. (4)令13<a n =3231n n -+<23, ∴3196,9662,n n n n +<-⎧⎨-<+⎩∴7,68,3n n ⎧>⎪⎪⎨⎪<⎪⎩∴当且仅当n =2时,上式成立,故在区间1233⎛⎫⎪⎝⎭,内有数列中的项,且只有一项为a 2=47. 21.已知函数f (x )=x -1x.数列{a n }满足f (a n )=-2n ,且a n >0.求数列{a n }的通项公式. 【解析】∵f (x )=x -1x,∴f (a n )=a n -1n a ,∵f (a n )=-2n .∴a n -1na =-2n ,即2n a +2na n -1=0. ∴a n =-n.∵a n >0,∴a n-n .22.已知数列{a n }的通项公式为a n =22n n (n ∈N *),则这个数列是否存在最大项?若存在,请求出最大项;若不存在,请说明理由.【解析】存在最大项.理由:a 1=12,a 2=2222=1,a 3=2332=98,a 4=2442=1,a 5=2552=2532,….∵当n≥3时,221122(1)2(1)22nnnna n na n n++++=⨯==1211n⎛⎫+⎪⎝⎭2<1,∴a n+1<a n,即n≥3时,{a n}是递减数列.又∵a1<a3,a2<a3,∴a n≤a3=9 8 .∴当n=3时,a3=98为这个数列的最大项.。

数列的概念与简单表示法专题练习(含参考答案)

数列的概念与简单表示法专题练习(含参考答案)

数学 数列的概念与简单表示法一、选择题1.数列{a n }为12,3,112,8,212,…,则此数列的通项公式可能是( )A .a n =5n -42B .a n =3n -22C .a n =6n -52D .a n =10n -922.数列23,-45,67,-89,…的第10项是( )A .-1617B .-1819C .-2021D .-22233.已知数列2,5,22,11,…,则25是这个数列的( ) A .第6项 B .第7项 C .第19项D .第11项4.已知数列{a n }中,a 1=1,若a n =2a n -1+1(n ≥2),则a 5的值是( ) A .7 B .5 C .30D .315.若S n 为数列{a n }的前n 项和,且S n =nn +1,则1a 5等于( ) A .56 B .65 C .130D .306.若数列{a n }满足a 1=12,a n =1-1a n -1(n ≥2且n ∈N *),则a 2 019等于( )A .-1B .12 C .1D .27.已知数列{a n }的前n 项和S n =n 2-2n +2,则数列{a n }的通项公式为( ) A .a n =2n -3B .a n =2n +3C .a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2D .a n =⎩⎪⎨⎪⎧1,n =1,2n +3,n ≥28.设数列{a n }的前n 项和为S n ,且S n =2(a n -1),则a n =( ) A .2n B .2n -1 C .2nD .2n-1二、填空题9.已知数列{a n }的前n 项和S n =3n+1,则数列的通项公式a n =. 10.在数列{a n }中,a 1=2,a n +1=a n +1nn +1,则数列a n =. 11.设数列{a n }的前n 项和为S n ,若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=____,S 5=_____. 12.已知数列{a n }是递减数列,且对任意的正整数n ,a n =-n 2+2λn 恒成立,则实数λ的取值围为.三、解答题13. 已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3;(2)求数列{a n }的通项公式.14.已知S n 为数列{a n }的前n 项和,且2S n =3a n -2(n ∈N *). (1)求a n 和S n .(2)若b n =log 3(S n +1),求数列{b 2n }的前n 项和T n .1.已知数列{a n }中,a 1=1,a 2=2,a n +1=a n +a n +2(n ∈N *),则a 5的值为( ) A .-2 B .-1 C .1D .22.若数列{a n }的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1,则a 10=( ) A .55 B .10 C .9D .13.数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n ,0≤a n <12,2a n-1,12≤a n<1,若a 1=25,则a2019等于( )A .15 B .25 C .35D .454.已知数列{a n }满足a n +1=a n +2n ,且a 1=33,则a n n的最小值为( ) A .21 B .10 C .172D .2125.已知函数f (x )=2x-2-x,数列{a n }满足f (log 2a n )=-2n . (1)求数列{a n }的通项公式; (2)求证:数列{a n }是递减数列.【参考答案】一、选择题1.数列{a n }为12,3,112,8,212,…,则此数列的通项公式可能是( A )A .a n =5n -42B .a n =3n -22C .a n =6n -52D .a n =10n -92[解析] 解法一:数列{a n }为12,62,112,162,212,…,其分母为2,分子是首项为1,公差为5的等差数列,故其通项公式为a n =5n -42.解法二:当n =2时,a 2=3,而选项B 、C 、D ,都不符合题意,故选A . 2.数列23,-45,67,-89,…的第10项是( C )A .-1617B .-1819C .-2021D .-2223[解析]a n =(-1)n +12n 2n +1,∴a 10=-2021,选C 项. 3.已知数列2,5,22,11,…,则25是这个数列的( B ) A .第6项 B .第7项 C .第19项D .第11项[解析] 数列即:2,5,8,11,…,据此可得数列的通项公式为:a n =3n -1,由3n -1=25,解得:n =7,即25是这个数列的第7项.4.已知数列{a n }中,a 1=1,若a n =2a n -1+1(n ≥2),则a 5的值是( D )A .7B .5C .30D .31[解析] 由题意得a 2=2a 1+1=3,a 3=2×3+1=7,a 4=2×7+1=15,a 5=2×15+1=31. 5.若S n 为数列{a n }的前n 项和,且S n =nn +1,则1a 5等于( D ) A .56 B .65 C .130D .30[解析]∵当n ≥2时,a n =S n -S n -1=nn +1-n -1n =1nn +1,∴1a 5=5×(5+1)=30. 6.若数列{a n }满足a 1=12,a n =1-1a n -1(n ≥2且n ∈N *),则a 2 019等于( D )A .-1B .12 C .1D .2[解析]∵a 1=12,a n =1-1a n -1(n ≥2且n ∈N *),∴a 2=1-1a 1=1-112=-1,∴a 3=1-1a 2=1-1-1=2,∴a 4=1-1a 3=1-12=12,…,依此类推,可得a n +3=a n ,∴a 2019=a 672×3+3=a 3=2,故选D .7.已知数列{a n }的前n 项和S n =n 2-2n +2,则数列{a n }的通项公式为( C ) A .a n =2n -3B .a n =2n +3C .a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2D .a n =⎩⎪⎨⎪⎧1,n =1,2n +3,n ≥2[解析] 解法一:当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=2n -3,由于n =1时a 1的值不适合n ≥2的解析式,故通项公式为a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2.解法二:当n =1时,a 1=S 1=1,A 、B 选项不合题意.又a 2=S 2-a 1=1,所以D 选项不合题意.8.设数列{a n }的前n 项和为S n ,且S n =2(a n -1),则a n =( C ) A .2n B .2n -1 C .2nD .2n-1[解析] 当n =1时,a 1=S 1=2(a 1-1),可得a 1=2;当n ≥2时,a n =S n -S n -1=2a n -2a n-1,∴a n =2a n -1,∴数列{a n }为等比数列,公比为2,首项为2,∴通项公式为a n =2n.故选C .二、填空题9.已知数列{a n }的前n 项和S n =3n+1,则数列的通项公式a n =⎩⎪⎨⎪⎧4,n =12·3n -1,n ≥2.[解析] 当n =1时,a 1=S 1=3+1=4, 当n ≥2时,a n =S n -S n -1=3n+1-3n -1-1=2·3n -1,显然n =1时,a 1不满足上式,∴a n =⎩⎪⎨⎪⎧4,n =12·3n -1,n ≥2.10.在数列{a n }中,a 1=2,a n +1=a n +1nn +1,则数列a n = 3-1n. [解析] 由题意,得a n +1-a n =1nn +1=1n -1n +1,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=(1n -1-1n )+(1n -2-1n -1)+…+(12-13)+(1-12)+2=3-1n. 11.设数列{a n }的前n 项和为S n ,若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=__1___,S 5=__121___.[解析] 解法一:由⎩⎪⎨⎪⎧a 1+a 2=4,a 2=2a 1+1,解得a 1=1.由a n +1=S n +1-S n =2S n +1,得S n +1=3S n +1,所以S n +1+12=3(S n +12),所以{S n +12}是以32为首项,3为公比的等比数列,所以S n +12=32×3n-1,即S n =3n-12,所以S 5=121.解法二:由⎩⎪⎨⎪⎧a 1+a 2=4a 2=2a 1+1解得⎩⎪⎨⎪⎧a 1=1a 2=3,又a n +1=2S n +1,a n +2=2S n +1+1,两式相减得a n +2-a n +1=2a n +1,即a n +2a n +1=3,又a 2a 1=3,∴{a n }是首项为1,公比为3的等比数列,∴a n +1=3n ,∴S n =3n-12,∴S 5=121.12.已知数列{a n }是递减数列,且对任意的正整数n ,a n =-n 2+2λn 恒成立,则实数λ的取值围为 (-∞,32) .[解析]∵数列{a n }是递减数列,∴a n +1<a n 恒成立.又a n =-n 2+2λn ,∴-(n +1)2+2λ(n +1)<-n 2+2λn 恒成立,即2λ<2n +1恒成立,又n ∈N *,∴λ<32.三、解答题13. 已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3;(2)求数列{a n }的通项公式. [解析] (1)因为S n =n +23a n ,且a 1=1,所以S 2=43a 2,即a 1+a 2=43a 2,得a 2=3.由S 3=53a 3,得3(a 1+a 2+a 3)=5a 3,得a 3=6.(2)由题意知a 1=1. 当n ≥2时,有a n =S n -S n -1=n +23a n -n +13a n -1,整理,得a n =n +1n -1a n -1,即a n a n -1=n +1n -1. 所以a 2a 1=3,a 3a 2=42,a 4a 3=53,…,a n a n -1=n +1n -1,将以上n -1个式子的两端分别相乘,得a n a 1=n n +12.所以a n =n n +12(n ≥2).又a 1=1适合上式,故a n =n n +12(n ∈N *).14.已知S n 为数列{a n }的前n 项和,且2S n =3a n -2(n ∈N *). (1)求a n 和S n .(2)若b n =log 3(S n +1),求数列{b 2n }的前n 项和T n . [解析] (1)因为2S n =3a n -2,所以当n =1时,2S 1=3a 1-2,解得a 1=2; 当n ≥2时,2S n -1=3a n -1-2, 所以2S n -2S n -1=3a n -3a n -1, 所以2a n =3a n -3a n -1,即a n =3a n -1,因此数列{a n }是首项为2,公比为3的等比数列, 所以a n =2·3n -1,S n =21-3n1-3=3n-1.(2)因为S n =3n-1,所以b n =log 3(S n +1)=log 33n=n ,b 2n =2n , 所以T n =2+4+6+…+2n =n 2+2n2=n 2+n .1.已知数列{a n }中,a 1=1,a 2=2,a n +1=a n +a n +2(n ∈N *),则a 5的值为( A )A .-2B .-1C .1D .2[解析] 由题意可得,a n +2=a n +1-a n ,则a 3=a 2-a 1=2-1=1,a 4=a 3-a 2=1-2=-1,a 5=a 4-a 3=-1-1=-2.故选A .2.若数列{a n }的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1,则a 10=( D ) A .55 B .10 C .9D .1[解析]∵S n +S m =S n +m ,∴令m =1,n =9,得S 9+S 1=S 10,即S 10-S 9=S 1=a 1=1,∴a 10=S 10-S 9=1.故选D .3.数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n ,0≤a n <12,2a n-1,12≤a n<1,若a 1=25,则a2019等于( C )A .15B .25C .35D .45[解析] 因为a 1=25<12,所以a 2=45,a 3=35,a 4=15,a 5=25,所以数列具有周期性,周期为4,所以a 2019=a 3=25.故选C .4.已知数列{a n }满足a n +1=a n +2n ,且a 1=33,则a n n的最小值为( D ) A .21 B .10 C .172D .212[解析] 由已知条件可知,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=33+2+4+…+2(n -1)=n 2-n +33. 又n =1时,a 1=33满足此式.所以a n n=n +33n-1.令f (n )=n +33n-1,则f (n )在[1,5]上为减函数,在[6,+∞)上为增函数,又f (5)=535,f (6)=212,则f (5)>f (6),故f (n )=a n n 的最小值为212.故选D .5.已知函数f (x )=2x-2-x,数列{a n }满足f (log 2a n )=-2n . (1)求数列{a n }的通项公式; (2)求证:数列{a n }是递减数列.[解析] (1)f (log 2a n )=2log 2a n -2-log 2a n =a n -1a n所以a n -1a n=-2n ,所以a 2n +2na n -1=0,解得a n =-n ±n 2+1, 因为a n >0,所以a n =n 2+1-n ,n ∈N *.(2)a n +1a n=n +12+1-n +1n 2+1-n=n 2+1+nn +12+1+n +1<1,因为a n >0,所以a n +1<a n ,所以数列{a n }是递减数列.。

数列的概念与简单的表示法基础训练题(有详解)

绝密★启用前数列的概念与简单的表示法基础训练题(有详解)一、单选题1.数列0.3,0.33,0.333,0.3333,…的通项公式是a n =( ) A .1(101)9n- B .111310n⎛⎫-⎪⎝⎭C .2(101)9n- D .3(101)10n - 2.已知数列{}n a 中,21n a n n =++,则3(a = )A .4B .9C .12D .133.数列1-,3,5-,7,9-,,的一个通项公式为( )A .21n a n =-B .(1)(12)nn a n =-- C .(1)(21)nn a n =--D .1(1)(21)n n a n +=--4.数列1,,,,,…的一个通项公式是( ) A . B .C .D .5.若(n∈N *),则当n =2时,f(n)是( ).A .1+B .C .1+D .非以上答案 6.已知数列的首项,且,则( )A .B .C .D . 7.数列的通项公式为,则的第5项是( )A .13B .C .D .158.数列的一个通项公式是 ( ) A .B .C .D .9.数列{}n a 的前n 项和()2*23N n S n n n =-∈,则4a 等于( ) A .11 B .15 C .17 D .2010.若数列{}n a 满足11a =, 131n n a a +=+,则4a =( ) A .7 B .13 C .40 D .121A .20B .21C .22D .23 12.已知数列的前四项为1,,1,,则该数列的通项公式可能是( ) A .B .C .D .13.已知数列{a n }中,a 1=2,a n =1﹣(n≥2),则a 2017等于( )A .﹣B .C .﹣1D .2 14.数列3,5,7,9,,23n + 的项数为( )A .23n +B .1n +C .nD .2n +15.设n a =211111123n n n n n ++++++++(n ∈N *),则3a =( ) A .13 B .11113456+++ C .19 D .111349+++16.数列1,3,6,10,x,21,…中的x 等于 A .17 B .16 C .15 D .1417.数列{a n }中,如果n a =3n(n =1,2,3,…) ,那么这个数列是( ). A .公差为2的等差数列 B .公差为3的等差数列 C .首项为3的等比数列 D .首项为1的等比数列18.数列{a n }的通项公式为a n =3n 2﹣28n ,则数列{a n }各项中最小项是( ) A .第4项 B .第5项C .第6项D .第7项二、填空题19.在数列{}n a 中,11a =,112n n a a -=+,则2a =______. 20.在数列11310,,,,,,4382n n -中,37是它的第_____项. 21.已知数列{}n a 满足:12a =,()()()*1122,n n n a n a n N ++-+=∈,则3a =__________.22.已知数列{}n a 的首项11a =,且1(1)12nn na a n a +=+…,则5a =____.23.已知数列的前n 项和,求数列的通项公式 .24.已知数列{a n }的前n 项和S n =n 2+3n +1, 则a n = .参考答案1.B 【解析】 【分析】利用观察法求数列通项即可 【详解】111=0.910-,211=0.9910-,311=0.99910-,411=0.999910-,…;明显地 1111=0.3310⎛⎫- ⎪⎝⎭,2111=0.33310⎛⎫- ⎪⎝⎭,3111=0.333310⎛⎫- ⎪⎝⎭,4111=0.3333310⎛⎫- ⎪⎝⎭,…;显然数列0.3,0.33,0.333,0.3333,…的通项公式是111310n n a ⎛⎫=-⎪⎝⎭, 答案选B 【点睛】本题考查利用观察法求数列通项问题,属于基础题 2.D 【解析】 【分析】将n=3直接代入通项中即可求得结果. 【详解】∵21n a n n =++,∴393113a =++=. 故选:D . 【点睛】本题考查了由通项公式求特定项的方法,只需代入n 值即可,属于简单题. 3.C 【解析】 【分析】首先注意到数列的奇数项为负,偶数项为正,其次数列各项绝对值构成一个以1为首项,以2为公差的等差数列,从而易求出其通项公式.【详解】∵数列{a n}各项值为1-,3,5-,7,9-,,∴各项绝对值构成一个以1为首项,以2为公差的等差数列,∴|a n|=2n﹣1又∵数列的奇数项为负,偶数项为正,∴a n=(﹣1)n(2n﹣1).故选:C.【点睛】本题给出数列的前几项,猜想数列的通项,挖掘其规律是关键.解题时应注意数列的奇数项为负,偶数项为正,否则会错.4.D【解析】【分析】通过观察数列的分子和分母,猜想出数列的通项公式.【详解】由于数列的分母是奇数列,分子是自然数列,故通项公式为.故选D.【点睛】本小题考查观察数列给定的项,猜想数列的通项公式.根据分子和分母的规律,易得出正确的选项.属于基础题.5.C【解析】【分析】把n=2代入=,即可解决。

高考数学复习第28讲 数列的概念与简单表示


由递推公式求通项的常用方法:
方法
转化过程
适合题型
累加法 (a2-a1)+(a3-a2)+…+(an-an-1)=an-a1
an+1-an=f(n),f(n)可求和
累乘法 构造法
aa21×aa32×…×aann- -12×aan-n 1=aan1
aan+n 1=f(n),f(n)可求积
由 an+1=pan+q 化为 an+1+m=p(an+m),构造{an
课堂评价
1. 若数列{an}的前 n 项和 Sn=n2+n,则 a4 的值为( C )
A. 4
B. 6
C. 8
D. 10
2. 已知数列{an}的前 n 项和为 Sn=n2·an(n≥2),a1=1,通过计算 a2,a3,a4,可猜
想 an 等于( B )
2 A. n+12
2 B. nn+1
1 C. 2n-1
已知递推关系求通项公式的三种常见方法: (1) 算出前几项,再归纳、猜想. (2) 形如“an+1=pan+q”这种形式通常转化为 an+1+λ=p(an+λ),由待定系数法求 出 λ,再化为等比数列. (3) 递推公式化简整理后,若为 an+1-an=f(n)型,则采用累加法;若为aan+n1=f(n)型, 则采用累乘法.
an=4n22-n 1. (3) -12,14,58,1136,2392,6614,…. 【解答】 各项的分母分别为 21,22,23,24,…,易看出第 2,3,4 项的分子分别比分母小
3,因此把第 1 项变为2-2 3,原数列化为212-1 3,222-2 3,232-3 3,242-4 3,…,故 an=2n2-n 3.
(1) 常用方法:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数 列)、联想(联想常见的数列)等方法;(2) 具体策略:①分式中分子、分母的特征;②相 邻项的变化特征;③拆项后的特征;④各项的符号特征和绝对值特征.

第1讲 数列的概念与简单表示法

第六章数列第1讲数列的概念与简单表示法一、选择题1.对于数列{a n},“a n+1>|a n|(n=1,2,…)”是“{a n}为递增数列”的( ).A.必要不充分条件 B.充分不必要条件C.必要条件 D.既不充分也不必要条件解析当a n+1>|a n|(n=1,2,…)时,∵|a n|≥a n,∴a n+1>a n,∴{a n}为递增数列.当{a n}为递增数列时,若该数列为-2,0,1,则a2>|a1|不成立,即知:a n+1>|a n|(n=1,2,…)不一定成立.故综上知,“a n+1>|a n|(n=1,2,…)”是“{a n}为递增数列”的充分不必要条件.答案 B2.把1,3,6,10,15,21这些数叫做三角形数,这是因为这些数目的点子可以排成一个正三角形(如图所示).则第七个三角形数是( ).A.27 B.28 C.29 D.30解析观察三角形数的增长规律,可以发现每一项与它的前一项多的点数正好是本身的序号,所以根据这个规律计算即可.根据三角形数的增长规律可知第七个三角形数是1+2+3+4+5+6+7=28.答案 B3.已知数列{a n}的前n项和为S n,且S n=2a n-1(n∈N*),则a5=().A.-16 B.16 C.31 D.32解析当n=1时,S1=a1=2a1-1,∴a1=1,又S n-1=2a n-1-1(n≥2),∴S n-S n-1=a n=2(a n-a n-1).∴a na n-1=2.∴a n=1×2n-1,∴a5=24=16. 答案 B4.将石子摆成如图的梯形形状,称数列5,9,14,20,…为梯形数,根据图形的构成,此数列的第2 014项与5的差即a 2 014-5=( ).A .2 020×2 012B .2 020×2 013C .1 010×2 012D .1 010×2 013解析 结合图形可知,该数列的第n 项a n =2+3+4+…+(n +2).所以a 2 014-5=4+5+…+2 016=2 013×1 010.故选D.答案 D5.设数列{a n }满足:a 1=2,a n +1=1-1a n,记数列{a n }的前n 项之积为Πn ,则Π2 011的值为( ) A .-12B .-1 C.12 D .2解析 由a 2=12,a 3=-1,a 4=2可知,数列{a n }是周期为3的周期数列,从而Π2 011=Π1=2.答案 D6.已知整数按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个数对是( ).A .(5,5)B .(5,6)C .(5,7)D .(5,8)解析 按规律分组第一组(1,1)第二组(1,2),(2,1)第三组(1,3),(2,2),(3,1)则前10组共有10×112=55个有序实数对. 第60项应在第11组中即(1,11),(2,10),(3,9),(4,8),(5,7),…,(11,1)因此第60项为(5,7).答案 C二、填空题7.在数列{a n }中,a 1=12,a n +1=1-1a n(n ≥2),则a 16=________. 解析 由题可知a 2=1-1a 1=-1,a 3=1-1a 2=2,a 4=1-1a 3=12,∴此数列是以3为周期的周期数列,a 16=a 3×5+1=a 1=12. 答案 128.已知数列{a n }满足a 1=1,且a n =n (a n +1-a n )(n ∈N *),则a 2=________;a n =________.解析 由a n =n (a n +1-a n ),可得a n +1a n=n +1n , 则a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 2a 1·a 1=n n -1×n -1n -2×n -2n -3×…×21×1=n ,∴a 2=2,a n =n . 答案 2 n9.已知f (x )为偶函数,f (2+x )=f (2-x ),当-2≤x ≤0时,f (x )=2x ,若n ∈N *,a n =f (n ),则a 2 013=________.解析 ∵f (x )为偶函数,∴f (x )=f (-x ),∴f (x +2)=f (2-x )=f (x -2).故f (x )周期为4,∴a 2 013=f (2 013)=f (1)=f (-1)=2-1=12.答案 1210.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 的值为________.解析 ∵S n =n 2-9n ,∴n ≥2时,a n =S n -S n -1=2n -10, a 1=S 1=-8适合上式,∴a n =2n -10(n ∈N *),∴5<2k -10<8,得7.5<k <9.∴k =8.答案 8三、解答题11.数列{a n }的通项公式是a n =n 2-7n +6.(1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项?(3)该数列从第几项开始各项都是正数?解 (1)当n =4时,a 4=42-4×7+6=-6.(2)令a n =150,即n 2-7n +6=150,解得n =16,即150是这个数列的第16项.(3)令a n =n 2-7n +6>0,解得n >6或n <1(舍), ∴从第7项起各项都是正数.12.在数列{a n }中,a 1=1,a n +1=a n +2n -1,求a n .解 由a n +1=a n +2n -1,得a n +1-a n =2n -1. 所以a 2-a 1=1,a 3-a 2=2, a 4-a 3=22,a 5-a 4=23,…a n -a n -1=2n -2(n ≥2),将以上各式左右两端分别相加,得a n -a 1=1+2+22+…+2n -2=2n -1-1, 所以a n =2n -1(n ≥2),又因为a 1=1适合上式,故a n =2n -1(n ≥1).13.设数列{a n }的前n 项和为S n .已知a 1=a (a ≠3),a n +1=S n +3n ,n ∈N *.(1)设b n =S n -3n ,求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围. 解 (1)依题意,S n +1-S n =a n +1=S n +3n , 即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ), 又S 1-31=a -3(a ≠3),故数列{S n -3n }是首项为a -3,公比为2的等比数列, 因此,所求通项公式为b n =S n -3n =(a -3)2n -1,n ∈N *.(2)由(1)知S n =3n +(a -3)2n -1,n ∈N *, 于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n -1+(a -3)2n -2, 当n =1时,a 1=a 不适合上式,故a n =⎩⎨⎧ a ,n =1,2×3n -1+(a -3)2n -2,n ≥2.a n +1-a n =4×3n -1+(a -3)2n -2=2n -2⎣⎢⎡⎦⎥⎤12·⎝ ⎛⎭⎪⎫32n -2+a -3, 当n ≥2时,a n +1≥a n ⇔12·⎝ ⎛⎭⎪⎫32n -2+a -3≥0⇔a ≥-9. 又a 2=a 1+3>a 1.综上,所求的a 的取值范围是[-9,+∞).14.在等差数列{a n}中,a3+a4+a5=84,a9=73.(1)求数列{a n}的通项公式;(2)对任意m∈N*,将数列{a n}中落入区间(9m,92m)内的项的个数记为b m,求数列{b m}的前m项和S m.解(1)因为{a n}是一个等差数列,所以a3+a4+a5=3a4=84,即a4=28.设数列{a n}的公差为d,则5d=a9-a4=73-28=45,故d=9.由a4=a1+3d得28=a1+3×9,即a1=1.所以a n=a1+(n-1)d=1+9(n-1)=9n-8(n∈N*).(2)对m∈N*,若9m<a n<92m,则9m+8<9n<92m+8,因此9m-1+1≤n≤92m-1,故得b m=92m-1-9m-1.于是S m=b1+b2+b3+…+b m=(9+93+…+92m-1)-(1+9+…+9m-1)=9×(1-81m)1-81-1-9m1-9=92m+1-10×9m+180.。

(完整版)数列概念及简单表示方法训练题(带详细答案)

数列的概念及简单表示方法训练题(带详细答案)【基础练习】1.下列数列(1) 1,51,41,31,21(2),21,31,41,511是同一个数列吗? 答:不是同一个数列,因为这些数对应的顺序不同.2. 下列给出数列,试从中发现变化规律,并填写括号内的数 (1)()()1,3,6,10,15,21,28,⋅⋅⋅⋅⋅⋅; (2)()()3,5,9,17,33,65,129,⋅⋅⋅⋅⋅⋅; (3)()1,4,9,16,25,36,⋅⋅⋅⋅⋅⋅.3.下面数列中递增数列是 (1)(2)(6) ,递减数列是(4)(7) ,常数数列是(3) ,摆动数列是 (5) . (1)0,1,2,3,⋅⋅⋅⋅⋅⋅;(2)82,93,105,119,129,130,132; (3)3,3,3,3,3,⋅⋅⋅⋅⋅⋅;(4)100,50,20,10,5,2,1,0.5,0.2,0.1,0.05,0.02,0.01; (5)1,1,1,1,1,---⋅⋅⋅⋅⋅⋅;(6)精确到1,0.1,0.01,0.001,⋅⋅⋅的不足近似值构成数列1,1.4,1.41,1.414,;2,1.5,1.42,1.415,⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅.精确到1,0.1,0.01,0.001,⋅⋅⋅过剩近似值构成数列2,1.5,1.42,1.415,⋅⋅⋅⋅⋅⋅. 4.据下列数列的前几项,写出下列数列的一个通项公式 (1)1,3,5,7,9⋅⋅⋅⋅⋅⋅;21n a n =-; (2)9,7,5,3,1,⋅⋅⋅⋅⋅⋅;211n a n =-+;(3)222221314151;,;;2345----()()2111n n a n +-=+;(4)1111,,,,12233445----⨯⨯⨯⨯.()()111n n a n n =-+;类型一 根据数列的前几项写出数列的通项公式例1 写出下面数列的一个通项公式,使它的前几项分别是下列各数:(1)1111,,,;234--(2)2,0,2,0.(3)9,99,999,9999,⋅⋅⋅⋅⋅⋅;(4)1925,2,,8,,222⋅⋅⋅⋅⋅⋅;(5)0,3,8,15,24,⋅⋅⋅⋅⋅⋅;(6)11111,,,,,26122030⋅⋅⋅⋅⋅⋅.解:(1)11111111,,,,,,2341234--∴--Q ()111n n a n+∴=-.(2)法1:2,0,2,011,11,11,11,∴+-+-Q ()111n n a +∴=-+.法2:cos (1)k k π=-Q cos 1n a k π∴=-+(3)2349,99,999,9999,101,101,101,101,⋅⋅⋅⋅⋅⋅∴----⋅⋅⋅⋅⋅⋅Q , 101n n a ∴=-.(4)19251491625,2,,8,,,,,,,22222222⋅⋅⋅⋅⋅⋅∴⋅⋅⋅⋅⋅⋅Q 22n n a ∴=. (5)0,3,8,15,24,11,41,91,161,251,⋅⋅⋅⋅⋅⋅∴-----⋅⋅⋅⋅⋅⋅Q 21n a n ∴=-.(6)1111111111,,,,,,,,,,261220301223344556⋅⋅⋅⋅⋅⋅∴⋅⋅⋅⋅⋅⋅⨯⨯⨯⨯⨯Q ()11n a n n ∴=⨯+.【变式练习】写出下面数列的一个通项公式,使它的前几项分别是下列各数:1. 11111,,,,3579 ;2. 11111,,,,2122232425---⨯⨯⨯⨯⨯; 3. 1124;4.32 , 154, 356, 638, 9910, …… ; 5. 0, 1, 0, 1, 0, 1,……; 6. 2, -6, 12, -20, 30, -42,……; 7. ⋅⋅⋅⋅⋅⋅,5555,555,55,5. 解:1. 121n a n =- ; 2. ()()111nn a n n =-+;3. 1n n a -=⎝⎭4. 2(21)(21)n na n n =-+;5. 法1: ()1112n na +-+=.法2: cos 12n k a π-+=.6. ()11(1)n n a n n -=-+.7. ()11095-=nn a . 类型二 根据数列的通项公式求数列的项例2 (1)已知数列{}n a 的通项公式为31(21,)41(2,)nn n k k N a n n k k N *+=+∈⎧=⎨-=∈⎩,则它的前4项依次为 4,7,10,15 .(2)已知数列{}n a 的通项公式为(2)nan n =+,问:①90,80是不是该数列中的项?如果是,是第几项?②从第几项开始,该数列的项大于10000? 解:(1)类比于分段函数易得:它的前4项依次为 4,7,10,15 . (1) ①令(2)80n a n n =+=得8n =或10n =-(舍去),故80是第8项; 同理令(2)90n a n n =+=得不出正整数解,故90不是该数列中的项.②由2(2)(1)1n a n n n =+=+-得n a 随()n n N ∈的增大而增大,又知1001020010000a =>,99999910000a =<,故从第100项开始,该数列的项大于10000.【变式练习】在数列{}n a 中, 1172,66,aa ==通项公式为n 的一次函数.(1)求数列{}n a 的通项公式;(2)88是不是该数列中的项?解:(1)设n a pn q =+,则1172,6617,a p q a p q ==+==+ 解得4,2p q ==-,故42n a n =-.(2)令4288n a n =-=,得45n =,故88是该数列第45项.类型三 数列的单调性例3(1)判断无穷数列⋅⋅⋅-⋅⋅⋅-,3,,1,0,1,2n 的增减性;(2)判断无穷数列⋅⋅⋅+⋅⋅⋅,1,,43,32,21n n的增减性. 解:(1)法1:易知n a n-=3,由于x x f -=3)(是关于x 的减函数,所以n a n -=3是关于n 的减函数,故数列⋅⋅⋅-⋅⋅⋅-,3,,1,0,1,2n 的递减数列.法2:na n a n n -=∴-=+231Θ,1+>∴n n a a ,故数列⋅⋅⋅-⋅⋅⋅-,3,,1,0,1,2n 的递减数列.(2)法1:易知1+=n n a n ,由函数的定义易证1)(+=x xx f 是关于x 的增函数,所以1+=n n a n 是关于n 的增函数, 故数列⋅⋅⋅+⋅⋅⋅,1,,43,32,21n n是递增数列.法2:2111++=∴+=+n n a n n a n n Θ1211+-++=-∴+n nn n a a n n ()01)2(11>++=-∴+n n a a n n 1+<∴n n a a故数列⋅⋅⋅+⋅⋅⋅,1,,43,32,21n n 是递增数列. 【自我测评】1. 数列⋅⋅⋅--,15,11,7,3的一个通项公式是()C)(A 74-=n a n )(B ()()141+-=n a nn)(C ()()141--=n a nn )(D ()()1411--=+n a n n2.下列六个结论中:(1) 数列若用图象表示,从图象看都是一群孤立的点;(2) 数列的项数是有限的;(3) 数列的通项公式是唯一的;(4) 数列不一定有通项公式; (5)数列1,2,3,……不一定递增;(6)数列看作函数,其定义域是*N 或它的有限子集{}n ,,3,2,1⋅⋅⋅,其中正确的是()B )(A (1) (2) (4) (6) )(B (1) (4) (5) (6))(C (1) (3) (4) (5) )(D (1) (2) (6)3. 已知数列{}n a 的通项公式()()2log 1+=+n a n n ,则它的前30项之积为()A)(A 5 )(B 4)(C 30log 2)(D 32log 24.下面的数列()⋅⋅⋅,2222,222,22,215,6,7,8,9,10)2(()⋅⋅⋅,0,1,0,1,0,13()⋅⋅⋅,,,,,4a a a a a ,递增数列是 (1) ;递减数列是 (2) ;常数列 (4) ;摆动数列是 (3) .(直接填写序号) 5. 已知数列{}n a 是递减数列,且对于任意正整数2,nn an n λ=-+ 恒成立,则λ的取值范围是3<λ .6.已知数列()*∈+⋅⋅⋅N k k73,,10,7,4,1;(1)写出数列的通项公式(2) 数列共有多少项?(3)求数列的第10项,并说明100是否为数列的项?(4)从第几项开始大于5.20? 解:(1)(),,233,223,21373,,10,7,4,1⋅⋅⋅-⨯-⨯-⨯∴∈+⋅⋅⋅*N k kΘ23-=∴n a n .(2)令()*∈-=+N k n k2373,得3+=k n ,故数列共有3+k 项.(3)当10=n 时,28210310=-⨯=a ; 令10023=-n 得34=n .(4)由5.2023>-n 得5.7>n ,故从第8项开始大于5.20.【拓展提高】1.写出数列⋅⋅⋅⋅⋅⋅,7,7,5,5,3,3,1,1一个通项公式解:⎪⎩⎪⎨⎧∈+=-∈==*)(12,1)(2,*N k k n n N k k n n a n .2. 已知21n n a n +-=,判断数列{}n a 的单调性.解:∴+-=21n n a n Θ21)1(11++-+=+n n a n)1(11211)1(1122221>++++-=++++-=-∴+n n nn n a a n n 故数列{}n a 是递增数列.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习一
1.数列1,12,1
4,……是
A .递增数列
B .递减数列
C .常数列
D .摆动数列
2.已知数列{a n }的通项公式a n =1
2[1+(-1)n +1],则该数列的前4项依次是( )
A .1,0,1,0
B .0,1,0,1 C.12,0,1
2
,0 D .2,0,2,0
3.数列{a n }的通项公式a n =cn +d n ,又知a2=32,a4=15
4
,则a10=__________.
4.已知数列{an}的通项公式n a =n
n 22
.
(1)求a8、a10.
(2)问:1
10是不是它的项?若是,为第几项?
练习二
一、选择题
1.已知数列{an}中,an=n2+n,则a3等于( )
A.3 B.9 C.12 D.20 2.下列数列中,既是递增数列又是无穷数列的是( )
A.1,1
2

1
3

1
4
,…
B.-1,-2,-3,-4,…
C.-1,-1
2
,-
1
4
,-
1
8
,…
D.1,2,3,…,n
3.下列说法不正确的是( )
A.根据通项公式可以求出数列的任何一项B.任何数列都有通项公式
C.一个数列可能有几个不同形式的通项公式D.有些数列可能不存在最大项
.
4.数列23,45,67,8
9,…的第10项是( )
A.1617
B.1819
C.2021
D.2223
5.已知非零数列{an}的递推公式为a n =n
n -1·a n -1(n >1),则a4=( )
A .3a1
B .2a1
C .4a1
D .1
6.已知数列{an}满足a1>0,且a n +1=1
2a n ,则数列{an}是( )
A .递增数列
B .递减数列
C .常数列
D .摆动数列
二、填空题
7.已知数列{a n }的通项公式a n =19-2n ,则使a n >0成立的最大正整数n 的值为__________.
8.已知数列{a n }满足a1=2,a2=5,a3=23,且a n +1=αa n +β,则α、β的值分别为________、________.
9.已知{a n }满足an =-1n an -1+1(n ≥2),a7=4
7,则a5=________.
三、解答题
10.写出数列1,2
3

3
5

4
7
,…的一个通项公式,并判断它的增减性.
11.在数列{a
n }中,a
1
=3,a
17
=67,通项公式是关于n的一次函数.
(1)求数列{a
n
}的通项公式;
(2)求a
2011

(3)2011是否为数列{a
n
}中的项?若是,为第几项?
12.数列{an}的通项公式为a
n
=30+n-n2.
(1)问-60是否是{a
n
}中的一项?
(2)当n分别取何值时,a
n =0,a
n
>0,a
n
<0?
答案一
B
A
99
10
解:(1)a8=
2
82+8

1
36
,a10=
2
102+10

1
55
.
(2)令an=
2
n2+n

1
10
,∴n2+n=20.
解得n =4.∴1
10
是数列的第4项. 答案二 1.C
2. 解析:选C.对于A ,an =1
n ,n ∈N*,它是无穷递减数列;对于B ,an =-n ,n
∈N*,它
也是无穷递减数列;D 是有穷数列;对于C ,an =-(1
2)n -1,它是无穷递增数列.
3. 解析:选B.不是所有的数列都有通项公式,如0,1,2,1,0,…
4. 解析:选C.由题意知数列的通项公式是an =2n 2n +1,∴a10=2×102×10+1=20
21.故
选C.
5. 解析:选C.依次对递推公式中的n 赋值,当n =2时,a2=2a1;当n =3时,a3=32a2=3a1;当n =4时,a4=4
3
a3=4a1.
6. 解析:选B.由a1>0,且an +1=12an ,则an>0.又an +1an =12<1,∴an +1<an.因
此数列{an}为递减数列.
7. 解析:由an =19-2n>0,得n<19
2,∵n ∈N*,∴n ≤9. 答案:9
8. 解析:由题意an +1=αan +β,
得⎩⎪⎨⎪⎧ a2=αa1+βa3=αa2+β⇒⎩⎪⎨⎪⎧ 5=2α+β23=5α+β⇒⎩⎪⎨⎪⎧
α=6,β=-7. 答案:6 -7
9.解析:a7=-1a6+1,a6=1a5+1,∴a5=3
4
. 答案:34
10. 解:数列的一个通项公式an =n 2n -1
. 又∵an +1-an =n +12n +1-n
2n -1=
-12n +1
2n -1
<0,
∴an +1<an. ∴{an}是递减数列.
11. 解:(1)设an =kn +b(k ≠0),则有⎩⎪⎨⎪⎧
k +b =3,
17k +b =67,
解得k =4,b =-1.∴an =4n -1. (2)a2011=4×2011-1=8043.
(3)令2011=4n -1,解得n =503∈N*, ∴2011是数列{an}的第503项.
12. 解:(1)假设-60是{an}中的一项,则-60=30+n -n2. 解得n =10或n =-9(舍去). ∴-60是{an}的第10项.
(2)分别令30+n -n2=0;>0;<0, 解得n =6;0<n <6;n >6, 即n =6时,an =0; 0<n <6时,an >0;
n>6时,an<0.。

相关文档
最新文档