机械加工精度

合集下载

机械加工的精度

机械加工的精度

机械加工的精度引言机械加工的精度是评估加工工艺和零件质量的重要指标之一。

精度是指零件与其设计尺寸之间的偏差程度。

在机械加工领域,精度的提高可以直接影响到产品的质量和性能。

因此,了解机械加工的精度对于保证产品质量具有重要意义。

精度的定义精度可以分为几个不同的概念,包括尺寸精度、形状精度和位置精度。

下面分别对这些概念进行探讨。

尺寸精度尺寸精度指的是零件尺寸与其设计尺寸之间的差异。

这个差异可以通过测量零件的尺寸并与设计尺寸进行比较来确定。

尺寸精度通常用公差来表示,即在设计阶段就规定的可接受的尺寸范围。

尺寸精度的提高需要采用更加严格的制造工艺和更加精密的加工设备。

形状精度形状精度是指零件表面形状与其设计形状之间的偏差程度。

形状精度通常涉及到轮廓、直线度、平面度、圆度等各种形状参数。

形状精度对于一些需要与其他零件配合的零件尤其重要,因为形状精度的差异可能会影响到零件的配合性能。

位置精度位置精度是指零件特定特征的相对位置与其设计位置之间的差异。

这个差异可以通过零件的测量和位置分析来确定。

位置精度通常与夹持、定位和加工顺序等因素有关。

位置精度的提高需要更加精细的工艺控制和更加准确的加工设备。

提高精度的方法要提高机械加工的精度,可以采取以下几种方法:1. 选择合适的加工工艺不同的加工工艺对于不同的零件具有不同的适应性。

选择合适的加工工艺可以减少加工误差并提高加工精度。

例如,对于需要加工高精度的零件,可以选择数控加工或激光加工等高精度加工工艺。

2. 优化机床和刀具机床和刀具是机械加工的重要设备。

优化机床和刀具的性能可以提高加工的稳定性和精度。

例如,采用更加刚性和稳定的机床可以减少振动和变形;选择质量优良的刀具可以提高切削质量和加工表面精度。

3. 控制加工参数加工参数的调整对于提高机械加工的精度至关重要。

合理地设置切削速度、进给速度和切削深度等加工参数可以减小加工误差并提高加工质量。

此外,对于一些需要特殊处理的零件,可以采用后处理的方法来进一步提高精度。

机械加工精度名词解释

机械加工精度名词解释

机械加工精度名词解释
机械加工精度指的是针对零件或工件加工过程中所要求的尺寸、形状、位置、表面粗糙度等方面的精确度。

精度是指实际测得结果与理论值之间的偏差或误差程度,常用的机械加工精度名词包括以下几个:
1. 尺寸精度:指零件加工后尺寸测量值与设计尺寸之间的偏差。

这是表征零件尺寸准确程度的指标,通常用公差表示。

2. 形状精度:指零件加工后形状特征与设计要求之间的偏差。

例如,平整度、圆度、直线度等,用来描述零件表面的平整程度以及曲线、直线等特征的精确程度。

3. 位置精度:指零件加工后特定特征之间的相对位置偏差。

常用的位置精度名词包括平行度、垂直度、同轴度等,用来描述零件特征在空间中的位置关系。

4. 表面粗糙度:指加工后零件表面的光洁程度。

常用参数包括Ra(平均粗糙度)、Rz(Z向平均粗糙度)等,用来描述零件表面的粗糙度。

这些机械加工精度的指标对于确保零件的质量和功能至关重要,能够影响到零件的装配性能和使用寿命。

机械加工精度与加工表面质量

机械加工精度与加工表面质量

机械加工精度与加工表面质量机械加工精度和加工表面质量是衡量机械加工工艺质量的两个重要指标。

机械加工精度是指加工件在尺寸、形状、位置和几何特征等方面的精确度,而加工表面质量则是指加工件表面的光洁度、粗糙度以及表面缺陷等特征。

这两个指标在现代制造业中具有重要的意义,直接关系到产品的质量和性能。

1. 机械加工精度机械加工精度通常表示加工件与其设计尺寸之间的误差。

机械加工精度的高低直接影响着加工件的装配性能和使用寿命。

常见的机械加工精度包括以下几个方面:1.1 尺寸精度尺寸精度是指加工件的几何尺寸与其设计尺寸之间的偏差。

尺寸精度可以通过测量加工件的长度、直径、角度等几何参数来评估。

通常,尺寸精度可以分为直线度、平行度、圆度、圆柱度、角度度等几个方面。

1.2 形状精度形状精度是指加工件的形状与设计形状之间的误差。

形状精度通常包括圆度、平面度、圆锥度、曲率半径等方面。

1.3 位置精度位置精度是指加工件上各个特征点的位置与设计位置之间的误差。

位置精度可以通过测量加工件上的特征点坐标来评估。

常见的位置精度指标有平行度、垂直度、位置误差等。

2. 加工表面质量加工表面质量是指加工件表面的光洁度、粗糙度以及表面缺陷等特征。

加工表面质量直接影响着摩擦、磨损、润滑等性能,同时也会影响产品的外观质量。

常见的加工表面质量指标包括以下几个方面:2.1 光洁度光洁度是指加工件表面的光亮程度。

光洁度往往是使用表面粗糙度指标来评估的,一般可通过光学显微镜、表面形貌仪等设备进行测量。

2.2 粗糙度粗糙度是指加工件表面的不规则程度。

表面粗糙度通常用Ra值表示,Ra值越小代表表面越光滑。

可以通过表面粗糙度仪进行测量,也可以使用触摸法、光学法等方法。

2.3 表面缺陷表面缺陷是指加工件表面的瑕疵、裂纹、划痕等缺陷。

表面缺陷会降低产品的整体质量和可靠性,因此正常加工过程中要尽量避免表面缺陷的产生。

3. 如何提高机械加工精度和加工表面质量为了提高机械加工精度和加工表面质量,可以从以下几个方面入手:3.1 选择合适的机床和刀具机床和刀具是机械加工的基础设备,选择合适的机床和刀具对于提高加工精度和表面质量非常重要。

各种机械加工方法的加工精度

各种机械加工方法的加工精度

各种机械加工方法的加工精度
机械加工方法是指利用机床和切削工具对金属、合金、塑料等材料进行切削、锻造、焊接、抛光等操作,以达到工件设计尺寸、形状和表面粗糙度要求的一系列工艺过程。

不同的机械加工方法有着不同的加工精度,下面将对常见的几种机械加工方法的加工精度进行详细介绍。

1.车、铣、刨、磨加工:
车、铣、刨、磨加工是最常见的机械加工方法之一,其加工精度通常可达到0.01mm级别。

其中,精度最高的是磨加工,其加工精度可达到0.001mm级别。

而车、铣、刨加工的加工精度相对较低,通常在0.01mm 至0.015mm之间。

2.钻削加工:
钻削加工是通过钻头旋转和轴向进给运动,以及工件的切削超前量来进行的。

其加工精度一般可达到0.02mm级别。

3.线切割加工:
线切割是利用金属丝或者金刚线经过电火花腐蚀加工,从而将工件切割成所需形状的加工方法。

其加工精度可达到0.005mm级别。

4.电火花加工:
电火花加工是利用放电现象进行切削的一种加工方法,其加工精度可达到0.001mm级别。

5.冲压加工:
冲压加工是通过冲床对金属板材进行冲裁、弯曲、深冲等形变加工的方法。

其加工精度一般在0.05mm至0.1mm之间。

6.锻造加工:
锻造加工是通过加热和机械力的作用,改变金属原始形状并获得所需形状的一种加工方法。

其加工精度通常为0.2mm至0.5mm之间。

7.激光加工:
激光加工是利用激光束对工件进行切割、焊接等加工的方法。

其加工精度通常可以达到0.01mm级别。

机械制造工艺-机械加工精度

机械制造工艺-机械加工精度
(1)机床的热变形
a)床身、主轴变形
b)床身、工作台、主轴变

机床热变形对加工精度的影响
三、影响加工精度的因素及提高精度的主要措施
工艺系统热变形的改善措施 1)在机床大件的结构设计上采取对称结构或采用主动控制方式均衡关键件的温度。 2)在结构连接设计上,其布局应使关键部件的热变形方向对加工精度影响较小。 3)对发热量较大的部件,应采取足够的冷却措施或采取隔离热源的方法。 4)在工艺措施方面,可让机床空运转一段时间之后,当其达到或接近热平衡时再 调整机床,对零件进行加工。 5)将精密机床安装在恒温室中使用。
工艺系统受力变形的改善措施
(1)减小接触面间的表面粗糙度,增大接触面积,适当 预紧,减小接触变形,提高接触刚度。
(2)合理地布置肋板,提高局部刚度。 (3)减少受力变形,提高工件刚度。 (4)合理装夹工件,减少夹紧变形。
三、影响加工精度的因素及提高精度的主要措施
3.工艺系统热变形产生的误差及改善措施
(2)导轨误差 导轨是机床的重要基准,它的各项误差将直接影响被加工
零件的精度。
机床导轨误差对 工件精度的影响
车床导轨的几何误差对加工精度的影响
三、影响加工精度的因素及提高精度的主要措施
2.工艺系统受力变形引起的误差及改善措施
a)腰鼓形的圆柱度误差
b)带锥度的圆柱度误差
三、影响加工精度的因素及提高精度的主要措施
—机械加工精度—
感具、工件和刀具所组成的一个完整的系统 称之为工艺系统。
1.工艺系统的几何误差及改善措施
(1)主轴误差 机床主轴是装夹刀具或工件的位置基准,它的误差也将
直接影响工件的加工质量。 ➢主轴的径向圆跳动 ➢主轴的轴向窜动 ➢主轴摆动

机械加工中工件尺寸精度测量的5大方法

机械加工中工件尺寸精度测量的5大方法

机械加工中工件尺寸精度测量的5大方法1.比较测量法:比较测量法是一种常见且简单的尺寸测量方法,适用于工件的外径、内径等直径尺寸的测量。

该方法主要基于对比的原理,使用已知尺寸的模具或测量工具与待测工件进行对比测量。

常用的比较测量工具有卡尺、千分尺、游标卡尺等。

比较测量法具有操作简便、成本低廉的优点,但准确度较低。

2.坐标测量法:坐标测量法是一种应用最广泛的尺寸测量方法之一、它利用测量机床等设备,将工件放置于坐标系中,通过测量机床的坐标轴和传感器实现工件尺寸的测量。

坐标测量法适用于复杂工件尺寸的测量,具有高精度和高灵活性等优点。

3.光学测量法:光学测量法利用光学原理,通过光学传感器或测量仪器对工件尺寸进行测量。

光学测量法适用于形状复杂的工件,如曲面、曲线等。

常用的光学测量仪器有投影仪、显微镜、激光跟踪仪等。

光学测量法具有高精度、非接触、能够获取多个尺寸和形状参数等优点。

4.探触测量法:探触测量法是一种通过机械探针对工件进行接触式测量的方法。

常见的探触测量法包括测微仪、测针、激光测距仪等。

探触测量法适用于表面形状复杂或无法用其他测量方法测量的工件。

它具有测量精度高、重复性好和能够获取多个尺寸参数等优点。

5.三坐标测量法:三坐标测量法是一种先进的工件尺寸测量方法,通过三坐标测量机对工件进行测量,能够快速地获取工件各个尺寸参数。

三坐标测量法适用于高精度工件尺寸测量,具有高精度、快速、自动化程度高等优点。

总结来说,机械加工中的工件尺寸精度测量方法有比较测量法、坐标测量法、光学测量法、探触测量法和三坐标测量法。

根据工件的形状、尺寸和精度要求,选择合适的测量方法可以保证工件的质量和精度。

机械加工精度

机械加工精度

机械加工精度
1. 获得尺寸精度的方法
(1) (2) (3) (4) 试切法 调整法 定尺寸法 自动控制法
机械加工精度
2. 获得形状精度的方法 (1)轨迹法 (2)成形法 (3)展成法 3. 获得位置精度的方法 (1)根据工件加工过的表面进行找正的 方法; (2)工件的位置精度由夹具来保证。
机械加工精度
机械加工表面质量
四、 影响表面层物理机械性能的因素 1.影响表面层冷作硬化的因素
(1)切削用量 ①切削速度: 随着切削速度的增大,被加工金属塑性变形减小,同时由于 切削温度上升使回复作用加强,因此冷硬程度下降。 ②进给量: 进给量增大使切削厚度增大,切削力增大,工件表面层金属的 塑性变化增大,故冷硬程度增加。 (2)刀具 ①刀具刃口圆弧半径 增大,表面层金属的塑性变形加剧,冷硬程度增大。 ②刀具后刀面磨损宽度VB 增大,刀具后刀面与工作表面摩擦加剧,塑性变 形增大,导致表面层冷硬程度增大。 ③前角增大,可减小加工表面的变形,故冷硬程度减小。刀具后角、主偏角、 副偏角及刀尖圆角半径等对表面层冷硬程度影响不大。 (3)工件材料 工件材料的塑性越大,加工表面层的冷硬程度越严重,碳钢中含碳量越高, 强度越高,其冷硬程度越小。
机械加工精度
4)刀具热变形及对加工精度的影响 (1)刀具连续工作时 (2)刀具间歇工作 ξ(μm)
ξmax
连续切削升温曲线
间断切削升温曲线 冷却曲线
图中 ξ—— 热伸长量; ξmax —— 达到热平衡热伸长量; τ—— 切削时间; τc —— 时间常数(热伸长量为热平 衡热伸长量约63%的时间,常取3~4分钟 )。
机械加工表面质量
二、 表面质量对零件使用性能的影响 1.表面质量对零件耐磨性的影响

机械加工精度

机械加工精度
(2)夹具安装法
夹具安装法是指通过夹具保证工件加工表面与定 位基准面之间位置精度的安装方法。这种方法定位迅 速方便,定位精度高且稳定,但专用夹具的制造周期 长,费用高,因此主要用于成批、大量生产。
(3)机床控制法
机床控制法是指利用机床本身所设置的保证相对 位置精度的机构来保证工件位置精度的方法,例如坐 标镗床和数控机床等。
自动控制法生产率高,加工精度稳定,加工柔 性好,能适应多品种生产,是目前机械制造的发展 方向和计算机辅助制造(CAM)的基础。
2.形状精度的获得方法
(1)成形运动法
成形运动法是指使刀具相对于工件作有规律的 切削成形运动,从而获得所要求形状精度的方法, 如2.1节中所介绍的轨迹法、成形法、展成法和相切 法等。成形运动法主要用于加工圆柱面、圆锥面、 平面、球面、回转曲面、螺旋面和齿形面等。
(2)非成形运动法
非成形运动法是指通过对加工表面形状的检测, 由工人对其进行相应的修整加工,以获得所要求形状 精度的方法。非成形运动法生产率较低,但当零件形 状精度要求很高或表面形状比较复杂时,常采用此方 法。
3.位置精度的获得方法
(1)找正安装法
找正是指用工具或仪表根据工件上的有关基准, 找出工件在加工或装配时正确位置的过程。用找正 法安装工件称为找正安装。找正安装可分为划线找 正安装和直接找正安装两种。
试切法的生产率较低,对操作者的技术水平要求 较高,主要用于单件、小批量生产。
(2)调整法
调整法是指预先调整好刀具相对于工件加工 表面的位置,并在加工过程中保持这一位置不产率较高,对操作工的要求不高,但 对调整工的要求较高,主要用于成批、大量生产。
(3)定尺寸刀具法
一、尺寸、形状和位置精度
工件的加工精度包括尺寸精度、形状精度和位 置精度三部分内容。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4、获得高圆度工件的方法 ①高精度主轴车床 ②补偿 ③使主轴误差不反映到工件上
二、直线运动精度对工件精度的影响
1、机床导轨精度指标
①运动在水平面内的直线度 ②运动在垂直平面内的直线度 ③前后导轨的平行度(扭曲) 2、机床导轨误差对加工精度的影响 ①普通车床 水平面直线度:1:1 影响纵截面形状 垂直面直线度:属误差不敏感方向,影响较小 扭曲影响:可分解为水平、垂直
三、影响加工精度的因素
1、原理误差:采用近似加工原理或近似刀具切削刃形 状 2、安装误差:定位误差、夹紧误差、夹具本身误差 3、调整误差:调整方法与调整时的测量误差等
4、测量误差:量具本身、方法、温度
5、工艺系统的制造精度和磨损 6、工艺系统的受力变形
切削力、传动力、重力、离心力、夹紧力
7、工艺系统的受热变形 切削热、环境、运动、电机
5.3 工艺系统的受力变形及其对工件精度的影响
5.4 工艺系统的热变形及其对工件精度的影响 5.5 保证和提高加工精度的途径
5.6 加工误差的统计分析法
5.7 点图分析法 5.8 质量管理图
§5.1 机械加工精度概述
一、精度的概念
材料 精度 机器质量→零件质量→ 表面质量 加工精度 加工误差
理想零件 符合程度 理想零件 实际加工 加工精度: 零件几何参数 偏离程度 几何要素 加工误差: 理想零件参数:尺寸、形状、位置
x 0 和 x l 时,y1 0
l x 时,最大,为 2
y1
Py l 3 48 EI
刚度在该工件轴向的各个位置是不同的 加工后工件各横截面的直径尺寸也不同 形状误差(锥度、鼓形、鞍形等)
放大K倍
K0≥K
→放大K0倍
示波器输入信号
S1 ke sin ke sin k0 S ke(1 k0 S ) sin S ke(1 k S ) cos 0 2
向径为 S12 S2 2 ke(1 k0 S ) 当 S=0 时, ke 当 S≠0 时 R ke kk0es
⑤间隙影响
⑥变形的复合性
两零件接触面接触情况
机床刚度中薄弱环节
间隙对刚度影响曲线
三、工艺系统的刚度
工艺系统总变形及合成刚度为
1 k系统

1
k机床 k夹具 k刀具 k工件
py y系统
+
1
+
1
+
1
y系统 y机床 +y夹具 +y刀具 +y工件

k系统 、
k机床
py y机床
py y刀具

k夹具
径向跳动
轴向跳动
摆动
2、主轴回转精度的分析
工件回转类 机床 刀具回转类 轴承精度 影响因素 主轴安装
轴颈 轴承 孔
滑动轴承 主轴精度 轴承 动压 滚动轴承 主轴孔精度 ①主轴径向跳动分析 滑动轴承 轴颈圆度、轴瓦内孔圆度及其配合 工件回转类:传动力与切削力不变→轴瓦接触点不变 →轴颈影响↑轴瓦↓
示波器上光点的向径 S x2 S y2 ke 为常数。 当主轴有偏差δ时
x e cos wt cos( wt ) y e sin wt sin( wt )
示波器上,
Sx ke cos wt k cos( wt ) Sy ke sin wt k sin( wt ) 向径为
此时刀架变形为
因此,
y刀架
Py K s刀架
Py
Py l x 2 Py x 2 y机床 yx y刀架 ( ) ( ) Ks头 l Ks头 l Ks刀架
1 Ks机床 1 l x 2 Py x 2 1 ( ) ( ) K s头 l K s尾 l K s刀架
当 x 0, y机床
此方向上刀具对工件的变形(位移)量y的比值
ks
py y
静刚度:在静态条件下静力与变形的比值
动刚度:某一频率范围内产生单位振幅所需的激振 力幅值
二、机床部件刚度特点及影响因素
车床刚度的单向静测定
1、部件变形过程与刚度曲线特点 (1)加载变形曲线→不成线性
py

py y

y
有刚性很差的零件,当该 零件变形减小时,K增大
瞬时回转中心相对于理想回转中心的位置变动量
S f (t , )
t—时间,θ—转角
②误差敏感方向:经过刀具刀刃的切削点又垂直于已加 工表面的方向。误差敏感方向上的误差对工件加工精度 影响很大,而垂直于该方向的误差则影响很小。 ③主轴回转精度:主轴回转轴线在回转时相对其平均轴
线的变动量在误差敏感方向的最大位移值。
二、获得加工精度的方法
试切法 1、 获得尺寸精度 调整法 尺寸刀具法 自动控制法 非成形运动法:刮、研和对磨 2、 获得形状精度 点成形运动法:轨迹法 成形运动法 成形法 线成形运动法 展成法
试切法加工
调整法加工
定尺寸刀具 法加工
轨迹法加工
成形法加工
展成法加工
3、
找正法 获得位置精度 夹具 机床装夹面
第五章 机械加工精度
学习目的与要求
(1)掌握机械加工精度的概念以及加工精度与加工误差的关 系 (2)熟悉工艺系统的原始误差种类及其对加工精度的影响, (3)掌握加工误差问题的综合分析与解决
(4)掌握加工误差的基本计算方法
(5)熟悉提高和保证加工精度的途径、常用方法
主要内容
第5章 机械加工精度 5.1 机械加工精度概述 5.2 工艺系统的制造精度和磨损对工件精度的影响
2、夹具的制造精度和磨损
夹具的制造精度和磨损影响工件的精度 3、量具 1 1 1 ~ ,最多 测量误差为工件公差的 3 10 6
§5-3 工艺系统的 受力变形及其对工件精度的影响
一、基本概念
1、变形现象 车棒
车长轴
磨孔
2、概念 刚度:物体或构件受外力后抵抗变形的能力 工艺系统的刚度:在误差敏感方向上的分力py与在
§5-2 工艺系统的制造精度和磨损 对加工精度的影响
制造误差
机床误差(来源) 磨损误差 安装误差
回转运动(主轴)误差
机床误差(种类)
直线运动(导轨)误差
传动误差 几何误差(位置)
一、机床主轴的回转精度及其对工件精度的影响
1、主轴回转精度的概念 ①回转动态过程
理想回转中心:在主轴的任一界面上有一点O其速度 始终为V=0 瞬时回转中心:实际存在的一个变动的回转中心 瞬时回转轴线:各瞬时回转中心连线
三个阶段
一:起始磨损,非线性 二:正常磨损, 三:快速(剧烈)磨损
减少影响方法
尺寸补偿 降低切削速度,延长刀具寿命 选用耐磨刀具材料—复合氮化硅,立方氮化硅
③砂轮的磨损及修复(快、与硬度有关) 外圆磨床,直径大→对工件尺寸形状影响小 内圆磨床,直径小→磨损对工件精度影响大 齿轮磨床,大平面磨床→磨损对工件精度影响大
k e2 2 2e cos
李沙育图,其半径差为主轴回转精度。 这种方法适合刀具回转型机床的主轴 回转精度测量,如镗,而不适合车床
测量镗床 主轴回转精度
钢球安装偏心 对测量的影响
③单向测量法(美国LRL法) ——测定车床主轴回转 精度的方法
传感器Ⅰ esin y 传感器Ⅱ ecos x 传感器Ⅲ S
静压
刀具回转类:切削力回转扭矩→主轴颈接触点不变 →轴瓦内孔影响↑,轴颈↓
工件回转类
刀具回转类
主轴几何轴线 径向跳动产生 的加工误差
滚动轴承
工件回转类:内环外道↑外环内道↓ 刀具回转类:外环内道↑内环外道↓
滚动轴承尺寸、形状:低频一半,变形一部分 间隙 此外, 轴颈:内环变形
箱体孔:外环变形 安装面:倾斜 ②造成主轴轴向窜动的原因
因此,有
py
y夹具
+
、 k刀具
1 + 1 +

1 k系统

1
1
k机床 k夹具 k刀具 k工件
k工件
py y工件
四、工艺系统受力变形对加工精度的影响
1、由于切削力产生的系统变形对加工精度的影响 (1)由于切削点位置的变化引起的刚度、变形变化而产生 的形状误差 ①工件短粗,刚度高→鞍形
P尾
力:
主轴轴向跳动引起的加工误差
3、主轴回转精度的测量 ①表测法
回转轴
缺点 敏感方向 动态
几何轴偏心
②双向测量法(捷克VUOSO)刀具回转
当没有回转误差时,间隙变化为
示波器上为
x e cos wt y e sin wt
Sx ke cos wt Sy ke sin wt
定位精度:工作台从一个位置移动到另一个位置的准确度
1、进给机构的传动精度 主要取决于选用的进给机构型式及进给机构的传动精度
2、进给与测量分开时的测量精度 原理误差→阿贝误差→被测的与实际的不在一条直线 上产生的误差 3、爬行误差
动—静系数不一样
刚度 摩擦系数
解决办法
提高系统刚度→电致伸缩 摩擦系数→动静相等;滚动、低塑料 调整速度
Py头
lx Py ( ) l
Py尾
x Py l
位移: y头
P 头 Ks头
lx ( ) K s头 l Py
Py x P尾 y尾 K s尾 K s尾 l
x lx x yx y头 ( y尾 y头 ) y头 ( ) y尾 l l l
l x 2 Py x 2 y ( ) ( ) Ks尾 l K s尾 l Py
2 磁

有预紧力,当载荷 大于力时,K变小
相关文档
最新文档